Existence Theorems for Multiple Integrals of the Calculus
of Variations for Discontinucus Solutions (¥).

L. CESARI - P. BRANDI - A. SALVADORI

Summary — The authors prove existence theorems for the minimum of multiple integrals of the
coleulus of variations with constraints on the derivatives in classes of BV possibly discon-
tinuous solutions. To this effect the integrals are written in the form proposed by Serrin.
Usual convexity condiltions are requested, but no growth condition. Preliminary closure and
semicontinwily theorems are proved which are analogous to those previously proved by Cesari
in Sobolev classes. Compactness in Ly of classes of BV functions with equibounded total
variations is derived from Cafiero-Fleming theorems.

1. - Introduction.

?In the present paper we state and prove existence theorems of optimal solutions
for multiple integrals of the caleculus of variations, with constraints on the deriva-

tives of the type

(@) = f Fot, a(t), Da(t)) dt ,
G
(t,w(t) e d, Du(t)eQ(t,x(t), te@ ae..

The solutions are sought in the class of vector valued functions of » independent
variables, or z(f) = (z%...,2"), t = (#*, ..., ") € G, which are of bounded variation
in the sense of Cesari ([5] 1936).

These functions were used by CEsARI in [5] to characterize nonparametric discon-
tinuous surfaces whose generalized Lebesgue area is finite. The same functions were
also used by CEesARI in {10] (1937) for sufficient conditions for convergence almost
everywhere of double and multiple Fourier series. The same functions were used
by ConwAY and SMOLLER [12] (1966) in the study of shock waves of weak solutions
of conservation laws. These functions are also called BVC functions in the termi-
nology of CoNwAY and SMOLLER [12], DArERMOS [13] and D1 PErRNA [14]. As it

(*) Entrata in Redazione il 2 dicembre 1986.

Indirizzo degli AA.: L. Crsar1: Mathematical Department, University of Michigan, Ann
Arbor, Michigan, U.S.A.; P. BrRaxDdI and A. SarLvapori: Dipartimento di Matematica, Uni-
versitd degli Studi, Perugia (Italy).



96 L. CBESARI - P. BRANDI - A. SALVADORI: Ewistence theorems, elc.

is well known, KRICKEBERG ([19] 1937) proved that these BVC funetions (or BV
functions) could equivalently be defined as those I,(@)-funetions whose first order
partial derivatives in the sense of distributions are finite measures. This alternative
definition has been also used by a number of authors as MIRANDA [20], GrusTI [17],
ANZELLOTTI and GIAQUINTA [2]. We refer to the recent exposition (CESARI [9])
for more references on funetions of bounded variations.

Our integral function is of the Serrin type [24] and it is modeled on the well-
known area functional (see CESARI [5]), that is,

J(z) = inf lim | Fo(t, 24(t), Dw(t)) dt = inf lim I(a,) ,

T(x) k:o“oG T(2) j5

where the infimum is taken with respect to the eclass I'(#) of all the sequences ()
of W4Y() functions converging to # with respect to a suitable topology o and
sueh that

(tyo) e A, Du)eQ(t, n(d), i@ a.e.

Actually, for the sake of generality, we shall think of the n-vector x = (@, ..., 2")
as made up of an a-vector y and an (n — o)-vector 2, say © = (y, 2), y = (&Y ..., %),
z= (", ..., 2"), O<a<m, with y in W2YG) and 2 in BVC(&), Gc R

Thus, in reality, we consider a mixed topology o for the elements @, = (¥, 2;)
and = (y,2) with y, ¥, s € WH(@) and ¢ BVC(G), ie. y,—yin (L(G))* and
Dy, — Dy weakly in (L,(6))’*, while #2,—>2 in (L,(G))"~* and no condition is
assumed on the gradient (Dz,).

The method we adopt in our treatment is the direct method of the calculus of
variations, based on compactness and lower semicontinuity, or lower closure (see [8]).

As it is well-known, if 06 is regular, the bounded subsets of W%1(@) are relatively
compact in I,4(@), and this result will be used in the present paper. Thus, in the
spirit of the direct method, what we need is a suitable lower semicontinuity result.

Under convexity assumptions, in Sections 1, 2 we prove closure theorems, for
BVC functions, with respect to L (@) convergence and no topology on the derivatives.
Such closure theorems are based on suitable extensions of the arguments used in [8]
and [115] for simple integrals and [6, 7] for multiple integrals. We do not discuss
here quasi convexity or policonvexity.

In Section 3 we apply these closure results in order to prove the lower semicon-
tinuity of I and consequently to point out the precise comparison between I and J.
Indeed, we prove that, in general, J(x)>I1(»), and that J is a true extension of 7
in the sense that J(x) = I(r) whenever v WH(#). In [11b] we showed, by an
example, that 3 can be actually larger than I. These conclusions are warranted by
our systematic use of both alternative interpretations of the conecept of BVC fune-
tions (efr. Section 2a). Note that they generalize results which are well-known for
the area functional, that is, the Lebesgue area L(x) of a surface « is alway > than
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the area integral I(z), and that the equality sign holds if and only if # belongs to the
Wt class ([24]).

Finally, in Seetion 4 we prove existence theorems for optimal solutions of the
integral functional J with constraints on the derivatives. Note that, in the parti-
cular cage « = 0, all components of the solutions are BVC. We wish to point out
that we require convexity conditions as expected but no growth assumptions.

Moreover, and for the sake of comparison with a previous paper of ours on simple
integrals, i.e., v = 1 ([11b]), we wish to mention that we persued there an analogous
program for vector functions «(t)= (&%, ...,2") = (y,2), HL<i<t, Wwith gy =
= (@ ..., x*) € AC and z == {@**% ..., 2") € BVC. We also used a mixed topology,
namely y,—y uniformly in [{,{,] and 2, —# pointwise a.e. in [4, {,].

In [115], for compactness, we used Helly’s theorem which guarantees that any
sequence (x,) of equibounded functions of a real variable with equibounded varia-
tions has a subsequence which converges everywhere in [#;,7,]. For functions of
v >1 independent variables there is no Helly’s theorem for BVC functions. How-
ever, there is a partial extension of Helly’s theorem for functions of equibounded
total variations in the sense of Vitali (which we shall use in Section 4b), and there
is a compactness theorem in I, by Oafiero-Fleming for functions of equibounded
total variations in the sense of BVC (which we shall use in Section 4a).

For functions of class WLi(@), lower semicontinuity theorems, or lower closure
theorems, have been proved, among others, by MoORREY, CESARI, STAMPACCHIA,
IorrE, STODDART, FERRO, DE GIORGI-BUTTAZZO-DAL MAso for the Lebesgue integral,
and by WARNER, BRANDI-SALVADORI for the Weierstrass integral, under various
conditions, as convexity and growth assumptions. '

2. — The closure theorems.

a) Functions BVC and ACg in a bounded open set G in R».

We denote by |A| or |4], the measure of a measurable subset 4 of R*. Let &
be an open bounded set of the t-space R’, ¢ = (&%, ...,#). In the following, for the
sake of brevity, we shall use the notations /= (f,...,# % ¢+, ..., ) = 7 and
{t, ) = (..., ), j =1, ...,». Moreover, for any j=1,...,», let G/ denote the
projection of G on the #"-space and for any 7 & @'/ let us denote by r, the straight
line #'/== 7. Then the intersection @ N r, is the countable union of intervals («,, f.),
or GNr, = (x,p).

8§

We say that a function fe L,(G) is of bounded variation in the sense of Cesari [B]
(BVC) if there exists a set Ec @, with |E| = 0, such that, for every j =1, ...,
and for almost all 7€ G'/, the variation V,,= V({, («,, 8,)), computed disregarding
the values taken by f on H, are finite, V()= > V,, is finite and V, e L(@").

8
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Then the number

Wmm=2fmmm

is finite and can be taken as the generalized total variation of f in @ (cfr. [11a]).

The BVC funetions which are continuous in G are the classical funetions of
bounded variation in the sense of Tonelli (BVT) since there is no need of taking any
set Bc@, [E|,=0.

If fis BVC in ¢ and K c @ is the corresponding set of measure zero, then E
hag intersection N1 of linear measure zero on almost all lines { parallel to the
axes. Hence, f is BV on almost all such straight lines ! when we disregard the
values taken by f on Z, and has therefore « usual » partial derivatives D‘f a.e. in G,
and these derivatives are functions in G of class L,(G). We call these D’ f@t), te @,
j=1,..,7 computed by usual incremental quotients disregarding the values taken
by f on E, the generalized first order partial derivatives on f in & (see [11a]), and

d=1

wmwzzﬁwmwt
[ed

It is well known (Serrin [23]) that if f is BVC there is an equivalent function f
which has partial derivatives D’f a.e. in G and Dif = Dif a.e. in G.

Furthermore KRICKEBERG ([19]) proved that a function f is BVC on @ if and
only if fe L,() and the first order partial derivatives of f in the sense of distribu-
tions are finite measures u,;, j =1, ...,».

A function f € Ly(G) is said to be absolutely continuous in the generalized sense (ACg)
if it is BVC and for every j =1, ..., » and for almost all r € '/, the funetion f(-, 7)
is ACg (i.e. it is equal a.e. to an AC function) on r,.

The ACg functions which are continuous in G are the classieal functions absolutely
eontinuous in the sense of Tonelli (ACT).

For an ACg function we have that

v, = 3 [ioja.
e
Moreover it is well-known that if f is ACg then for every j = 1,...,» there is an
equivalent function 7, for which the total variation V; is equal to the usual integral
V= f |Dif;|dt. Furthermore, KRICKEBERG [19] showed that the ACg functions are
(2]

the fe L{G) whose partial derivatives in the sense of distributions are again func-
tions in I,(G). In other words, ACg coincides with Wy(¢). For more details on
thege conecepts see [11e] and [19]

b) The properties (@) and (F).
Let n>1, »>1 and N1 be integers. Let A be a given subset of the (¢, »)-space
R+ and, for every (f, )€ 4, let Q(t, z) c RY be given sets. Following CrsArr [8],
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we shall consider the conditions on the sety ¢(¢, #) below. We say that the sets Q(t, ),
(t, ®) € A, have property (@) at (t, z,) € A4, with respect to (I, x), provided

(@) Qta; #0) = () cleo U [Q(t, 2), [t — | <oy | — m| <] .

>0
We say that the sets Q(t, »), {t, #) € A, have property (@) ab (,, @) € 4, with respect
to x, provided

@) Qto, To) = [ el co U [@(ty, @), |z — @) < o] .
6>0
We shall need below some further alternative properties of the sets Q(f, ). We
could say that the sets Q(f, »), (t, z) € A, have property (F,), Wiﬁh respeet to x, at
the point (%, x,) € 4, provided

(#,) given any number o> 0, there are constants € = C(t, 2, 0) >0, 6 =
= 8{fy, @y, 0) > 0 such that for any (f,s)ed with [{— t|<o, |#— 2| >0 and
any vector &€ Q(t, ), there are vectors %, £ such that

tz)ed, Iﬁ~—%l<o‘, geQ(t’§)7 {§“§|<O[|m—§[+ [t_tol];

for [t — t|<d.

To avoid questions of measurability, however, we take the following form of
this condition. We say that the sets Q({, ), (£, #)e 4, have property (F,), with
respect to @ at the point (4, #,) € 4, provided

(F,) given any number o> 0 there are constants ¢ = C(l, %, 0) >0, 6 =
:Z(S(to, @y, 0) > 0 such that for any two measurable vector functions (f), (1), t€ ¥,
on a measurable subset Hc @, with (t, 2(8)) € 4, |w(t) — o] > 0, &(t) € Q(2, »(t)) for
[t — %<8, te B, there are two measurable vector functions %(t), £(t), t€ B, such
that (4, Z(t)) € 4, '|8(¢) — @w|<o, &) € Q(t, T(t) and |E() — E@)| < O[|=(t) — &(®)] +
4+ Jt—1|] for tc B, [t — 1,]<d.

The conditions (F,), (F;) are conditions concerning the behavior of the gets Q(t, x)
where x is away from x,. Note that C can be as large as one wants, even for ¢ small.
A natural choice for »(t) is of course Z(t) = u,, t€ BN {I: [t — t,|< 8}, but the allot-
ted generality may be useful. An analogous but essentially stronger condition is
the following one, which, for the sake of brevity, we express only in terms of meas-
urable funetions.

We say that the sets Q(¢, »), (f, ») € A, have property (F,) at the point (4, @) € 4,
provided

(F;) there are constants C = C(f,, #) > 0, 6 = 8(fy, 4,) > 0 such that, for any
two measurable vector functions x(?), £(¢), t € H, on a measurable subset F c &, with
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(t, az(t)) e A, &) € Q(t, 2(t)) for [{ — #,|<d, t € B, there is & measurable vector fune-
tion £(t), te B, such that &(f)eQ(t, xo), |E(t)— E(@)|<O[w(t) — @] + |t — ] for
Le B, Jt— 1] <.

This eondition (F;) actually concerns the behavior of @(t, #) for ¢ in a neigh-
borhood of 4, and any x. A variant of these conditions is the following one.

We say that the sets Q(¢, ), (£, #) € A, have property (F,) at the point (f,, #) € 4,
provided

(Fg') given any number o> 0, there are constants € == O(ty, zy, 0) > 0, § =
= 0(f, %, 0) > 0 such that for any two measurable vector functions x(¢), &(t), t € H,
on a measurable subset Fc @, with (1, 2(t)) € 4, &) € Q(¢, 2(t)), lo(t) — 2| >0 for
[t — %|< 6, t € B, there are two measurable vector functions #(t), £(¢), ¢ € B, such that
(t0r 5(0)) € 4, [7(t) — m| <o, £(t) € Qtor B(0) and |£(0)— E0)|< Oja(h) — a0l + [t~ b]]
for te B, |t — t|<d.

Properties (Fy), (F), (IFy), (F,) are variants of the property (F) stated in 13.2.A
of [8] in a different context.

Properties () and (F;) are trivial for Q(¢, #) = R¥ as in the classical problems of
the caleulus of variations, and properties (I), (F,) are trivial if @(f, #) = RY and
A= GxA4,, 4,cR* a fixed set.

¢) Statement of the closure theorems.

Let G c R» be an open bounded set and let 4 ¢ R*+» be such that the projection
of A on the t-space R’ contains G. We shall denote by x(t) = (2(?), ..., 2*(t)), t € G,
a vector funetion on @, whose components x? are BVC on G. Therefore, the usual par-
tial derivatives Dia?, j =1,...,», ¢ =1, ..., n, exist a.e. in ¢ and are L-integrable
functions in G. For every i =1, ..., n, we shall denote by {j}; a given finite system
(Jyy -y §s) of indices §, 1<j; < ... < j,<», and we shall denote by Dz the vector of
all the first order derivatives D’wx’, je {j},, i =1,...,,n. Let N denote the total
number of indices contained in the » systems {j},, ¢ = 1, ..., n. For every (¢, #)€ 4,
let Q(t, #) be a subset of R”. We shall consider the orientor field equation

(%) (t, (1)) € A , Da(t) e Q(t, x(t)) , a.e.in @,

that is, the problem of determining an m-vector function x(f) = (%, ...,a"), {e G,
whose components x¢ are BVC on G and satisfies () a.e. in @.

THEOREM 1 {A closure theorem). — Let assume that (i) A is closed; (ii) the sets
Q(t, 2), (t, x) € A, are closed and convex, (iii) the sets Q(, ), (t, ) € A, have property (@)
with respect to (t, z), and property (F:'[) with respect to x at every poimt (&, x,) € 4,
with the cxcepiion perhaps of a set of poinls whose t-coordinates lie in o set H of
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measure zero n the t-space. Let x,(t), or w,: G — R", be a sequence of ACg solutions
of the orientor field (iv) (t, (1)) € A, Dw,(t) € Q(t, wi(t)) a.e. in G, ke N; and assume
that (v) @, — 2 in (L(@))" end » is BVC. Then the vector funclion » is o solution
of the orientor field equation '

(t,2(t)) e A, Du(t)eQ(t, »(t)) a.e. in G.

THEOREM 2 (A closure theorem). — The same as in Theorem 1 where (iii) is replaced
by (iil)’ the sets @(t, z), (t, x) € A, have property (F;) at every point (fy, 2,) € 4, with
the emception perhaps of a set of peints whose t-coordinates lie in a set H of measure
zero in the t-space.

THEOREM 3 (A closure theorem). — The same as in Theorem 1 where (iii) is replaced
by (iii)" the sets Q(t, x), (¢, x) € A have property (@) with respect to x only and property (F;)
at every point (ty, x,) € A with the exception perhaps of  set of poinis whose t-coordinaies
lie in o set H of measure zero in the t-space.

d) Proofs of the closure theorems.

Proor or THEOREM 1. — By the hypothesis (v) we have that

(1) Hm | |z () —2@)|dt = 0.
k> ooG
If we denote by @ the projection of @ on the #-axis, and for every i/ € @&, ¢/ scalar,

we consider the intersection set G(I) = {r € R*-!(#), 7)€ G}, then we know that,
for a.a. t/€ G7 we also have

(2) Im | |o#, 1) — s, 0)ldr =0, j=1,..,,
k> o0
6{)

where dv = di* ... di*~1dti+i ... di*. That is, for every § = 1, ..., », there is a set B c G4
with B¢, = 0 such that, for all # e G/ — F’, relation (2) holds.

Let B = {t = (t),7): /e B/, v e R-% c R’, 50 that |Bi|,=0, j=1,..,», and
we take By=J E]. Then |B,|, = 0.

i=1

By hypothesis, x is BVC. Let us denote by u,; the vn finite measures which rep-

resent the first order partial derivatives of # in the sense of distributions. For every

e R let ¢ = [f— h, &+ h] denote the eube ¢ = [t} — h<¥t/<t) + h, j =1, ..., 7],
> 0.

Then by [19] and [23] (pg. 119 and 366) for almost all > 0 we have

3) [0t — 1,0 — @0t + By D1dr = plto— By to - 1,
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where g/ = [t — h<t'<t + hys =1, ...,v,87#j]c R, and

(4) islto— hy o+ B] = fo'mi(t) dt + Sylto— hy ty - k],

a

where 8, is the singular part of the measure u;, i =1,..,m, j=1,...,v. As a
consequence, for almost all f{,€ G we have

{5) Lim (2R)*8,(lg— byt -+ h] = 0.

f->0%

Let us denote by H,, with [E,, = 0, the set of all {,c R* where (5) does not hold,
Now the functions Diz? are L-integrable in @, hence

h—0*

(6) lim {Zh)—'vafmi(t) dt = Digi(h) ae. in G, j=1,..,v,i=1,...,n.
2

Let H; be a set, with |H;[,= 0, such that (6) is true for all {,e G — F,. Finally
x € (L;(@))", hence there is a set B,c @ with |E,|,= 0 such that, for all {,e G — H,
we have

(7) lim (Zh)“”f lwi(t) — @i (t)|dt =0, i=1,...,n.

h—>0%

Now by hypothesis (v) we deduce that there is a subsequence, say still (k) for the
sake of semplicity, such that », — 2 pointwise a.e. in G. Then by Hgoroff’s and
Lusin’s theorems, given A > 0 there is a compact set K c G, with |G — K|, < 4 such
that z restricted to K is continuous, hence uniformly continuous, and z, —x
uniformly on K. Thus, given 0 < o<1, there is a number 0 < 6, == §,{c) <o such that

(8) o) —2(@")|<o/2 forall ¥, ¥'e K, [—1"|<d,
and an integer k, = k(o) such that

(9) [#,(8) — 2(t)] < o/2 for all te K and k>F, .

4

Note that almost all points of K are points of density one for K. As a consequence,
for almost all {, K we have

(10) lim (2h))g N K|, =1.

0%

Let E; denote the set of all points %, € K which do not have this property, hence
Bl = 0
45y .
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For B = E,U E,u B,V E,U E;U H, then |E|,=0.

Let £, be any point in K — F and let §, denote its distance from 0f. Then con-
ditions (2), (8), (6) and (7) hold.

Take xy= #(t,) = (%5, ..., %) and let ¢ = [ty— h, t, - h] denote any cube with
0 < h < min (d,, 6;)/V/7, then ¢c @ and

(8)’ [z(t) — @] < of2 for all teqgn K.

Let 0 <<d<1 and O >0 be the constants corresponding to (¢, z,) and o, given by the
hypothesis (7). Given >0, there is 0<<ho= ho(ts, o, 0)<min (d,, &, 6)/2V»
such that for almost all 0 <<k < h, the following relations hold for j =1, ...,,
i=1,...,n (see (10), (6), (3) and (7))

(11) (2h)]g — K|y < /140,

(12) : |(2h)~ f Digi(t) dt — Diwi(t)|d < ofTnIV
(13) (@)= lts— Ty to+ 1| < o) TnV ,

(14) (2h)~ f lo(t) — o] dt < /70 .

Note that # ¢ B/, j = 1, ...,», and we can choose 0 <k <k, 50 that relation (3)
holds and also #) - k¢ F'. Having fixed & relation (2) holds for #) — h and f] - b,
hence we can take an integer k,= ky(o, b, %) sufficiently large so that

(15) 2h)~ f Wit & by 7) — @(t] = by 7)|dr < ofTAN

for all j=1,...,», ¢ =1,...,n and k> k,. Finally, because of (1), we can take
k= k(C, ¢, k) > max (k,, %) so that for k> % we also have

16) (2h)7 f () — w(t)| dt < /70 .

On the other hand, by (3), (4), (15) and (13), we have
(17) ’(27@)—” [ty a— eny~ [y dti -
*——q !(2?»)“” f [#'(t; + h,qr) — (] — by 7) — @t + by T) + FE — b, T)]dT —
- (2h)—”lg;(to— hy 1o+ R]| < (2R)" f it + b, v)— &'t + by T)|dT +
-+ (2h)” f wi(ts — Ry 7) — 2 (8 — h,a ,'jr)[dr + (2R)|8.(t— hy to+ h]|<

q'd

<o/TnN -+ o/TnlN - o/TnN = 3p[TnN ,
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and from (12) we deduce that, for every &>k

(18) |Date) — (2h) [ Da(t) &t| < N[30/TN + o/TN] = 40/ .

By hypothesis (iv) we know that
Dai(t) € Q(t, 2(t))  ace. in G
When ¢ describes the interval ¢ = [f,— h, t,+ k], certainly [t— &,]| < 2hV%, with
0 < b < hy<min (&, 0;, 8)/2V7. )
Hence, for all tegN K and &>k we have (see (8) and (9)) [t —t| < &< o,

lo(t) — @] < 0/2 and |w(t) — 2()] < 0/2, thus |@.(t) — 2| <o.
Now we enlarge the set ¢ N K into the maximal subset K, of ¢ where

[, (t) — o} <o
Certainly K, is measurable, and then for te q¢— K, [t — &| < o, we have
|72 (8) — o] > o .
Moreover, for &,(t) = Dx,(t), we certainly have
(19) E(t) = D (t) € Q(t, 2(t)) , teq ae.
By virtue of property (Fi), corresponding to (%, %), o > 0 and the functions x,(t),

&), teqg— Kk, we deduce that there are measurable functions %,(t), &), t€ ¢ — K.,
such that

(20) (L F(M)ed, [E@l)—mi<o, E:(t) € Q(t, %(t)) and
Eu(t) — Et) < Oflealt) — Fu(®)] + E— 4], teq— Ky

Moreover we can extend %, and &, to all ¢, by putting

(21) E() = &) € Q@ (D)),  Eult) = welt), tekK,.

Thus by (20), (21), (16), (14) and (11) we have, for k> &,

02) @iy [Ewd— en- a0 a<en [ 60— &0la<

a— Ky

< O@2h) f [lwe(t) — Ze(®)] + 1t — tol ] dE<

2—K»
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< O(2h)~ f [£t) — 2(t)] - [@0(t) — @] -+ [Fult) — o] -+ [t — to]]dt<

a— K

<0@hy [ [lou® — ] @ -+ [Io) — @l + [ @) — aolat + [ 1t — tlat] <
[4 [4 % —K

a—Kx

<O[e[7C + 0/7C + ¢/70] = 3¢/7 .
From (19), (18) and (22) for k> & we have

(23)  |Dotte) — (2h)y [Eult) @t <

<|Dat) — (@) [Et) @l + (@0 £t @t — (@2h)~ [E0) dt <40/7 + 30/ = o,

with (see (9), (8)', (20) and (21))

Ek(t) = &(t) € Q(ta mk(t)) y [t— to' <0, faor () — $o|<‘7 y te ch ’
EDeQt,FD), [f—tl<o, [Tl —ami<o, teq—K,.

Hence

(2h)—"f§k(t) diecleo U [Q(F, #")|t' — f| <o, |[#' — 2| < 0] = ¢l coQ(ty, 2o, 0) ,

and (23) yields

(24) Dx(t,) € [el co Q(ty, o, a)]g .
By the arbitrariety of ¢ > 0, from (24) we deduce that
Dx(t,) € ¢l co Q(ty, o, 0)
which gives, by virtue of hypothesis (@)

Da(ty) € N el co Q(ty; o, ) = Qo @) -

>0

Thus we have Di(t) € @(%, #(f)) a.e. in K with |¢ — K|, < i, Finally, by the
arbitrariety of 4> 0, we have

Dx(t) € Q(t, 2(t)) a.e. in G.

Theorem 1 is thereby proved.
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Proor or TurOREM 2. — The proof is the same as for Theorem 1, though here the
numbers 6 > 0 and ¢ > 0 depend only on ?, and x,= (7).

Moreover we choose k> 0 in such a way it satisfies all requirements listed in the
proof of Theorem 1, and in addition 2vCh < 9/7. We recall that for every k > £,
we have

(14) (2h)~7 f l@(t) — mo| dt < 0/70;
(16) (@h) [l — a(9)] &t < 070,
(18) \Das(ty) — (2h) f Da(8) dt] < 4o/7 .

Moreover, by the hypotheses,
() € A, &) = Do) eQ(f, %)) ae. in g.

By property (F;) corresponding to (%, %,) and the functions x,(t), &.(?), ¢ € g, there is
a measurable vector function &,(f), t € g, such that

20)  E® eQl, m), &) — E@)<O[ml) — @) + F—4]], teq.
From (20), (14) and (16) we deduce that, for every k> F,
©22)  |2h) f E (0) df — (2h)~ f E.() dt] < O(2h)~ f [lu(t) — o] - [t — to]] dt <
" " <0270 + Ca(2h)—”_(2h)”2hv = 207 + 2hvC < 3p[7 .
From (18) and (22) we have now, for & > k,
(23)' [Datte) — (21 [Ey ati<e
¢
with &.(t) € Q(f,, %) a.c. in g. Hence,
@) [ &ty di € cloo Qlto, a0) = Qlls, a0)
and (23) yields "
(24) Daz(t,) € [Q(t, mu)}Q .
Since g is arbitrary and Q(%, @) is closed, we have

Dz (ty) € Qtos 2o) = Q(toy x(ty))
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This relation holds for a.e. t, € K, with |@ — K|, < 1; since A > 0 is arbitrary, we have
Da(t) € Q(¢, #(?)) a.e. in @ and the proof is complete.

PrRooF oF THEOREM 3. — Is analogous to the two previous ones.

3. — An application of the closure theorems.

(@) The ovientor field equation.

Let Ry== [y, bo] = [#i<t'<b}, j =1, ..,7] be & closed interval such that & C R,
and let 2°(t), te R, or #°: By— R be a given scalar function. For any interval
R = [a, b] c R,, we consider the usual differences of order » relative to the 27 vertices
of R, say

A 0= ao(b) — ad(a) if v =1,
A0 = 2°(bY, b2) — 2°(b%, a®) — 2°(at, b?) 4 2*(a*y a?) Ly =2,
and so on.

As is well known, the function #, is said to be of bounded variation in the sense of
Vitali (VBV) [22] if the interval function 4,4° is BV, i.e.,

sup D |4z’ < + o0,
D ReD

where the sup is taken over all the finite partitions D of R, in nonoverlapping in-
tervals. A VBV function has almost everywhere superficial derivative, say

D*a(ty) = Jim (2h)7 4o0®,  GE Ry,

where ¢ = [t,— h, f,+ k], and D*a°(t) is an L-integrable function in R,.
The function , is said to be absolutely continuous in the sense of Vitali (VAOC) [22]
if the interval function A,4° is AC. In this case we have A4,4°= f D*a0(t) d.
R

Now we denote by &(t) = (2°, ) = (2% %, ..., %), t € &, a vector function of t € G,
where #° is VBV and «f, ¢ =1, ..., n, is BVC in G.

For every (t,#)e A c R let ((t, #) c R™ be a given set. We shall consider
the following field equation

(%)’ (o) ed, (D*a@), Dat) eQt, 22)) a.e. in G.

(b) The properties (F).

Property (@) for the~set Q(t, x) does not need a new definition. Instead, we shall
formulate conditions (F)), (F,) and (F;) for the sets §(t, ), analogous to the con-
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ditions (F)), (F,) and (F,) of Section 2b. Again, to avoid questions of measurability,
we express these conditions in terms of vector functions.

We say that the sets @(t, x), (t, ) € 4, have property (F’;), with respect to z at
the point (4, #,) € A, provided

(Fi) given any number ¢ > 0, there are constants € = C(f, 2, 0) >0, § =
= 0(f, %, 0) > 0 such that for any set of measurable vector functions (t), %(%),
£t),te€ B, on a measurable subset Ec@G with (¢ () €A, |o)— m|> o,
(n(t), £@)) € @(¢, »(t)) for te B, |t — t|<o, there are measurable functions Z(t), 7(t),

£(t), te E, such that

t,ZW) e A, [B)— m|<o, (G0, &) et @),
) — E@)| < O[Jo(t) — ()] + [t — 4],
Aty <n() + Cllut) — )| + [t—tl] for te B, [i—1]<d.

The most natural ehoice for Z is #(t) = @y, te BN {E: [t — t,|< 6}

We say that the sets ((t, ), (¢, #) € 4, have property (17’;) at the point (¢, x,) € 4,
provided

(17’;) there are constants C = C(fy, %) > 0 and & = (%, 2,) > 0 such that for
any set of measurable vector functions «(t), n(t), &(1), t € B, on a measurable subset
Ec @, with (¢, () € 4, (), &) € Q(¢t, #(t) for [t— t| <, te B, there are two
measurable vector functions #(t), &(t), t € B, such that

(7(8), £2)) €@y, m) and |E@) — £@)| < O[|w(t) — @o| + [t— %[],
FO)<n(t) + O[le@) — @] + [t—tf] for te€ B, [—t|<d.

We say that the sets §(t, #), (¢, z) € 4, have property () at the point (t,, ) € 4,
provided

(F’;) given any number ¢ >> 0, there are constants € = O(f,, %, 0) >0 and
& = 0(ty, %9, 0) > 0 such that for any set of measurable vector functions x(?), n(t),
£(t), te B, on a measurable set EcG with (t,2()) € 4, (5(t), &) € @, 2(t)),
[@(t) — | >0, te B, |t — t;|<d, there are measurable vector functions Z(f), 7(?),
(), te B, such that

(tyEW) €A, [Et)—zl<a, (i), &) € Qlto, 1))
and
&) — ED| < CLlo(t) — o] + [t — 1]
) <n(t) + O[lw@) — x| + [t —1]] for teH, {t—fh<d.
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(¢) Statements of the Theorems.

THEOREM 1’ (A closure theorem). — Let us assume that (i) A is closed, (ii) the sets
Q(t, ), (t, ) € 4, are closed and conves, (iii) the sels Q(t, ), (t, %) € A, have property (@)
with respect to (t, ®), and property (F) with respect to @, at every point (fy, ) € A,
with the exception perhaps of a set of points whose t-coordinates lie in a set H of measure
zero in G, (iv) if (4, &) e @@, ©) and %' > then (', &) eQt, x). Let &) = (@, 2),
T(t) = (0, @), t€ G, ke N, be given functions with »,z,: G — R, a°, 22 B, —~ R,
By = [ao, b] > G and assume that (v) @, are ACg, ke N, x is BVC and x,—a
in (Ly(@))", (vi) @} are VAC, a° is VBV and 2 ->2° pointwise a.c. in R,. If (vii)
(t, m(t)) € A and (D*22(t), Dwn(t)) € @, 2.(t)) a.e. in G, ke N, then

(o) e 4 and (D*a°(t), Du(t)) € G2, z(t)) a.e in G.

THEOREM 2' (A closure theorem). — The same as n Theorem 1', where (iii) 48 we-
placed by (iii)' the sets Q(t, x), (t, x) € A, have property (F.) at every pomt (t, %) € 4,
with the exception perhaps of a set of points whose t-coordinates lie in a set H of meas-
ure zero in @,

THEOREM 3’ (A closure theorem). — The same as in Theorem 1', where (iii) is re-
placed by (iii)", the sets Q(t @), (t, ®) € A, have property (Q) with respect to x only and
property (Fy) at every point (t,, #,) € A, with the exception perhaps of a set of points
whose t-coordinates lie on a set H of measure zero in G.

(d) Proof of the theorems.

PROOF oF THEOREM 1'. — We proceed exactly as in the proof of Theorem 1 concern-
ing the functions x,,2 with the variants we indicate below. Let 1us consider the

tunctions 9, ° which are VAC and VBV respectively, and note that a.e. in G we
have

(1) Lim (2h)7 A2y = D*aQ(t,), ke, lim (2h)= Ag0° = D*2%(t,) ,

h—0+ h—>0t

where g = [f,— h, -+ h} with D*a*e L,(G), D*s)e L (G), ke N.
Thus, for a.a. {,e G we have

(2) lim (2h)- fD*a} t)dt = D*a1,)

and thus from (1)

(3) lim ( 2h)"’(‘f])*x° () dt — ,lw") 0.
a0t
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Moreover, since & in VAC, then

(4) 4,00 =[D*axt)dt, ke N .

4

Let us fix now %, as in Theorem 1 and in such a way that (1) and (3) hold and

x8(t,) — 4°(t,) (see hypothesis (vi)). Then we can take k>0 as in the proof of

Theorem 1 and in such a way that in addition we have

(5) Az, —A,2° a8 k— oo,
(6) i(2h)‘” f DEa0(t) dt — D*a(ly)| < o]7
(1) @) [Drar(t) it — A < o7

Concerning (5), let #, = (&, ..., #3), and let H denote the set of all points of & where
#% does not converge to 4° as k — oo For every j = 1,...,, let H'c R* denote the
set of all I > 0 such that the hyperplanes ¢ = ] - [ intersect H in a set of (»—1)-
dimensional measure zero. Thus, R* — I’ has measure zero on R¥, and we take

H = ) Hi. For every heH relation (5) holds.
i=1 _ - -
Now we consider an integer k = k(ty, %o, 0, 0, h) sufficiently large, such that & > k,

where % is fixed as in the proof of Theorem 1, and moreover for every k> & we have
(8) (2h)™" |44, — A,&°| <o]T.
Finally, from (4), (8) and (7) we obtain

©  len~ f DEal(t) dt — (2h)~ f Drad(t) di| <

a

<|@hy (4, — A,3%] + 1(2h)‘”(Aqx" — f D¥as(t) dt)1<g/7 4 0T = 20/7.

From (9) and (6), for k> i, we have now

(10) i(zm‘” [ Dragt) ai— D*xo(m} <
< l(2h)—7J~D*w2(?ﬁ) dt — (27@)’;;]‘_0* 20(t) dtl —+ 1(2};)—va* () dt — D*ad(ty)| <

<20[7 + o/7T = 3¢[7.

We recall that, for tegn K and k> k, then [t— f,] <o, [#(t) — 2{t)| < o/2 and
[2:(8) — 2(t)] < 0/2.
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Now we proceed as in the proof of Theorem 1, by enlarging the set ¢ N K into
the maximal subset K, of g where [2:(t) — 29| <0, With ®y= 2(f,). Note that, for
N(t) = D*a(t), &(t) = Du,(t), we certainly have (see hypothesis (vii))

(11) (1:(2), &) € G, ma(t)) , tEq ave..

By virtue of the property (F’i) corresponding to (t,, %), ¢ >0 and the functions
@ (t), 7ilt), Exlt), t€ g— K, there are measurable vector functions Z({), 7u(t), Ex(2),
teqg— K, such that
(12) (t, @(t)) €d, [Ze(t) — %l<‘77 (ﬁk(t)a Ek(t)) EQ(ty ﬁk(t)) ’

|&(t) — E-Ic(t)l<0[{wk(t) — Z(t)| 4 |t — to!] ’

Tut) <ma(t) -+ O[lmult) — Tlt)| + = tl}, teq— K.
Moreover we can extend Z, 7, and &, to all of ¢, by putting

(13) Tu(t) = m(t), ) =), &) =&(), tek..

In ;the proof of Theorem 1 we already obtained that (see (23) of Section 2d),
for k> k

(14) [Daty) — (2h)[Et)dt] <o

with [t —1| <o, [|%(f)— @|<o, €¢. On the other hand, by (13) and (12)
we have

(18)  D*ao(t) — (@h)=[u(1)dt = D*ar(to) — (2h) [mult) dt — 2By [70) @8>

1}7(: e~ Kx

>D*a () — (@1 [7u(t) — (20) [u(0) @6 — (@) O [low(t) — Bu(®)] + [t— wl] @t =

Kx o— Kz q— Kz
= D*ad(ty) — (2h)- f n(8) At — (2h)~v0f [ax(t) — Bult)| -+ [t — to]] dt .
a a— K

Therefore by (15), (10) and the third estimate in (22) of Theorem 1 in Section 2d,
we have, for k> £,

(16) D*ad(ty) — (2h)~ f Tt dt>— 40/ — 30)T = — 0.
Q
From (12) and (13) we obtain

(ﬁk(”: Ek(t))ze Q(ta ﬁk(t)) y =l <o, |@m@)—ml<o, tegq,
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and therefore

((2?:,)“” Jﬁp (t) dt, (2h)~ f E.(t) dz) e cleo U [G(t), o) [t — to] <0, [o/ — <o) =

a

~

= ¢l 0 Q(ty, %, o) .
Thus from (14) and (16) we have

(D*wo(to)y D‘”(to)) € {(7]’, &) In,>"7’ {7, ) e el COQ (f05 %9, 0)] }’ 9

and by the arbitrariety of o> 0, also

(D*wo(i0)7 va(tO)) € {(77” §)|771>777 (n, &) eelco Q(tw Loy 0)} .

Since o > 0 is also arbitrary, by property (@) we obtain (see (iv))

(D*w"(to), Dm(tﬂ)) { 7' 'S)l’? >n, (n, &) € ﬂ el GOQ (toy @os O )} =

>0

= {(, &Y' >n, (0, & £) € Qlty, 20} < Qlts, o) -
This relation holds a.e. in K with |G — K|, << 4. Since 4> 0 is arbitrary, we have
proved that
(D¥a0(t), Da(t)) € Q(t, #())  a.e. in &.

PrOOFS OF THEOREMS 2’ AND [3'. — They are analogous to that of Theorem 1'.
See also the proofs of Theorems 2 and 3 in Section 24.

4. — The existence theorems.

(@) The integral J.

Let v>1, n>1, 0<a<n, N>1 be integers and, for every e Rn, let us write

= (y, 2) with y € R* and z € R>. Let 4, @ and Q(?, x) be given sets as in Section 2.

We recall that, for every BVC vector function #(t) = (#, ..., "), t € G, we denote

by Da(t) the N-vector funetion Diwi(t), j€ {j}:, ¢ =1,...,m. We shall also con-

sider two other systems of indices § [{j}\¥, i =1, ...,a] and [{j}¥,i=a41,.., 2],
1<f < ... < §,<v, and corresponding systems of derivatives

DYy(t) = {(Diai@), je i =1, .., 0,
DPg(t) = {D'a'(t), € {j @ =a+1,..,0 .

Let N, and N, be the total number of indices contained in {j}i¥, ¢ =1, ..., and
(4®, § = & + 1, ..., n, respectively. Then N = N, N,. Let Mc R’ denote
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the set M = {(t, », &)|(t, #) € 4, £ € Q(t, )} and let Fy(t,, &), or Fo: M — R, denote
a given real valued function on M. Let £ be a class of admissible vector functions
o(t) = (y(t), #(1), or x: G — R, that is, satisfying

(i) v is ACg and 2z is BVC on @,
(ii) (t, #(1)) € 4, Da(t) € Q(t, 2(?)),

(i) Fo(, @(+), Da(*)) € Ln(@).

For any element x = (y, 2) € 2, let I'(x) be the class of all sequences (#,),cy, With
@, G — R such that

(@) 2= We,2)€AC2N O, ke N,

() @ — 2 in (Iy(@))*, D'y. — D'y’ weakly in Ly(G), je {j}\¥, i =1, ...,
We consider the functional 3: 2 — B defined by

o) = 3y, ») = inf lim | Fy(t, @,(1), Dwy(t)) dt = inf lim I(x;) if I'(x)=-0

I(w) k—->ooG I(e) 5o

and J(x) = -+ oo if I'(x) = 0.

The functional J is modeled on Lebesgue area theory for nonparametric discon-
tinuous surfaces (see CESARI [5]) and it is also close to the concept of integral in the
sense of Serrin ([24]) when the present mixed convergence is used.

The clags (2 is said to be closed if 2 has the following property: for any sequence
(#,)sev Of pairs in £ such that (a) and (b) are satisfied and the limit # = (y, 2) sat-
igfies (i) (ii), (iii), then # € Q.

REMARK 1. — In order to deal with the functional under consideration in the case
that either traces or boundary data are given, we need to carry over the definition
of the functional J in a slightly different setting. For instamnce, if the trace ¢ is given
on 0@, with @ possessing the cone property (see Section 4¢ below) and J—1(0G) <
< -+ oo, we may restrict the class I'(x) to those sequences () which are in ACg N 2
and such that @, in (L(G)), Dyl —D'y' weakly in I(G), y() = ¢ and
V#(®,) — V¥(x) as stated in [11a].

Then the new Serrin-type integral, say J*(z), satisfies I*(z)> J(z), and bya
theorem due to Anzellotti-Giaquinta ([2]), y(@) = ¢.

Instead, if boundary data on 0@ are given, then under the same assumptions on @,
we may take for 2 the class of functions z: G — R», which are BVC when disregard-
ing sets Bc @, |[Ely= 0, and where the variations V*(z, @) (see section 2.a) are
computed taking note of the values of # on the boundary (cfr.[110], Remark 2).
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(b)Y A lower semicontinuity property of I and J.

The lowersemicontinuity of the Serrin integral J is well known.

As an application of the closure theorems of Section 3 we shall prove now the
semicontinuity of theintegral functional I. In order to do that, let us consider
the ¢augmented » sets

Qit, ») = {(& &) e R 2> Pty 2, €), E€Qt, 2)} ,  (t,a)ed.

TrEOREM 17 (A lower semicontinuity theorem). — Let 0 <a<<n, and assume that:
(i) A is closed, (ii) the sets Q(t, z), (¢, z) € A, are dlosed, convex and satisfy property (Q)
with respect to (t, ), and property (F,) with respect to x, ot every point (o, 1) € A,
with the exception perhaps of a set of points whose t-coordinates lie on a set H of measure
zero in the t-space, (iii) Fo(t, x, &) is lower semicontinuous on M and Fy(t, x, £)> A(t)
with A€ L(@) for all (¢, z,&)e M.

We assume also that (iv) a sequence of vector fumctions is given x(t) = (y, 2),
#(t) = (Yu, 22), t€ G, such that y, yi, 2, are ACg, z is BVC, w,— in (Ly(G))" and
(t, m(2)) € 4, Dan(t) € Q(2, 4,(t)) a.e. in &, ke N. Then (1, x(t)) € A, Da(t) € Q(¢, #(?))
a.e. in G, and

lim 7(@,) > I(a)

ko0
Thus, if (@,)zen 18 & Sequence as in the definition of I(m), then

lim I(2) > (@) > I() .

k->o00

THEOREM 2" (A lower semicontinuity theorem). — The same as in Theorem 17,
where (ii) is replaced by (i)' the sets Q(t, x), (¢, 2) € A, are closed and conver and satisfy
property (17’;) at every point (o, 2o) € A, with the exception perhaps of a set of points
whose t-coordinates lie in a set H of measure zero in G.

THEOREM 3" (A lower semicontinuity theorem). —~ The same as in Theorem 17,
where (ii) is replaced by (i) the sets Q(t, x), (I, x) € A, are closed and convex and satisfy
property (Q) with respect to & only, and property (F,) at every point (3, x,) € A, with the
exception perhaps of a set of points whose t-coordinates lie on a set H of measure zero in G.

Proor oF THEOREM 17. - W.l.o.g. we can suppose that

= Hm I{m,) = lim I(z;) < - oo,

k—>oco

where ¢ is finite because of (iii). Let Ry= [do, by, @ = (a§, ..., at)y bp= (b5, ..., b}),
al < b} be any closed interval containing ¢l @ in its interior. Let us consider the
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functions Fu(t) = Fo(t, y.(2), 2:(t), DOy{t), DD 2(t)), t € @ c R?, and let us extend F,
to all of K, by taking

" { F., te@,
=10, teR,—G.
Now let #): R, — R be defined by
) =fguk(1:)dr, keN, dr=de.. dv.
[ag,6]

Bach function »} is VAC, ke N. Moreover, z)(a,) = 0,

Vi(wlg(ﬁa(?” [“gabg]) =0, j=1,.,», and SUPEIARWQKW, keN.
D ReD

In order to prove this last assertion, observe that for % sufficiently large
S gl = 3 \ f o) dt} <3| [mn—ima+ f wmdt] <
ReD ReD K ReD 4 i

<[ i+ 2 pojac= 1wy + 2 ojae<i 1+ of poyar = w,
Ro G G

0

where we extended 1 to all of R, by taking A(f) = 0 on R —~ G. Therefore, by
Helly’s theorem for functions of bounded variations in the sense of Vitali, (see [18],
pg. 115), there exists a subsequence, say still [k], such that 4° — 2° pointwise on R,,
with 2 VBV. Note that the sequence (v, z,) satisfies the orientor field equation

o)) ed, (D), Do) e Q(t, w(t)), te@ ae..
Thus, by the closure Theorem 1’ of Section 3¢, we have

o) ed, (D), Dat) eQt, 2(f) a.e. in G.
Hence, .

D*a(t) > Fo(t, o(t), Du(t)) > At), te@,
and therefore Fy(-, #(-), Du(+)) € L,(G).

Finally, if we take X°(t) = #°(f) -—fl(r) dr, then X°>0, X¢is VBV and D*X°() =
La,t]
= D*a°(t) — At)>0a.e.in RBy. Moreover (see RADO [21]1I1.1.28),

Ay, X0 = 29(b) — | A(t) db> | D* Xo() dt > [ D¥ar(t) dt — | A(t) dit .
Roj R‘[ Gf Gf
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Thus
I{z) -:flf’(t, #{t), Du(t)) d'ﬁgfl?*m“{i)dtgx“(b) = Hm wg(b) = lim I(x,) .
T—> o0 Fo> 00
@ @

Proors or THEOREMS 2’ AND 3. — They are the same as those of Theorem 17,
bu virtue of the Theorems 2’ and 3’ respectively.

REMARK 2. — As an immediate consequence of Theorem 17 (or 27 and 3") we see
that, under the assumption considered there, the funetional J is an extension to BVC
of the funetional I on ACg. In faect, I(x)<I(x) for every xe€ £, moreover if
xe ACg N L2, then I'(x) conbains the sequence of repetitions x, = v, k€ N, hence
Jx)<I{x) and finally I(x) = J(x).

(¢) Statements of the existence Theorems.
In the following we shall use the growth conditions below.

(y1) There is a sealar function ¢((), 0<{ << + oo, or ¢: R — R, bounded
below, with @(Z)/C = + oo as { — -+ oo, such that Fyt, «, u, v)>¢(ju]) for all
(& 2, u, v) € M.

(ya) For any ¢ > 0 there is an integrable scalar function y,(f) > 0, or y,: G - R7,
such that |[u]<y.(t) + eFo(t, z, w, v) for all (¢, @, u, v) € M.

{ys) for any o-vector pe R* there is an integrable scalar function ¢ (f) > 0,
or ¢ : G — R}, such that Fy(t, z, u, v)>{p, u> — ¢,(t) for all (¢, x,u,v)e M.

Note that, under condition (y,) certainly ¢()> A for some real constant i, and
then Fot, ©, %, v)>¢(|u]) > for all (¢, 4, u,v). Under condition (y,) and e =1 we
have |u|<y,(f) -+ Folt, », u, ), hence Fy(t, @, 4, v)>— y(t), a function in I,(G).
Under condition (y,) and p = 0, we have Fy(t, x, u, v) > — ¢y(t), 2 function in I,(GF).

REMARK 3. — Note that for every e ACg N 2 then I'(x)s= @ and I(@) <<+ co.
Moreover, if we suppose ACg N Q2 £9, then

— cogint J(x) < + oo and ¢ =inf J(x) = infI(x).
2 Q ACgn Q2

In order to see this, note first that if ¢ = i%f J(x), we also have

i<inf 3{w) = inf I{x) .
ACgn 2 ACanQ

Then, it is easy to see that, for every = € 2, there is a sequence (2,,),,.v in ACgN 2
such that J(x) = Jim I(z,). As a consequence, we can find a sequence (&,),.y it
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ACg N Q such that ¢= lim I(z;). Thus

inf I{z)<i.
ACgn Q
We recall here some well-known conditions on the set ¢ that we shall use in the
following.
The set & c R is said to have the cone property if there exists a finite cone ¢
in R’ such that each point {ec oG is the vertex of a finite cone C, contained in G
and congruent to C. The bounded set G c R is said to have a locally Lipschite bound-
ary if each point ¢ e 0@ has a neighborhood U, such that 3G N U, is the graph of
a Lipschitz function.
The following well-known result by GAGLIARDO [16] states a relevant property
of the open sets with the cone property.

THROREM (Gagliardo [16]). — If G is a bounded open set in R, with the cone prop-

erty, then there is & finite collection @y, ..., @, of open sets with G = | &, such that
each G, has a locally Lipschitz boundary. =1

THEOREM 4. (An existence theorem). — Let 1 <a<n — 1 and assume that

(i) G has the cone property, A is compact and M is closed; (ii) the sets Q(t, @),
(t,m)e A, are closed, convex and satisfy property (Q) with respect to (i, x), and
property (F’;) with respect to », at every point (1,, %) € A, with the exception perhaps of
a set of poinis whose t-coordinates lie on a set H of measure zero in the t-space;
(iii) Fot, @, &) is lower semicontinuous on M; (iv) F, satisfies one of the growth con-
ditions (y,), (y2) or (y5). We assume also that Q is closed, ACg N Q0 and (v) there
are constants p > 1 and V, such thatf [Diy')rdi<V,, forall j¢ i, i=1, .., a;

[e3

i 2

(vi) there is a constant W, such that V¥(@)< Wy, 1 =« + 1, ..., 0.

Then the functional 3 has an absolute minimum z= (y,z)e€ 2, ye ACg, 2 BVC.

For a =0, then » = &, requirements (y,) or alternates (y,), (ys) and condition (v)
do not apply, yet the conclusion is still valid if we know that (iv) there is & summable
scalar function 1: G —> R such that Fy(t, 2, &)> A1), for all (t,z, &) e M.

For a = n, then » =y, 2 is a non empty and closed class of ACg functions y(t) =
= (¥ ..., y"), te€ G, conditions (vi) does not apply, yet the conclusion is still valid.

Note that the condition (ii) concerning property (@) for the sets Q(t, ) not only
implies that the same sets (%, ) are closed and convex, but also that their projections,
the sets (¢, #), also are convex, and that Fy(, y, 2, 4, v) is convex in (4, v) on each

Q@ v, 2).

THEOREM 5 (An existence theorem). — The same as in Theorem 4 where (ii) is re-
placed by (i) the sets G, ), (t, x) e A, are closed, convex and satisfy property (F~;)
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at every point (ty, 2,) € A with the exception perhaps of a set of points whose t-coordinates
lie in a set H of measure zero in G.

THEOREM 6 (An existence theorem). — The same as in Theorem 4 where (ii) is re-
placed by (ii)" the sets Q(t, x), (¢, x) € 4, are closed, convex and satisfy property (@) with
respect to x only, and property (F,) at every point (ty, ;) € A with the exception perhaps
of & set of points whose t-coordinates lie in o set H of measure zevo in Q.

Proor or THEOREM 4. ~ We already know (see Remark 2) that ¢ = i%f J(@) =

=A(1;gnnf91(:a), and since 2 N ACg %@, we also have — coi < | oo.

wa

Under either assumption in (iv) there is a function 1€ L,(G) such that

(@) = f Fot, o(t), Da(t)) dt> f M) dt> — oo
[ed @

Thus, — oo <4< -4~ oo, and we consider a minimizing sequence (z,)c ACgnN 2
with I{z,) —14. We may well assume i<I(#;)<? + 1, ke N. By virtue of assump-
tion (y;), we derive that

i 13 1(@) = Folt, yslt), 2:(0), DVyslt), DO2(0) dv> [$(IDDy0)]) 38
@

v

]

By Nagumo’s theorem (cfr. [8], 10.3.i), we derive that the vector functions DWy.(¢)
are equiabsolutely integrable in ¢. By 10.4.ii and 10.4.iii in [8] we derive the same
conelusion under assumptions (y,) or (y;) respectively. By assumption (v) we know
that the partial derivatives D'y, j¢ {j}¥, i=1,..,a, are equiabsolutely inte-
grable in G. Thus this holds for all derivatives Diyt, j=1,..,», i=1,..,ca.
Since the functions y; are ACg, we conclude that the total variations V(y!),
t=1,..,% keN, are equibounded.

Note that, since 4 is bounded, the functions (z.) are equibounded in (L;(@))".

Thus, a8 a consequence of (vi) and the cone property of &, by virtue of the
compactness result due to CArIERO-FLEMING ([4], [1B], see also [3] pg. 169-153
and [1] pg. 146), there is a sub-sequence, say still (k), such that '

(1 wy—>x in (L(G)" with z = (y,2) e BVC.

Mdreover, by the equi-absolute-integrability of Diy?, j=1,...,v, ¢ =1, ..., , from
Theorem 10.4.i of [8] we coneclude, again for a suitable subsequence, that

2) Dyl — Dy’ weakly in 1,(G), j=1,..,v1i1=1,..,«.

and y is ACg.
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Now, if we proceed as in the proof of Theorem 1”, we prove that 2 = (y,2) e £
and (x) € I'(x). Hence, '

i< I(z)<lim J(w,) = Hm I(w,) = ¢

k— o0 k—>oc0

and the proof is complete.

Proors oF THEOREMS 5 AND 6. — They are analogous to that of Theorem 4.

REMARK 4. — The hypothesis (vi) can be replaced by the lighter assumption (vi)’
the level sets L,= {# = (y,2) € ACg N 2: I(»)< K} are equibounded in variation.
In fact, as it can be seen by the proof, we use condition (vi) only to guarantee that
every minimizing sequence of ACg surfaces » = (¥, 2) is equibounded in variation.

REMARK 5. -: Note that the condition that 4 is bounded can be dropped if we
know that there is a minimizing sequence z, = (yx, 2}, ¥x, 2 € ACg, with I{»,) — 1,
which is equibounded in Z,. '

We shall give now an Example which illustrates Theorem 4 and shows that, in
general, the minimum of J is attained by a BVC function, not necessarily ACg.

ExamprLe 1. — Let us take
G=(0,2)?, A= {(tlitzyz)e[oy 2]3:t1_1/2<z<t1+1/2} y @, 1, 2) = R?,
and

I(z) = f (1= t)2,)? + ((1— to)ae) Y2 dn dt, .

G
Thus, Fy: G xR2 > R is defined by
Foltsy tay 01, 03) = {{(1 — t) o+ [(1 — t) w2
Let £ be the class of all the BVC surfaces z: (0,2)?— R. Let us prove that

mjin §(z) = 0 = J(z) = i, where

E(tl,t2)= 11 =1,
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In faet, the sequence z,: (0, 2)2 — R of ACT surfaces defined by

| 3, te(0,1—1jk],
Gty b)) = (kj2)t,— (kj2) + 1, he{l—1/k 14 1/k),
2, tell+1jk2)

L

converges in Iy to Z, and

1+1/k
T(2e) = 2f;1 k2 di = B[k >0, 3(F) =

1—-1/%

The minimum 7= 0 is attained by I also at any sectionally eonstant function 2
on (0, 2) whose graph is in 4. Note that this minimum eannot be attained at any
ACg funection. In faet, in this case, we would have J(%) == I(z) = 0 with Z ACg,
hence, Z, = 0, 7, = 0 a.e. in ¢, and 7 would be constant in @, but this is not pos-
sible by the shape of A.
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