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Seminormality Conditions in the Calculus 
of Variations for BV Solutions (*). 

L. CESARI- P. BRANDI- A. SALVADORI 

In previous papers [4abc] we have proved existence theorems for the absolute 
minimum of simple and multiple integrals of the calculus of variations concerning sol- 
utions of bounded variation (BV) in the sense of CESARI ([1, 4a]). To this purpose we 
have replaced the usual Lebesgue integral I(x)= fFo(t, x(t), Dx(t))dt by the corre- 

a 
sponding Serrin functional, or integral 5 (cfr. [4abc] and below). Thus we have dealt 
with classes ~ of BV trajectories x: G-->R ~, G r  v, v~> 1, n~> 1, hence of class 
(L1 (G)) n possibly discontinuous and not Sobolev's. 

A relevant application has been discussed by CESARI in [3]. 
The conditions under which we have proved the existence of the absolute mini- 

mum for simple integrals (v = 1) and for multiple integrals (v > 1) are rather differ- 
ent. Indeed, in [4b], for simple integrals, we have required the usual seminormality 
condition (Q) and the equiboundedness of the total variations of the elements in t~; 
while in [4c], for multiple integrals, we have strengthened property (Q) by an addi- 
tional seminormality condition (F), without requiring any equiboundedness of the to- 
tal variations. In both these situations we could prove closure, lower closure and 
semicontinuity properties. As an application we get the fundamental relation 
I(x) <~ ~(x), x e BV(G). 

In the present paper we introduce a new and more general ,,weak condition F,,, or 
condition (wF), which subsumes the above mentioned assumptions of the simple and 
the multiple cases. In fact the couple af seminormality conditions (Q) and (wF) are im- 
plied by each set of requirements in [4b] and [4c]. We still prove closure, lower closure 
and semicontinuity theorems (Sections 1 and 2) which contain the analogous results of 
both [4b] and [4c]. As discussed in [4abc] and [3], these theorems imply existence the- 
orems for the absolute minimum of the Serrin integral ~. 

(*) Entrato in Redazione il 2 dicembre 1989. 
Indirizzo degli AA.: L. CESARI: Department of Mathematics, University of Michigan, Ann 

Arbor; P. BRANDI, A. SALVADORI: Department of Mathematics, University of Perugia, 
Perugia. 
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In Section 2 we remark, by an example, that condition (wF) alone does not 
imply semicontinuity. 

In Section 3 we briefly restate, for the sake of clarity, the existence theorem of 
our papers [4b] and [4c] for problems of the calculus of variations in domains G c R'~, 
v >1 1, with the modifications and semplifications which derive from the analysis of the 
present paper. First, it is only one statement valid for both v = 1 and v > 1. Secondly, 
the properties (Q) and (wF) replace the different seminormality assumptions of pa- 
pers [4b] and [4c]. On the other hand, the assumption of the equiboundedness of the 
total variations of the elements x of the given class t) remains, since it is needed to 
garantee che compacteness in L1 of any minimizing sequence. Such assumption can be 
disregarded in all cases in which the assumption itself, or at least the consequent 
compactness can be derived by the other hypotheses. 

In Section 4 we then present, as an application, the problem discussed in [3]. By 
repeating the same process, and using condition (wF), instead of the assumptions (F) 
of[4c], we obtain an improvement in the assumptions which guarantee the existence 
of the absolute minimum for the Serrin integral taken into consideration; namely the 
Lipschitz conditions assumed in[3] are replaced here by mere continuity assump- 
tions. 

1. - T h e  c l o s u r e  t h e o r e m .  

Let n ~ l ,  ~ 1 ,  l<<.N<nv be integers. We denote by IEI the measure of a 
mesaurable subset E of R~. For the sake of brevity, we shall use the notations t 'j = 
= ( t  1, ..., t j -  1, t j + 1, " " ,  t v ) : 2" and (t J, z) = (t 1 , . . ,  t ~), j = 1, ..., ~. Moreover, for E c R ~ 
and any j =  1,...,v, let E 'j denote the projection of E on the t 's and let 
E ( t  j )  = {'~ e R ~- z : (t j, 2") e E}. 

Let G r R v be a bounded open set and let A be a subset of the (t, x)-space R ~ § ~ 
such that its projection on R ~ contains G. For every j = 1, ..., v and for any z e G 'J, let 
r~ denote the straight line t 'j = z; then the intersection G ~ r~ is the countable union of 
open disjoint intervals (~s,fl~), or G~r~. = U (~,fl~). 

As it is well-known a function x e L1 (G) is said to be of bounded variation in the 
sense of Cesari (BVC) [1] if there exists a set E c G r R ~, with IEI = 0 such that, for 
every j = 1, ... ,~ and for almost all 2" e G 'j, the total variations 1728 = V(x(., v), (~ ,fl~)), 
computed disregarding the values taken by x on E, are finite, Vj (v) = ~ Vjs is finite 
and V j  (.) e L1 (G 'j ). s 

A BVC function has ((generalized)) partial derivatives DJx a.e. in G, j = 1, ..., v, of 
class L1 (G), obtained as limits a.e. in G of the usual incremental ratios when always 
we disregard the values taken by x on E. Furthermore, Krickeberg [6] proved that a 
function x on G is BVC if and only if x e L1 (G) and the first order partial derivatives of 
x in the sense of distributions are finite measures t~j, J = 1, ...,v. 

For the sake of brevity we shall write x e BVC(G) if x is BVC in G, and the same 
notation will be used for vector valued functions x = (x ~, ..., x ~) if each component is 
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in such class. In this case we put 

V(x) = ~ V~ (r) dr. 
i = l  j = l  

G,J 

As usual we shall denote by W l' i (G) the space of the functions x �9 (L1 (G)) n whose 
partial derivatives in the sense of distributions are again Ll-functions. 

Let x: G-~ R ~ be a BVC(G) vector function. For every i = l, ..., n, let ( j  }i denote 
any system of N~ integers 1 ~< j~ < ... < j~ ~< ~, and let Dx denote the system of N = 

= ~ Ni partial derivatives DJx i, with j ~ {j }i, i = 1, . . . ,  n. 
i = l  

Let Q: A - o  2 R~ be a given multifunction. 
We shall consider problems of the calculus of variations concerning the Lebesgue 

integral 

I(x) = ~ Fo (t, x(t), Dx(t)) dt 
G 

and relative Serrin functional ~ (see below), with constraints represented by the fol- 
lowing orientor field equation 

(1) (t, x(t)) �9 A ,  Dx(t) �9 Q(t, x(t)), a.e. in G. 

In the present Section we shall take into consideration sequences of functions (xk)k I> 0 
which satisfy the conditions 

I xk �9 W 1' 1 (G), k �9 N ,  xo �9 BVC(G), xk --* Xo in (L1 (G)) ~, 

(2) [(t,  x k ( t ) ) � 9  Dxk( t ) �9  xk(t)), k � 9  a.e. in G. 

We shall need the following definition. 

DEFINITION 0. - We say that the multifunction Q satisfies condition (wF) at the 
point to e G, with respect to a sequence (Xk)k/>o satisfying (2), provided 

(wF) given any number p > 0, there exist a number 0 < ~ = ~(p, to, (Xk)k~>o) ~< p and 
a constant 0 < ho = ho (to, (Xk)k I> o, ~) ~< ~ such that  for almost every 0 < h < ho 
there exist a subsequence (s~)k and two sequences of measurable functions 
(x~)~, (~)k satisfying the conditions 

(t,5~(t)) e A ,  $~(t) e Q( t ,~ ( t ) ) ,  IS~(t)-xo(to)t <<.~ 

for a.e. t �9 q = [to - h, to + hi, and moreover 

' 1 Iql-l fDx~k(t)dt-lql - f~k( t )d t  ~ ,  k e N .  
q q 

Following Cesari [2], we shall consider condition (Q) on the multifunction Q. We 
recall that the multifunction Q is said to have prope~,y (Q) at the point (to, xo) e A 
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(with respect to (t, x ) )  provided 

(Q) Q(to, Xo) = ~ cl co u[Q(t, x), I t -  to l ~ ~, Ix - Xo I <~ ~]. 

REMARK 1. - Proper ty  (Q) is trivial for Q(t, x) = R N as in the classical proble~ns of 
calculus of variations, and condition (wF) is trivially satisified for Q(t, x) = R ~ , a n d  

A = G • A0, Ao r  ~ a fixed set. 
I f  the multifunction Q does not depend on x, i.e. Q: G ~ 2 R~, then condition (wF) is 

trivially satisfied with respect to any sequence (Xk)k~>0 such that  xk e W 1'1 and 
Dxk(t) e Q(t), a.e. in G, k EN. 

Let  us s tar t  by observing the following consequence of Ll-Convergence. 

LEMMA 2. - Let (Xk)k>~O be a sequence of  surfaces such that xk e W ~'1 (G), k c N, 
xo e BVC(G) and xk ---) Xo in (L1 (G)) ~. Then there exists a subsequence such that the 
following holds 

(3) for  a.e. to ~ G there exists a set H = H(to) r R + with ]HI = 0 and the property that 
given any number p > O, there exists a constant ho = ho (to, ~) > b such that, for  
every h ~ (0, ho) \ H, there exists an integer ko = ko (to, p, h) such that for  every 

k >~ko 

Dxo (to) - lq[-1 f Dxk (t) dt 

where q = [to - h, to + h]. 

~ ,  

q 

PROOF. - Let  E c G be a set of measure zero such that  for every to e G \ E  we 
have (see the proof of Theorem 1 in [4c]), for a suitable subsequence and for" i = 

= 1, . . . ,  n ,  j = 1, ..., ~, 

f xk (to, - ( t j ,  = o ,  1) lira i J 
k - - > ~  

G(t~) 

2) lim Iq l - l fDJx~( t )d t=DJx~( to) ,  
k---~ 0 + 

q 

[xg (t g -  h, ~) - x~ (t j + h, ~)] d~: = f D Jxg (t) dt + S~j (to - h, to + h] , 3) 
q,J q 

for a.e. h > 0 ,  

4) 5m(2h)-~S~j( to-h,  t o + h ] = O ,  
h---~ 0 + 

where S~j is the singular part  of the measure ~ j .  
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Let  to e G \ E  be fixed and let H = H(to ) c R + be a set of measure  zero in R + such 
that  for every  h e R + \ H  condition 3) is satisfied and moreover  condition 1) holds for 
the points t ~ -  h and t~ + h, j = 1,.. . ,  ~. Then from 2) and 4) it follows that,  corre- 
sponding to p > 0 ,  a constant ho=ho( to ,p)>O exists such that  for every  
h e (O, h o ) \ H  we have, for i =  1 , . . . , n ,  j = l , . . . , ~ ,  

5) Iql- l]DJx~o(t)dt-Dix~(to)  < ~ / 2 n ,  
q 

6) (2h)-~tSij(to-h, to+h]l < p/6nv,  

and from 1), we derive that  an integer ko = ko(to, ~, h) exists such that  for every  

k>~k0 

7) (2h)-~f [x~(tJ-h,~)  ~ j p/6n~ i =  1 , . . . , n  j 1, v. - x o ( t o - h , ~ ) i d ~ <  , , = ..., 

From 3), 7) and 6) it follows that  for i = 1, ..., n, j = 1, ..., v, 

8) [ql-l f DJ x~ (t) dt - lql-l f DJx~ (t) dt 
q q 

l i J i J (tJo + Ix~ (t o - h, ~) z) I dz + (2h) -~ f ]x~ h, ~) (2h) -y - xk (to - h ,  
J 

qd q,J 

- x~(t~+ h, z) I d~ + (2h) -~ ISij(to - h, to + h]l <<- 3~/6n~ = p/2nv.  

Therefore from 8) and 5) we finally have 

r 

Dxo(to) - Iq[ -! l Dxk(t) dt 
q 

and Lemma 2 is thereby proved. 

Now we can prove the main result. 

THEOREM 3 (A closure theorem). - Assume  that A is closed and let (Xk )k ~ 0 be a se- 
quence satisfying (2). 

Suppose that the multi function Q satisfies the conditions 

(i) has non empty, closed, convex values, 

(ii) has property (Q) (with respect to (t, x)) at the point (to, xo(to)), for  a.e. 
t oeG,  

(iii) satisfies condition (wF), with respect to (xk)k>~o, at a.e. point to e G. 
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a.e. in G. 

1) 

Thus 

lqi -1 f 
q 

PROOF. - Let  to ~ G \ E ,  with IE[ = 0, be-fixed in such a way  that  (to, xo(to)) e A, 
condition (3) of Lemma 2 holds and all the assumptions are satisfied. 

Then for every  p > 0, two constants 0 < ~ = ~(~) ~< p and 0 < ho = ho (to, ~) ~< ~ exist 
such that,  for almost every  0 < h < ho, there  exist a subsequence (Sk)k and two se- 
quences of measurable functions (xs~)k, (~)k  such that  (t, ~ ( t ) )  e A, 
~( t )  e Q(t, ~ ( t ) ) ,  I~( t )  - xo(to) I <. ~, for a.e. t e q = [to - h, to + h], and 

Dxo(to)-lq]-l f ~k(t)dt <p. 
q 

~k(t)dt ~ el co w[Q(t', x'): I t ' -  to l <- ~, Ix ' -  xo(to)l <- ~] = el co Q(to, xo(to), ~) 

and from 1) it follows that  

2) Dxo (to) e [cl co Q(to, Xo (to), ~)]p. 

Note that  for z/> z we have 

3) cl co Q(to, x0 (t0), ~) c el co Q(to, xo (to), ~). 

Now let ~>  0 be fixed, then from 2) and 3) for every  0 < ~ ~< ~ we get  

Dxo (to) ~ [cl co Q(to, xo (to), ~)]~; 

thus from the arbi trar iety of ~ > 0 we have 

Dxo (to) ecl  co Q(to, Xo (to), ~) 

and from the arbi trar iety of ~ > 0 and proper ty  (Q) we finally have 

Dxo (to) e N o Q(to, Xo (to), z) = Q(to, Xo (to)). 

Theorem 3 is thereby proved. 

In order to compare the present  closure result  with the previous theorems proved 
in[4bc], we need the following propositions. 

F i rs t  we recall the definition of condition (F~) given in [4c]: 

the multifunction Q has property (F~) at the point (to, Xo) e A provided 

Then for the limit function xo we have 

(t, Xo (t)) e A ,  Dxo (t) e Q(t, Xo (t)), 
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(F~) given any number  ~ > 0  there are constants C=C(to,Xo,~)>O, 8= 
= 8(to, Xo, ~ )>  0 such that  for any two measurable vector  functions x(t), ~(t), 
t e E ,  on a measurable subset  E c G ,  with ( t ,x( t ) )eA,  ]x ( t ) -xo l  >~ ,  
~(t) e Q(t, x(t)) for It - to l ~< 8, t e E,  there  are two measurable vector  functions 
5(t), ~(t), t e E,  such that  (t, 5(t)) e A, 15(t) - Xo] ~< ~, ~(t) e Q(t, 5(t)) and I~(t) - 
- ~(t) I <~ C[Ix(t) - ~(t)[ + It - to I] for t e E,  It - to I ~< 8. 

Let  us compare now the two conditions (F~) and (wF). 

PROPOSITION 4. - Suppose that A is closed and let (Xk )k ~ o be a given sequence sat- 
isfying condition (2). 

I f  the multifunction Q has property (FI ) at the point (to, Xo (to)), for a.e. to e G, 
then Q satisfies condition (wF), with respect to (Xk)k>~o, at a.e. point to ~ G. 

PROOF. - By the assumption xk-~ Xo in (L~ (G)) ~, there  is a subsequence,  that  we 
still denote by (Xk)k, such that xk-~ Xo pointwise a.e. on G. Thus 

1) (t, xo( t ) )eA for a.e. t e G .  

Moreover  by Egorof f s  and Lusin's theorems, for any given ~ > 0 there  is a com- 
pact set  K c G, with m i s ( G \ K ) < ~ ,  such that XO/K is uniformly continuous and 
xk--* Xo uniformly on K. 

Fur thermore ,  for a.e. t e K, we have 

2) ~im ~ (2h)-v mis (q n K)  -- 1, where  q = It - h, t + h]. 

Consequently,  corrisponding to any 0 < ~ < 1, there  exist  0 < 8o = 8o (~, 7) ~< ~ and an 
integer  ko = ko (~, z) such that  

3) for all t ' , t " eK  with It'-t"l <8o then Ixo(t')-xo(t")l < z / 2 ,  

4) for all k > k o  and t e K  then Ixk(t)-xo(t) I < ~ / 2 .  

Since Xo e (L1 (G)) ~, we have that for a.e. t e G 

5) lim rql-lflXo( )-xo(t)fd =O, 
h-~  0 + 

q 

q = [ t - h , t + h ] c G .  

Let  to ~ K be fixed in such a way  that  1)-5) hold and proper ty  (F~) is satisfied at 
the point (to, Xo (to)). Denote by 81 the distance of to from aG and let 8 > 0, C > 0 be the 
constants given by  the assumption (F~), corrisponding to (to, Xo (to)) and z. For  any 
given p > 0, there  is 0 < ho = ho (to, C, p) < rain (80,81, ~)/2V~ such that  for all 
0 < h < ho, put  qo = [to - h, to + h], the following relations hold (see 3), 2) and 5)) 

6) Ixo(t) - xo(to)l < ~/2 for all t e qo ~K,  

7) (2h) -~ mis (qo - K)  < •/6C, 
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8) I qo I -~ f ]Xo (t) - Xo (to)l dt < ~/3C.  
qo 

Let 0 < h < ho be fixed. Because of the L~-convergence of xk to Xo, we can take an 
integer kl = kl  (C, ~, h) > k o such that 

9) ]qol-lflxk(t)-xo(t)[dt<,~/3C fo r  al l  k > k  1 . 

qo 

Let k > k 1 be fixed. When t e %, certainly It - to I < 8o < z and therefore (see 6) and 
4)) for every t e qoc~K we have ]xk( t ) -xo( to) l  < z .  

Now we enlarge the set qo c~ K into the maximal subset Kk c qo where Ixk (t) - 
- xo ( to ) l  <~ z; certainly Kk is measurable and for every t ~ q o - K k  we have I x k ( t ) -  
- x o ( t o ) l  > ~. 

By virtue of property (F~), corresponding to (to, xo (to)), : > 0 and the functions 
xk,  Dxk over qo -  Kk, we deduce that there are two measurable functions 5k, ~k over 
qo -  Kk such that 

10) ( t , - 2 k ( t ) ) e A ,  ~.k(t) eQ( t ,  Sk(t)) ,  I-2k(t)-Xo(to)l<~z 

and IDxk(t) - ~k(t)l <~ C[Ixk(t) --xk(t)l  + !t - to I], t e qo - Kk .  

Moreover we can extend xk and ~.k to all qo by putting 

11) ~ (t) = Dxk (t), -xk (t) = xk (t), t e Kk .  

Thus from 10) and the assumptions on xk we have 

12) ( t , ~ k ( t ) ) e A ,  ~.k(t) eQ( t ,~k ( t ) ) ,  I~k(t)-xo(to)l<~, t e q o  

and from 10), 11), 9), 8) and 7) we get 

]qol-lf~k(t)dt-]qol-'fDxk(t)dt ~(2h)-~ f I~.(t)-Dxk(t)[dt< 
qo qo qo - K~ 

<~ C(2h) -~ f [Ixk(t)---2k(t)l + It-- tol]dt <<- 
qo - Kk 

c(2h)- /r f Ixk ( t ) -  xo (t)l dt + ( t ) -  Xo (to), dt § 
! 
[qo qo 

<~ C[~/3C + ~/3C] + C(2h)-~mis (qo - Kk)(z + ~) ~< 2~/3 + p/3 = 
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In conclusion we have proved: for every ;~ > 0 a compact set K c G, with mis ( G -  
- K) < ~, exists such that condition (wF) is satisfied at a.e. to e K. By the arbitrari- 

ety of ~ > 0 the thesis follows. 
In force of Proposition 4, property (wF) can be considered as a ,~weak~ form of 

condition (F~) and this justifies the terminology weak (F)= (wF). Note that, in an 
analogous way, weak forms of properties (F~) and (F~) in [4c] can be taken into con- 
sideration in order to obtain different versions of closure Theorem 3. 

Let us consider now the particular case v = 1. Then the set G is replaced by a 

closed interval [tl, t2 ] (see [4b]). 

PROPOSITION 5. - Let v = 1. Suppose that A is closed and let (xk)k >I o be a sequence 
satisfying condition (2). 

In  the functions xk, k >I 0 are equiBV, then the multi function Q satisfies condi- 
tion (wF), with respect to a subsequence (Xk)k~o at a.e. to e [tl, t2]. 

PROOF. - As in Proposition 4, assumptions assure that 

1) (t, xo ( t ) ) eA  for a.e. t e [ t l , t 2 ] .  

Moreover in force of what is shown in the proof of Theorem 1 of[4b], the following 
holds: 

given any number z > 0  and for a.e. to e [tl, t2], a constant ho = ho(~, to)> 0 
exists such that, for almost all 0 < h < h o ,  there is a subsequence (nk)k such 
that 

2) Ix~(t)-xo(to)l  <~ ,  t e  [ to-h ,  to+h]. 

Thus condition (wF) is trivially verified, with x---~ = Xn~ and $~ = x'~. 

REMARK 6. - Propostions 4 and 5 show that Theorem 2 improves and also unifies 
all the closure results proved in [4b] and [4c]. 

2. - T h e  l o w e r  s e m i c o n t i n u i t y  r e s u l t .  

Let us consider now a modified version of the closure theorem which is useful in 
order to prove lower semicontinuity results (see also [4cJ, Sect. 3). 

Let Ro = [ao, b0] = {a j ~< t j< - b i , j  = 1, ..., ~} be a closed interval such that G c R0 
and let x ~ : R0 -~ R be a given function. For any interval R = [a, b] r R0, we consider 
the usual difference of order ~ relative to the 2 ~ vertices of R, say 

AR X ~ = X ~ (b) - x ~ (a) if ~ = 1, 

ARx~176  b 2 ) - x ~  a 2 ) - x ~  be)+x~ a ~) if ~ = 2 ,  

and so on. 



308 L. CESARI - P. BRANDI - A. SALVADORI: Seminormality conditions, etc. 

As it is well-known, the function x ~ is said to be of bounded variation in the sense 
of Vitali (VBV) [7] if the interval function AR x ~ is BV. A VBV function has a.e. super- 
ficial derivative, say D * x o (to) = ]irno(2h)-v A q x o, to e Ro, where q = [to - h, to + h]; and 

D * x  ~ is in L I ( R o ) .  

The function x ~ is said to be absolutely continuous in the sense of Vitali (VAC) [7] 
if the interval function ARx ~ is AC. 

We consider now the following orientor field equation 

(2) (t, x(t)) ~ A ,  (D*x~ ~ Q(t, x(t)) a.e. in G 

where Q: A---) 2 RN~ is a given multifunction. 
(xk, xk)k I> o of functions satisfy- In the present  Section we shall consider sequences o 

ing the conditions: 

I x e VAC, xk E W 1' 1 ( G ) ,  k e N, x ~ e VBV, Xo c BVC(G), 

(~) , o - l (t,x~(t))eA, (D xk(t) ,Dxk(t))eQ(t ,  xk(t)), a.e. in G, k e N ,  

[ and x~  Xo ~ pointwise a.e., xk--> xoin (Li(G)) ~. 

We shall need the following fur ther  definition. 

DEFINITION 0 .  - We shall say that  the multifunction Q satisfies condition (wF) at 
the point to e G, with respect to a given sequence (X~ satisfying (2), 

provided 

(w~') given any numbers p > 0 ,  there exist a number 0 < r = =(to,.*, (x ~ Xk)k~>o) ~<~ 
and a constant 0 < ho = ho (to, (x ~ , Xk)k ~> 0, ~) ~< ~ such that  for almost every 
0 < h < ho there exists a subsequence (sk)k and three sequences of measurable 

functions (x~)k, (~s~)k, (V~)k such that  

(t,~8~(t)) e A ,  (~ ( t ) ,  ~ ( t ) )  e Q(t,-2~(t)), I~( t ) -xo( to)[  <- 

for a.e. t e q = [to - h, to + h], and moreover 

Iql-lfDxs~(t)dt-lqt-lf ~s~(t)dt <p, 
q q 

Iq1-1 f ~Tsk (t) dt <<. ,, - 1  ( D* x ~ j s~(t)dt+~, k e N .  
q q 

Note that  a result  analogous to Lemma 2 holds for the sequence (x ~ o. 

R E M A R K  1 .  - If  the multifunction (~ does not depend on x, i.e. (~: G---)2 ANal, then 
condition (w/~) is trivially satisfied with respect to any sequence (x ~ , xk )k/> o such tha t  
x~ e VAC, xk e W 1'1 and (D*x~(t),Dxk(t)) e Q(t), a.e. in G, k ~N.  
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LEMMA 6. - L e t  x2 : Ro--> R, k e N, be a sequence of VAC functions such that 
o x ~ e VBV pointwise a.e. Then the following holds X k ----> 

(4) for a.e. to ~ Ro there exists a set H = H(to) r R + with [HI = 0 and the property 
that, given any number p > O, there exists a constant ho = ho (to, ~) > 0 such that, 
for every h e (O, h o ) \ H ,  there exists an integer ko = ko(to,p,h) such that for 
every k >i ko we have 

D*xO(to)-fql-l  f D,xO(t)dt  <p, 
q 

where q = [to - h, to + h]. 

PROOF. - Let  E r G be the null set such that  for every to e G \ E  we have (see 
the proof of Theorem 1' in [4c]) 

1) lira Iq l - l fD*x~176 
h ~  0 + 

q 

2) lim lqt-l ( J  D* x~ ( t )d t -  AqX~ = O , 
h ~ O  § 

and let H = H ( t o ) c R  + be a set of measure zero in R + such that  for every 
h e R + \ H  

3) lim Aqx ~ = Aqx ~ 
k---> o~ 

Thus, given any p > 0 ,  a constant 0 < ho = ho(to,p) exists such that,  for every 
h ~ (0, ho ) \ H ,  an integer ko = ko (to, .~, h) exists in such a way that  for every k I> ko we 
have 

4) l lql-lfD*x~176 <~/3, 
t q 

5) iql- l lJD*x~176 < ~ / 3 ,  

! - 1  0 0 

From 6) and 5) it follows that  

7) lql-l f D*x~ lql-l f D*x3(t)dt <2•/3 
q q 
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and from 7) and 4), we have 

[q[ - l fD*x~176  < 3p/3 = 
] q 

Lemma 6 is thereby  proved. 

By virtue of Lemmas 2 and 6 the following closure result  for orientor field (2) can 

be proved. 

THEOREM 7 (A closure theorem). - Assume that A is closed and let (x ~ , xk )k >t o be a 
sequence satisfying (2). Suppose that the multifunction Q satisfies the condi- 
tions 

(i) has non empty, closed, convex values, 

(ii) has property (Q) (with respect to (t,x)) at the point (to, xo(to)), for a.e. 

to ~ G, 
(iii) satisfies condition (wF), with respect to (X~,Xk)k>~O, at a.e. point to e G, 

(iv) i f  (7, ~) e Q(t, x) and 7' > 7 then (~', ~) e Q(t, x), (t, x) e A. 

Then for the limit function (x ~ , Xo) we have 

(t, xo(t)) e n ,  (D*x~ ~ Q(t, xo(t)), a.e. in G. 

PROOF. - Let  to e G \ E ,  with IE[ = 0, be fixed in such a way  that  (to, xo(to)) e A, 
condition (3) of Lemma 2, condition (4) of Lemma 6 hold and all the assumptions are 

sat isf ied.  
Then for any given ~ > 0, two constants 0 < ~ = ~(~) ~< ~ and 0 < h0 = h0 (to, ~) ~< 

exist such that,  for almost every  0 < h < ho, there  exist a subsequence (sk)k and three  
sequences of measurable functions (X~k)k, ( ~ )  and (V~)k such that  (t, 58~(t))eA, 
(7~(t), E.~(t)) e Q(t ,~(t)) ,  I~(t)  - xo(to)[ <- ~, for a.e. t e q = [to - h, to + hi, and more- 

over 

i l l  
1) Dxo(to)-Iql-lJ~sk(t)d t <~, 

q 

2) D*x~ >I [q l - l f v~( t )d t -p .  
q 

From 1), 2) and assumption (iv) it follows that  

(D* Xo (to), Dxo (to)) e [cl co Q(t0, Xo (to), :)]~ 

and the assertion can be obtained immediately, as in Theorem 3. 
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We shall prove now a lower semicontinuity result as a consequence of Theorem 7. 
Let Q: A o 2  R~ be a given multifunction and let M be its graphic, i.e. M =  

= ((t, x, ~): (t, x) ~ A, ~ �9 Q(t, x)}. We consider an integrand F0: M---)R and let t~ de- 
note a class of functions x: G o R ~ satisying 

(i) x �9 BVC(G); 

(ii) (t, x(t)) �9 A, Dx(t) �9  q(t, x(t)), a.e. in G; 

(iii) Fo (", x(.), Dx(.)) e L1 (G). 

Then the usual integral functional I: o R  is defined by the Lebesgue integral 

(5) I(x) = f Fo(t, x(t), Dx(t)) dr. 
G 

Finally, given Xo �9 BVC(G), let/~(x0 ) denote the class of all the sequences (x~)k ~N with 
xk �9 W 1' I(G)r~t) and such that x~---)x0 in (L1 (G))L 

Then the Serrin functional J associated to I is defined by 

(6) ~(Xo) = inf lim I(xk)= inf l ira fFo(t, xk(t),Dxk(t))dt, 
F(xo) k-~--~ r(xo) k~-~ d 

if F(Xo ) ~ 0 

and ~(Xo) = + ~, if F(xo) = 0. 

The class t~ is said to be closed if it has the following property: for any sequence 
(Xk)k ~N in ~9 such that xk �9 W 1' 1 • ~9, k e N, and xk o x in (Li (G)) ~, with x satisfying 
conditions (i), (ii) and (iii), then x �9 ~9. 

Let us consider now the multifunction Q: A o 2 R~§ defined by 

Q(t, x) = {(v, ~): ~ e Q(t, x), ~ >t Fo (t, x, ~.)}. 

Moreover let (x~)k t> 0 be a given sequence satisfying (2). Denoted by Ro = [a0, b0 ] a 
closed rectangle such that R0 D G, we consider the functions g0 : R0-~ R defined by 
~ (t) = f Fk (~) dr, k e N, where 

[a0, t] 
IF  o(t, xk (t), Dxk (t)), t �9 G 

Fk (t) = ~ [0, t �9 Ro \ G .  

Note that ~o is VAC, k �9 N. Furthermore, the sequence (~o)k is equi VBV (see [4c] 
proof of Theorem 1"), thus by Helly's theorem for functions of bounded variation in 
the sense of Vitali (see [5], pg. 115), there is a subsequence, say still (k), and a VBV 
function ~o: R0 o R such that ~o o ~o ~ pointwise on R0. 

Then the following lower semicontinuity statement can be proved by virtue of 
Theorem 7, analogously to Theorem 1" in [4c]. 

THEOREM 8 (A lower semicontinuity theorem). - Assume that A is closed 
and let (Xk)k~o be a sequence satisfying (2). Suppose that the integrand Fo is 
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lower semicontinuous and there is a funct ion ~ e L1 (G) such that Fo (t, x, ~) >I ~(t) 
on M. Moreover suppose that the mult i function 

(i) has non empty, closed, convex values, 

(ii) has property (Q) (with respect to (t,x)) at the point (to,xo(to)), for  a.e. 
to e G, 

(iii) satisfies condition (wT'), with respect to (x ~ , Xk)k~o, at a.e. point to ~ G, 
where x~ = ~o, k ~ N. 

Then Xo e t~ and 

lim I(xk ) >I I(xo). 
k---> ~ 

REMARK 9 .  - Because of the position x ~ = ~o, k e N, we are actually requiring here 
slightly less that  the total condition (wF) above. 

We shall show, by an example, that  Theorem 8 may fail if proper ty  (Q) does not 
hold, even if condition (w~') and all the other  assumptions are satisfied. 

EXAMPLE 10. - Let  A = [0, 2=] • [ -1 ,  1] 2, Q(t, x) = R ~, (t, x) e A and let F0 : 
[ -1 ,  1] 2 •  + be defined by 

Fo (xl, x2 ; ~1, ~2) = exp (X 1 ~2 - -  X2 ~1 )" 

Let  us consider the sequence (Xk)k ~>0 given by 

x~(t) = k-1/~sinkt ,  x~(t) = k-1/~coskt ,  t e [0, 2=], k e N ,  

x] (t) = x02 (t) = 0, t e [0, 2=] ; which converges uniformly.  

Note that  Q(x)= epigraphic Fo(x, "), x ~ [ -1 ,  1] 2. Since Fo is not semin0rmal, then 
proper ty  (Q) does not hold (see [2]). Moreover Fo(x, ") is convex, x e [ -1 ,  1] 2. Let  us 
show that  Q satisfies condition (w~') with respect  to the sequence ( ~ ,  xk )k t> o; in fact, 
by virtue of the uniform convergence, we can take 

~ (t) = x~ k (t), ~nk (t) = x~ (t) and ~ ( t )  = F 0 (x~ (t), x~ (t)), t e [0, 2=], k e N .  

2r~ 

Finally observe that  I(xk) = ~ Fo (xk (t), x~ (t)) dt = 2= exp ( - k  1/3 ) k c N, therefore  we 
have 0 

lira I(xk ) = 0 < I(O) = 2=. 
k-->~ 

3 .  - T h e  e x i s t e n c e  r e s u l t .  

By the closure result  and the lower semicontinuity s ta tement  of Sections 1 and 2 
above, we can derive the following existence theorem (see[4bc]), for ,J~>l, 

n>~l .  
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THEOREM 11 (An existence theorem). - Suppose that." 

(i) G has the cone property, A is compact and M is closed; 

(ii) the multifunction Q has closed, convex values and satisfies property (Q) 
with respect to (t, x), at every point (to, Xo ) e A with the exception perhaps of a set of 
points whose t-coordinate lie on a set H of measure zero in R; 

(iii) for any given sequence (Xk)k >10 satisfying (2), the multifunction Q satisfies 
condition (wF) with respect to the sequence o (~k,Xk)k~o, at a.e. point to e G; 

(iv) the integrand Fo is lower semicontinuous and there is a function )~ e L1 (G) 
such that Fo(t, x, ~) >t )~(t) on M. 

Assume that t~ is closed, Wl'l  n t~ r 0 and 

(v) there is a constant Wo such that V(x)<~ Wo, x e ~. 

Then the functional ~ has an absolute min imum x e t~. 

We sketch the proof which is the same as in [4c]. 
Let i = inf ~(x). Then i = inf I(x) and 0 ~< i < + ~. By definition there is,a se- 

WI, I(G) n ~  
quence (Xk)k in W 1' 1 (G) n t~ with lim I(xk) = i. Because of the assumptions we have 

k---~ +~ 

V(xk) <<- Wo for all k, and, by a known compacteness theorem there is a subsequence, 
say still (k), with xk ~ Xo e BVC(G). 

But ~ is closed, hence Xo e ~ and i ~< ~(xo). The Serrin integral is certainly lower 
semicontinuous, therefore 

~(x0) ~< li_m_m ~(xk), where ~(xk) = I(xk), k e N .  
k ~  +~ 

Finally 

O<I(xo)<~(Xo), i<.~(Xo)<~ lim I ( x~ )= i .  
k---~ +~ 

Since i is finite, we have 0 ~< I(xo)<-~(xo)= i. 

REMARK 12. - The hypothesis (v) can be replaced by the lighter assumption 

(v)' the level sets L g = {X E W 1'1 ~t~: I(x)<~K} are equibounded in varia- 

tion. 

In fact condition (v) is used only to garantee that every minimizing sequence of 
W 1,1 surfaces is equibounded in variation. 

REMARK 13. - By virtue of Propositions 4 and 5 in Section 1, Theorem 11 improves 
and also unifies the existence results given in [4b] and [4c]. 

4. - Application to a class of integrands without growth properties. 

Note that no growth assumptions are explicitely requested on the integrand Fo in 
the existence theorem (Theorem 11). Let  us consider now a particular class of inte- 
grands, without growth, to which Theorem 11 can be applied. In more details we re- 
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consider the problem discussed by CESARI in [3], and we show that the results of Sec- 
tions 1 to 3 above lead to a reduction in the assumptions needed in [3] for the existence 
of a B V C  solution of the optimization problem discussed there. 

(a) Let G be a bounded open subset of the t-space R ~ whose boundary aG has 
the cone property and let A be a compact subset of the (t, u)-space R ~ + ~ whose pro- 
jection on the t-space covers G. Let F~j: A -o  R ,  j e { j  }i,  i = 1 , . . . ,  m ,  be functions of 
class C 1 and let F~: A - o R ,  i = 1, ..., m ,  be continuous functions. Let t~0 denote the 
class of all the surfaces u = (u 1, ..., urn): G - - ~ R  ~ with x e BVC(G) ,  (t, x(t))  e A a.e. in 
G, satisfying some Dirichelet-type boundary condition u ( t ) =  w(t)  on D r ~G, and 
those total variations are equibounded. Thus let W0 be a constant such that 
V(u)  <~ Wo, u ~ ~o.  Let I: ~o-o R denote the integral of the calculus of varia- 
tions 

I(u)= f i~=llj~j}Fij(t,u(t))t + F~(t,u(t)) dt 
G 

and let ~ denote the corresponding Serrin integral. We shall further assume that 
t~o n W 1' 1 (G) r 0. 

(b) As in CESARI [ 3 ]  let ~ denote the transformation which maps any m-vector 
function u: G -o R m of the class ~o into the (N + m)-vector function v: G - o  R N + m  de- 
fined by 

v(t) = ~u(t)  = (v'(t),  v"(t)) , t e V 

where v'(t)  = u(t)  = (ul  (t), . . . ,  um (t)) and 

v"(t) = ( v i j ( t ) , j e  { j } ~ , i =  1, . . . ,m),  v~j(t) = F i j ( t , u ( t ) ) .  

Let t~6 = ~ o  denote the set of all functions v = (v', v") obtained by the transformation 
of all u e t~o. 

Then the integral I is transformed by �9 into the integral H: t ~ - o  R defined by 

(8) H(v)  = f Fo (t, v(t), Dv(t))  dr,  
G 

with 

Fo( t , v ,  D v ) =  ~ ~ (v~j)t~+F~(t,v') I . 
i = l  j e  {j}i 

If we denote by F: A -o R ~ +N the vector function F(t ,  u)  = (ui ,  i = 1, ..., m ,  Fij (t, u),  
j e ~j }i, i = 1,..., m), then we can write v(t) = F( t ,  u(t)),  t e G. Moreover the condi- 
tion u(t)  = w(t),  t e D r aG is transformed into 

v(t) = F(t ,  w(t))  , t e D r ~G.  
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If  for every  t e G we denote by  A(t) = {u: (t, u) �9 A}, and we take B(t) = {v: v = 
= F(t,u), u e A(t)}, and B = 7~[B(t),t e G], then the new problem has the natural  
constraint 

(t, v(t)) e B for t e G. 

Finally, the integrand Fo in (8) can also be wri t ten in the form 

Fo(t,v,~)= ~i: 1 j ~{j}i ~ij+ Fi(t'v) I 

m 
where  ~ = (~11, ..., ~ ,  ~21, ..., ~v~, ..., ~t~, .-., ~,~v~), .E Ni = N. 

" t = l  

(c) We shall prove that  Theorem 8 can be applied to the integral H.  In order to 
do that  let Q: B---, ~ * ~  be the multifunction defined by  

Q(t, v) = {(v, ~): ~7 >I Fo (t, v, ~), ~ �9 R y }. 

Let  (vk)k/> o be a sequence in t~  such that vk e W 1' 1 (G) and vk--~ Vo in (L1 (G)) m+ Y. Con- 
sider the VAC functions v ~  ~k, k e N ,  (see Section 2) and suppose that  
v~ v3 e VBV a.e. in G. 

Let us prove now that Q satisfies condition (wF), with respect to the sequence 
vk)k o. 

Note that  there  is a subsequence,  say still (k), such that  vk--* vo a.e. in G. Then, by 
Egorof f s  and Lusin's theorems, given ~ > 0 ,  there  is a compact set  K r  G with 
IG \KI  < ~ such that  VO/K is continuous and vk-~ vo uniformly on K. 

Thus, given ~ > 0, there  is a number  0 < 8~ = 81 (p)~< p and an integer k~ = k l  ( ~ : )  

such that 

Iv~(t)-vo(to)l < ~  for every  t e K  and k>~kl. 

Note that  almost all points of K are points of density one for K. Let  to e K be one of 
these points and let 32 be the distance of to from aG. Thus for any given p > 0, we take 

= p and h0 = ho (to, p) = rain {81 (p), 82 }. Now for every  0 < h ~< ho and k I> k1 (p) we 
consider the functions: 

~k:q-->R ~+y, ~ k = ( ~ , j e { j } i , i = l , . . . , m ) : q - ~ R  g 

with q = [to - h, to + h], defined by 

I v k (t), t e q n K 

~ k ( t ) = [  vo(to), t e q \ K ,  

and ~k: q - ~ R ,  

ID Jv~ (t) ,  t e q ~ K 

~ (t) = [ Djv~ (t) + Fi (t, vk (t)) - Fi (t, Vo (to)), t ~ q \ K ,  



316 L .  C E S A R I  - P. BRANDI - A. S A L V A D O R I :  Seminorrnality conditions, etc. 

Finally note that 

tq] -1 f ~k (t)dt - ]qt -1 f Fo (t, vk (t), Dvk (t)) dt = O, 
q q 

moreover we have 

J J i ]q] Dvk(t)dt-lql  k(t)dt 
q q 

I Iq\KI 
<~lq1-1 f ~ E Fi(t, vk(t))-Fi(t, vo(to)) d r < . - - ~ - 2 M N ,  

q \ K  

where M = max max [Fi (t, v)[, and the last expression approaches zero, as h goes to 
O+" l • i < . n  B 

Since to denotes here almost any point of K, and ] G \ K  I < ~ with ~ > 0 as small as 
we want, we have proved that for almost every t o e G the multifunction Q satisfies 
condition (wF') with respect to the sequence (v ~ vk)~>0. 

Concerning condition (Q), this property was proved in [3] (cfr. the proof of Theo- 
rein B in Section 2 of[3]), and the same proof holds in the present more general 
situation. 

Thus by force of Theorem 8 we conclude that, for every sequence (vk)~ ~ 0 in t~  
with vk e WI'I(G) and vk--->vo in (LI(G)) "~+N, we have 

li_._~_m H(vk ) >~ H(vo). 
k---> +oo 

As we have seen in [4bc], this property implies that H(v) ~ X(v),, where 5C is the 
Serrin functional corresponding to H. 

Moreover I is lower semicontinuous as H and I(u) <. ~(u), for every u e t2o and 
I(u) = 3(u), for every u e t20 • W 1' 1 (G). 

(d) As an application of Theorem 11, under the assumptions listed in (a) there is 
an absolute minimum for the Serrin integral ~, associated to the integral I, in any 
closed subclass D c Do. We note that the present existence result in more general 
than the one stated in [3] since the functions F~ (t, u) are assumed here only continuous 
and not necessarily Lipschitzian as in [3]. 
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