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Abstract.

In this paper, we study the use of an incomplete Cholesky factorization (ICF) as
a preconditioner for solving dense symmetric positive definite linear systems. This
method is suitable for situations where matrices cannot be explicitly stored but each
column can be easily computed. Analysis and implementation of this preconditioner
are discussed. We test the proposed ICF on randomly generated systems and large
matrices from two practical applications: semidefinite programming and support vector
machines. Numerical comparison with the diagonal preconditioner is also presented.
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1 Introduction.

Large dense linear systems generally require a prohibitive amount of memory,
and thus are very difficult to solve by direct methods. As suggested by Edelman
in his survey [7], a modern approach for solving dense linear systems is to use
preconditioned iterative methods that access the matrix only by matrix—vector
multiplication and employ fast approximate methods for computing the matrix—
vector product. In this paper, we focus on the preconditioned conjugate gradient
method for dense symmetric positive definite (SPD) systems.

The performance of iterative methods largely depends on the use of good pre-
conditioners which can accelerate the convergence. Several papers [2, 10, 11, 16,
25, 29, 36] have addressed the issue of preconditioning dense matrices. Most of
them are for the solution of boundary-integral formulation of partial differential
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equations with applications in acoustics, elastics, and electromagnetics, etc. For
some of these applications, techniques such as multipole methods (for example,
[30] ) and FFT can be used to speed up the matrix—vector multiplications so
efficient iterative methods were implemented. However, many symmetric pos-
itive definite matrices from numerical optimization do not have such special
structures. Therefore, preconditioning and matrix—vector multiplications are
complicated and expensive. In this paper, we will exploit the possibility of using
the incomplete Cholesky factorization (ICF) for general dense SPD systems.

For sparse SPD matrices, incomplete Cholesky factorization has been a general
way for obtaining preconditioners: Given a symmetric m by m matrix M and
a symmetric sparsity pattern S, an incomplete Cholesky factor of M is a lower
triangular matrix L such that

M=LL" +R, 1;;=0if (i,5) ¢S, ri;j=0if(i,j) €S.

Then we expect the preconditioned matrix L='M L~ to have a smaller con-
dition number and hence the number of conjugate gradient iterations could be
reduced. Note that we do not use the conventional symbol A to represent the
matrix but reserve it for future use. In Section 2, we discuss a method for
choosing the sparsity pattern S for dense matrices. This method works in situ-
ations where matrices cannot be explicitly stored but each column can be easily
computed.
We then test the proposed ICF on different problems:

1. Randomly generated dense matrices: M is obtained from MATLAB.

2. Dense matrices from semi-definite programming: M = (A(S~! @ X)AT),
where A, S, and X can be stored but M becomes fully dense and cannot
be explicitly stored.

3. Dense matrices from support vector machines: each component M, ; is a
function of two short vectors v; and v;. For example, M; ; = e lvi=vsl®,
All data v; can be stored but M is fully dense and cannot be explicitly
stored.

The experiments are described in Section 3, 4, and 5. For each case, we com-
pare ICF with the diagonal preconditioner. Experiments show that in general
ICF helps the conjugate gradient method to take fewer iterations. We also ana-
lyze the computational efforts of using the ICF.

Discussions and conclusions are in Section 6. Sections 2 and 4 are based on
the preliminary results in Lin [17].

2 Incomplete Cholesky factorization for dense systems.

Based on different orders of loops and indexes, there are several versions of
Cholesky factorization (see, for example, the Appendix of [26]). Therefore, even
for the same sparsity pattern S, there are different forms of incomplete Cholesky
factorization. However, since we do not store the dense matrix but calculate
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each element during the factorization, only some special forms are usable. For
example, if the popular outer product form [9, Section 10.3.2] is used, in each
step, the current sub-matrix

a ol
- o
is considered. Some components of v are made zero to define the vector w,
and w/y/a is used to generate the factor L. Then the procedure continues to
partially factorize the matrix B — a~'ww”. However, since we are not able to
store B, B — a~'ww” is also not stored. This means that we must delay the
operation of subtracting o~ Mww” until the respective column is considered.

In other words, if v is the jth column, elements of the jth column of M are
not computed until the jth step. The jth column of L is completed by using
the 1st to (j—1)st columns of the factor L to update v and obtain w. As it is
stored, L must be sparse.

We consider the procedure in Algorithm 2.1 to do the incomplete Cholesky
factorization. It is modified from the jki version of the Cholesky factorization
(see Appendix of [26]). In Algorithm 2.1, entries of M are replaced by entries of
L. Tt can be clearly seen that at the jth step, columns 1 to j—1 of L are used to

update the jth column. Note that in this algorithm, the (7, j) component of M
is represented as M(i,j).

ALGORITHM 2.1 (INCOMPLETE CHOLESKY FACTORIZATION (ICF)).

for j = 1:m
M(j,j) = sqrtM(j,j))
for k = 1:j-1 & M(j,k) # 0
for i = j+1:m & M(i,k) # O
M(@i,j) = M(@i,3) - M>E,k)*M(5,k)
end
end
for i = j+i:m
M(i,3) = M(1,3)/M(F,])
M(i,1) = M(i,1) - M(i,i)"2

end
Find some nonzero elements of the jth column and store.
end

A key issue in ICF is to choose the sparsity pattern S. Many methods have
been proposed for finding a good S. However, most of them cannot be directly
applied to dense matrices. The first ICF proposed by Meijerink and van der
Vorst [22] kept the same sparsity pattern, so only elements at nonzero positions
of the original matrix are preserved. For the fully dense matrix, this means
the whole column v of (2.1) is kept in L so the exact Cholesky factorization is
calculated. Since we are able to store neither M nor L, their approach could
not be used. Similarly, the level-set approach, first used by Gustafsson [12] and
Watts [37], faces the same problem because it essentially generates a denser
preconditioner L than the original matrix M.
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Another popular ICF method for sparse matrices is based on the drop toler-
ance approach, (e.g., Munksgaard [24]). In this strategy nonzeroes are included
in the incomplete factor when they are larger than some threshold parameter.
Therefore, the memory requirements are unpredictable, a situation that is not
appropriate for dense matrices.

Kolotilina [16] proposed to use the following rule:

(i,7) € S if |M; ;| > emax |M; ],
2,]

and presented numerical results on some dense systems. As it is difficult to
decide the number €, usually a second-stage preconditioning is required, where
a second threshold must be decided. In addition, this approach uses only the
information of the original matrix but not sub-matrices during the factorization.

Saad [31, 32] and Jones and Plassmann [14] keep only the largest elements
(in magnitude) in the preconditioner L. Lin and Moré [18] used this idea and
proposed a preconditioner based on Algorithm 2.1. In Algorithm 2.1, the incom-
plete factor L is calculated column by column. After the jth column is obtained,
some of the largest (in magnitude) elements are stored back to L (see the last
line of Algorithm 2.1). For sparse matrices, their methods tend to retain more
nonzero elements in L than in M. However, these methods can be extended
to dense matrices since a sparse L is generated when fewer largest elements are
stored. In order to keep L sparse, we select the p (p < m) largest elements.
Hence, the number of nonzero elements of L is O(pm). The number p could be
a variable; for example, in [14], the number of nonzeros of each column is used.
However, for fully dense matrices, it is difficult to identify which columns are
more important as they all have the same number of nonzeros. Therefore, in our
implementation a fixed p is used. The ICF by selecting the p largest elements
will be the algorithm implemented and tested in the rest of this paper.

The idea of selecting some of the largest elements during factorization is to
keep LL" as close to M as possible, though this is a heuristic. We consider the
sub-matrix (2.1); after one step of Cholesky decomposition,

T 1/2 1/2 T
a v « «a 0 0
(2.2) [v B] o [al/zw} [al/zw] + [0 B — éwa} tE,
where w is the vector obtained by setting some entries in v to be zero, and

£-[oly 3]

is the error matrix.

Note that F is not the true error matrix of the whole incomplete factorization
because the factorization of B — o~ 'wwT is also incomplete. However, by select-
ing the largest elements (in magnitude), E has the smallest 1-norm. Another
way to look at the error is the difference between B —a~'vv? and B — o tww? .
It can be easily proved that by selecting the largest elements, their difference is
minimized.
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Regarding the implementation, we modify the sparse code of Jones and Plass-
mann [14], and Lin and Moré [18]. The matrix L is stored in compressed sparse
column format but diagonal elements are separated in a different array. Note
that when using the column format, a difficulty is on accessing the row M(j,k),
k = 1:j-1. Following the efficient implementation of Jones and Plassmann, we
use two additional working arrays of length m to store additional information
so that M(j,k), j = 1:k-1 can be easily obtained. For this implementation,
diagonal elements must be stored separately and updated earlier than other
off-diagonal elements. This explains why in Algorithm 2.1, diagonal elements
M(i,i), i = j+1:m are updated immediately after each column has been pro-
cessed.

The computational work of the incomplete Cholesky factorization includes
three parts: the generation of the jth column of the original matrix, the update
of the jth column by using the 1st to the (j—1)st columns of L, and the selec-
tion of the p largest elements. The cost of generating each column depends on
different applications. For the second part, from (2.1), column w of L is used
to update the rest of the matrix B — a~'ww”. Therefore, the total number of
operations is O(mp?). Note that the practical number of operations depends
on different implementations. Appropriate data structures must be used. For
our implementation, all matrix elements can be efficiently accessed so the total
number of operations of this part is kept as O(mp?). For the third part, there
are many methods to find the p largest nonzero elements. A natural choice is to
employ a heap-sort strategy. The cost is O(k+plog, k) for a column of length k.
Since p < k for dense matrices, the total cost is about O(Z;ﬂ:l j)=0(m?). Ifa
method similar to the quick split (see [32, Section 10. 4. 3]) is used, the number of
operations is O(k) on the average if k is the length of the input array. Therefore
the total number of operations is also O(m?). In Section 3, 4 and 5, we will
discuss the practical computational time for our test matrices. Our implementa-
tion also requires that the row indices of each column is in ascending order. This
costs O(plog, p) for each column. Then the total cost is O(mplog, p) which is
smaller then O(m?) for selecting the p largest elements.

Scaling is a common way to improve the condition of M. In other words, a
simple matrix D, usually a diagonal matrix, is obtained, and the ICF works on
the scaled matrix D~/2M D~1/2. For example, diagonal scaling (Dy ;i = |Mil,
i=1,...,m), ly norm scaling (D, ; = ||M’s ith columnl|s, i = 1,...,m), and I
norm scaling (D;; = ||M’s i th column||s, i = 1,...,m) are reasonable choices.
We note that the norms that involve all columns may not be suitable for dense
matrices. Because we do not store the matrix, for those norms all columns must
be calculated at least twice: once for the scaling matrix D and once during the
ICF.

Another difficulty with the incomplete Cholesky factorization is that it may
fail even if the original matrix is positive definite [15]. This problem occurs
during ICF when a negative diagonal element is encountered. One solution is to
replace the negative diagonal element with a positive number. Another approach
is the shifted incomplete factorization of Manteuffel [20, 21]. It adds al to the
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original matrix, where I is an identity matrix. Eventually, when « is big enough,
the matrix will be diagonally dominant and ICF will succeed. This follows from
the fact that diagonally dominant matrices are H-matrices [3] and ICF always
succeeds for them. The advantage of the first approach is that only one ICF
is required. However, it is difficult to decide the modification of the negative
diagonal elements and is usually too late to update them. In [18], these two
approaches are discussed, and the shifted incomplete factorization appears more
stable. Benzi, Kouhia, and Tuma [4] also have the same observation. In addition,
[18] also discusses the relation between the scaling matrix D and the number of
a. Algorithm 2.2 thus is the actual procedure we propose for calculating ICF of
a matrix M.

ALGORITHM 2.2 (INCOMPLETE CHOLESKY FACTORIZATION FOR GENERAL
MATRICES).

Choose > 0;

Compute B = D~Y2)MD~1/2 .

Set ag = 05

Fork=0,1,..., R R
Use Algorithm 2.1 on By, = B + ayI; if successful exit;
Set a1 = max(2ag, 14);

It can be seen that two major parameters of the ICF are p, the number of
nonzero retained, and p, the initial shift. From the experiments in [18], p should
be as large as possible, if the computer memory is available. Note that O(pm) is
the storage required by L. Hence one method is to choose a p such that O(pm)
is the same order as storage required by other parts of the application. We use
this selection for problems in Section 4. The second parameter, the initial shift
1, affects the number of iterations in Algorithm 2.2 to achieve an acceptable
shift o where the incomplete factor exists. Therefore, if p is too small, many
iterations may be required. Fortunately our experience shows that even if p is
too small, ICF fails in a very early stage and exits. Therefore, the real effort is
not in proportion to the number of iterations. In Section 3, we experimentally
demonstrate this property.

3 Testing randomly generated matrices.

In this section, we test the proposed ICF by comparing it with the diagonal
preconditioner when solving randomly generated dense symmetric positive defi-
nite systems. The computational experiments for this section were done on a Sun
UltraSPARC2-300 workstation with 1024 MB RAM. The code is written in ANSI
Fortran 77 and compiled with the option -fast, -xO5, -xdepend, -xchip=ultra,
-xarch=v8plus, -xsafe=mem (following the recommendations in [8]).

We use the following command of MATLAB (version 5.3) [33] to obtain test
matrices:

M = sprandsym(3000, 1, 1.0d4-6, 2) ;
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The four parameters are the size, density, approximate reciprocal condition
number, and the way to generate positive definite matrices. The matrix is gen-
erated by a shift sum of outer products. Unlike in practical large applications
where matrix-free methods must be used, here we are able to store the whole
matrix. Though we specify the density of matrices to be 1, practically the MAT-
LAB command generates matrices with density around 60%.

Table 3.1: Conjugate gradient iterations for two randomly generated matrices.

Diag. ICF (p = 10m?/3) ICF (p =m'/3)
cgit cgt icft shift cgit cgt icft  shift cgit cgt
P1 | 2236 701.63 | 5.43 1 727  265.22 | 3.20 4 1544  493.65
P2 | 2245 705.35 | 5.53 1 720 263.58 | 3.07 4 1521 486.96

The right-hand side of the linear system Mx = b is chosen as the vector
of all ones. We then diagonally scale the matrix so the actual system to be
solved is D~Y/2MD~1/2z = D='/2b. Under the current situation, all diagonal
elements are one so diagonal preconditioning is the same as having no precon-
ditioner. Similarly, for the ICF, we do not need to perform the scaling step of
Algorithm 2.2.

We use a stopping criterion based on the relative residue

| D=Y2MD Y2 — D=2 /|| D2 < 1072,

The initial solution of the conjugate gradient method is the zero vector. For the
ICF, the parameter p of Algorithm 2.2 is selected to be 1. In addition, we test
two cases by keeping the largest 10m!/3 and m!/3 elements in each column for
the ICF. This allows us to investigate the relation between the performance of
ICF and the available storage.

Table 3.2: Computational time of ICF using different initial shifts pu.

p= mt/3 p= 10m'/3
p=0.001 pw=1 p=0.001 n=1
icft  shift icft  shift icft  shift icft  shift
P1 | 3.35 2.05 3.20 4 | 1541 1.02 5.43 1
P2 | 5.06 4.10 3.07 4| 15.89 1.02 5.53 1

In Table 3.1, two randomly generated problems are tested. We report the
number of conjugate gradient iterations and the time using the diagonal precon-
ditioner and the ICF in the cgit and cgt columns. For the ICF, the precondi-
tioning time and the final ol added are also presented. They are columns icft
and shift. All computational time presented in this paper is in seconds. From
Table 3.1 it can be seen that, by using the ICF, the number of iterations is
reduced. By comparing the cases of p = 10m!/3 and p = m!/3, results suggest
that more storage is useful in this case. Therefore, we suggest that when using
Algorithm 2.2 for dense matrices, as much memory should be allocated as pos-
sible. We also notice that when p is reduced, the shifts increase. If more storage



INCOMPLETE CHOLESKY FACTORIZATION FOR DENSE MATRICES 543

is used, ICF is closer to the real Cholesky factorization; hence less modification
of the diagonal elements is required.

In Table 3.2, we compare the computational time of ICF using different initial
shifts g. Though Algorithm 2.2 with g = 1 takes 10 more iterations than with
1 = 0.001, we notice that the time spent by ICF is not 10 times more. If y is
too small, ICF fails in a very early stage and exits.

Because matrices are explicitly stored, the two computationally intensive parts
during ICF are incomplete factorization and sorting. “Sorting” includes finding
the largest elements (using a heap-sort strategy) and sorting row indices. The
percentage of computational time during the ICF for factorization and sorting
is as follows:

| factorization  sorting
P1 65% 35%
P2 66% 34%

It shows that factorization is more expensive than finding the largest elements
and sorting the row indices. Theoretically, the number of operations for factor-
ization is O(mp?) = O(m°/3) which is less than O(m?) for finding the largest
elements (as shown in Section 2). However, in practice, the factorization takes
about 2mp? = 200m®°/3 multiplications/divisions and also other operations for
maintaining the data structure. Therefore, unless m is extremely large, fac-
torization costs more than sorting. In addition, we observe that compared to
finding the largest elements, the time for sorting row indices is minor.

Next we design an experiment to examine the effect of shifts (ay of Algorithm
2.2). First an mxm matrix A is generated so that each component is a (uniformly
distributed) random number between zero and one. Hence M; = AAT is the
first test matrix. Second we obtain a new matrix B with B; ; = 24; ; — 1. Then
M, = BBT becomes another test matrix. For the matrix M, the diagonal
elements are expected to be about m/3 and the off-diagonal elements are around
m/4. This shows that M; is far from a diagonally dominant matrix. On the
other hand, the diagonal elements of My are still around m/3 but the expected
values of the off-diagonal elements are zero. However, the expected absolute
values of the off-diagonal elements are still m/4. Hence by comparing M; ; and
> jzi [ Mij|, matrix M is also unlike an diagonally dominant matrix.

Table 3.3 presents results of experiments on two sets of such matrices. The
right-hand side b is chosen as the vector of all ones. Therefore, we have made
many properties of systems Mix = by and Myx = by similar except one possi-
ble difference which we would like to investigate: the shifts. There is a rough
explanation for why we think the required shift for the matrix Ms is smaller. If
the original matrix is written as the form in (2.1), after one step of Cholesky
decomposition, B—a~ww? is the sub-matrix which the procedure will continue
to work on. As B —a~'vvT is positive definite, if B —a'ww? is closer to it, it
is easier to be positive definite. Now for the matrix Ms the expected values of
a Y (ww? —vvT); ; are zeros if i # j. As (ww? /a); j,i # j are also close to zero,
both B —a~tww” and B —a~'vv? are not far from B, Thus the procedure may
continue more smoothly without facing diagonal elements.
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From the information in Table 3.3 we note that by using the diagonal pre-
conditioner, the conjugate gradient method takes about the same number of
iterations for solving Mix = b; and Msx = by though the condition number of
M, is a little better. However, using ICF, a larger number of CG iterations are
needed for solving the system with M; than for solving with M;. We observe
that very big shifts, e.g. 64, are taken to generate the incomplete factor of Ms.

This experiment clearly shows that since ICF follows the structure of Cholesky
factorization, the problem of negative diagonal elements is unavoidable but some-
times is the key factor contributing to the degradation of the performance. In
Section 5, while running a practical application, a similar situation arises. Fur-
thermore, we may suspect that poor performance of ICF is due to the choice of
a non-optimal af. However, our experiments show that even if the best al for
the matrix is used, but it happens to be large, the ICF tends not to perform as
well as the preconditioner generated by factorizing M + a. On the other hand,
we would like to mention that for this experiment, the CG does not converge if
diagonal elements are locally updated (not by adding al).

Table 3.3: Comparison of the effects of shifts.

condition Diag. ICF (p = 10m'/3)
m number | cgit cgt icft  shift cgit cgt
P1-1 500 1.7371le+10 | 1142 4.20 | 0.49 64 1078 9.52
P1-2 500 1.1370e+07 895 3.28 | 0.27 1 575 5.13
P2-1 500 2.9864e+08 541  2.03 | 0.49 64 647 5.34
P2-2 500 1.5740e+-08 911 3.34 | 0.27 1 577 511

The programs used for numerical tests in this section are available at the
authors’ homepage.!

4 Solving dense linear systems from semidefinite programming.

In this section we study a practical example: semidefinite programming (SDP).
Recently SDP has drawn a lot of attention because of its many potential appli-
cations. A recent survey is in Vandenberghe and Boyd [34]. In order to solve
SDP, a sequence of dense linear systems must be solved.

4.1 Dense matrices from semidefinite programming.

A standard form of the semidefinite programming problem is as follows:

min CeX
(4.1) A;eX = b foreveryi=1,...,m,
X=0
where A;,i = 1,...,m, and C are nxn symmetric matrices, AeB = trace(A” B),

X > 0 means that X is a symmetric and positive semidefinite matrix (X > 0

I The software is available at http://www.csie.ntu.edu.tw/"cjlin/icfdense.tar.gz
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means that it is a symmetric and positive definite matrix). The dual of problem
(4.1) is as follows.

max Z:il biyia
(4.2) St Ay + S =G,
S = 0.

Currently, the only effective way to solve problem (4.1) or (4.2) is through
interior-point methods. One commonly used interior-point method is an infeasible-
start primal-dual path-following algorithm (see, for example, [38, 19]). It starts
from an infeasible solution, and, at each iterate (X, yx, Sk), a predictor system
(4.3) is solved:

(4.3)
AiOAXk = —(AiOXk—bi), i:l,...,m,
S Aidyf + ASy = (3, Al + S~ O),
AX S + XpAS, = tipl — XiSk.

A predicted iterate (Xp, 7k, Sk) is obtained based on the solution of the predictor
system. Then a corrector system (4.4) is solved:

Ai.AXk = O, izl,...,m,
(4.4) YrAAGE + 0 AS, =0,
AXkSk + XkASk = t,1 — Xk5k~

Note that ¢ and £, are numbers defined by Xy, Sk, X, and Sj.

The next iteration is updated by using the information of the current iteration,
the predictor direction, and the corrector direction.

Solving both systems (4.3) and (4.4) is the main computational burden of
interior-point methods. We use the following three derived equations to solve
them:

(4.5) (A(S, ' @ Xip)AT)Ayy = hy — zm:Ai o ((hg — Xih2)S; ),

i=1
(4.6) ASp == AyFA; + ha,
i=1
(4.7) AXy = (—h3 — X, ASE)S;

where hq, hg and hg are the right-hand sides of (4.3) and (4.4), ® is the Kronecker

product,
vec(Ap)T

A= : ,
vec(Anm)T

(A(S; ' ® X)AT) is an m by m matrix, and
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(4.8) (A(S ' @ Xp)AT), ;= Ai o (X5A; S Y, d,5=1,...,m.

Note that vec(A;) denotes the vector formed from the columns of A;. In (4.8)
(A(S; '®X},)AT) is a fully dense matrix, as are X and Sy,. While the calculation
of (4.6) and (4.7) is computationally cheap, obtaining (A(S, ' ® X;)AT) and
solving (4.5) are more expensive.

If A; are dense, forming X A4;S, ' takes O(n®) operations and hence O(mn?+
m?2n?) operations are required to generate the matrix. This may be more expen-
sive than the O(m3) operations required to solve (4.5) by Cholesky factorizations.
This situation is very different from the case of interior-point methods for linear
programming and makes SDP problems more difficult to solve. However, for
several applications of SDP, mainly in combinatorial optimization, most A; are
extremely sparse, that is, each A; contains only a constant number of nonzeroes.
Using this property, it is easy to see that generating (A(Slgl ® X;)AT) requires
only O(m?) operations, since for each i, j, A; o (XkAjSlzl) requires only a con-
stant number of multiplications and additions. Therefore, the computational
bottleneck is the effective solution of the fully dense system (4.5); this is where
iterative methods are used.

In addition, when each A; has a constant number of nonzeros, the matrix—
vector product (A(S; ' ® X;)AT)v has the same computational complexity as
(A((Sy '@ I ((I® Xk)(ATv)))). Therefore, it is possible to calculate the matrix—
vector product without storing the matrix. Since the matrix (A(S, ' ® Xj;)AT)
is positive definite, the conjugate gradient method is a natural choice for solving
the system (4.5).

4.2 Stopping criteria for the conjugate gradient method.

As in Section 3, we use the relative residue as the stopping condition for the
conjugate gradient method. A common shortcoming of iterative methods is, that
unless a very strict stopping criterion is used, they do not produce as accurate
solutions as direct methods. However, they take large number of iterations
when more accurate solutions are required. We show here that for this special
application, it is not necessary to generate very accurate solutions.

SDP is a popular method for obtaining lower bounds for difficult combina-
torial optimization problems. Good lower bounds improve the effectiveness of
procedures used to solve the original problem. The basic idea is to reformulate a
combinatorial problem in SDP standard form (4.1) or (4.2). An SDP relaxation
is then solved, thereby obtaining a lower bound of the original problem. A high
level of accuracy is not necessary for the following reasons: If the algorithm starts
at an infeasible point, both predictor and corrector systems help the iterations
approach feasibility. That is,

(49) AiOX]H_l—b:Ol(AiOXk—bi), i:l,...,m,
(4.10) ATyt 4 G — C = a(ATyr + 5, — O),
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where 0 < o < 1. However, even if the solution of (4.5) is not very accurate, this
does not affect the dual feasibility because ASy and AS}, are directly calculated
as

m m m
= AAYF = O A+ S, —C) and =) AAY,
i=1 i=1 i=1

respectively. Therefore (4.10) is always numerically correct. On the other hand,
primal feasibility will be affected. However, since we are trying to get lower
bounds for combinatorial applications, it is sufficient that the algorithm returns
a dual solution that is almost dual feasible. The dual objective value of that
iteration is a lower bound of SDP relaxation and hence a lower bound of the
original application. This observation allows a further reduction in the effort of
using iterative methods for solving (4.5).

4.8  Quadratic assignment problems.

Our test problems are SDP relaxations of some quadratic assignment problems
(QAP) from the library QAPLIB by Burkard, Karisch, and Rendl [5]. A QAP
problem is to assign r plants to r locations so as to minimize the flow-distance-
cost. Its standard form is as follows:

min E xi,jDi,ij,lxk,l

i,k
T T

(4.11) dwig=1, i=1,...r wi=1, j=1,...m
j=1 i=1
Tij; € {0,1}.

D; 1. is the distance between location 7 and k, and F}; is the material flow
between plant j and [. It is an NP-hard problem, and some instances with
r < 20 are not solved yet. Approaches that solve QAP exactly are limited to
small problems and usually involve a branch and bound method. Therefore, a
relaxation generating good lower bounds can reduce the computational effort
by effectively trimming the search tree of branch and bound. With some minor
modifications, our SDP relaxation follows from that of Zhao, Karisch, Rendl and
Wolkowicz [39]:

.| D®F 0
(4.12) min { 0 0 ] X
ATA 0
(4.13) { 0 0 ] o X =2r,
1 1
(4.14) Xii— §Xi,r2+1 — §sz+1,i =0, i=1,...,r%
1 1
(415) §X17J—|—§ M:O, Z:(’/‘—l)k—Fl, ]: (T—l)k—FS,

l#£s, 1<k, js<r,
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1 1
(416) §X1‘7j + 5 i = O, 1= (’/‘ — l)l + k’, ] = (T — 1)3 + k’,

l#£s, 1<k, js<r,
(417) Xr2_‘_1,r2_‘_1 = 1, X i 07

where A is a 2r x r? matrix which is the coefficient matrix of (4.11).

Note that (4.14)—(4.16) can be easily represented as SDP constraints. Then
the solution of the SDP problem (4.12)—(4.17) is a lower bound of the original
QAP. In our SDP formulation, m = 2 + 2 and n = r? + 1. Therefore, both X},
and Sy, take O(n?) = O(r*) computer memory.

4.4 Implementation issues.

We use an infeasible start predictor—corrector path-following algorithm to solve
the primal and dual pair (4.1)—(4.2). The code is modified from an early imple-
mentation in Lin and Saigal [19]. At the start, we select a large number p > 0,
and initial solution X; = pI, y! = 0, and S; = pI. The barrier parameter ¢;
is n71X; @ S; = p?. In each iteration a predictor system (4.3) and a corrector
system (4.4) are solved.

For predictor direction (AXj, Ay*, ASy), we find the largest of < 1,af < 1
such that

p
Xy + %(Axk FAXT)Y =0,  Sp+alASp =0

and define
. 1
X = Xi + 50.99042(&@ +AXD),
(4.18) 7" =¥ +0.994 Ay*, Sk = Sk +0.99aASy
f o Xk [ ] Sk
T

Then from (X, 7", Sy), we obtain the next iterate (Xjy1,7""!, Skr1) by the
same procedure as above except that (AXy + AXT, Ay* ASy) is replaced by
(AXy + AX,? + AX, + AX,?Ayk + AgF, ASy + AS}). In addition, we use
tkr1 =n 1 Xj 41 @ Skp1. We use the stopping criterion of [39)]

bTyk+1 _ bTyk

— = <1073
1+ |bTyk+1|

for the interior-point algorithm. When the above inequality is satisfied, the
duality gap may still be large. However, since we are obtaining lower bounds
for QAP and the dual feasibility of SDP relaxation is good, using dual objective
values can provide a lower bound of SDP relaxation and hence a lower bound to
QAP.

During conjugate gradient iterations, the matrix—vector product

(4.19) (A(S; ' @ Xp)AT ),
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has to be calculated, where v is a working vector. Note that S, ! appears in
(4.19) and the right-hand sides of (4.5) and (4.7). X} and Sj are fully dense
so it is natural to think about obtaining Cholesky factorization of Sy and doing
back substitutions when S, !is involved. By doing so, the computational errors
may be reduced; in particular, some authors (e.g. [1]) have pointed out that
several mathematically equivalent ways of calculating the right-hand sides of
(4.5) and (4.6) could cause different stability properties. It is easy to avoid the
calculation of S, ' in Equations (4.5) and (4.6). The best way to implement
(4.19) is by using

(A(S; ' @ Xp)ATw); = A; o (Xgmat(ATv)S )
(4.20) = vec(A;) vec(Xymat(ATv)S. 1Y), i=1,...,m.

The mat operator is the reverse of the vec operator so it changes an n? vector to
a matrix. Since v is a dense vector, mat(A7v) is also dense. This means dense
matrix multiplications of Xymat(Av)S, ! is obtained first and then a sparse
matrix—vector multiplication is performed. While doing this, the explicit form
of S ! is also not necessary. However, for doing the ICF, we have to specifically
store S, '. In order to use O(m) operations to generate the jth column, A; e

(XkA;S;. 1), i=1,...,m, are calculated as
(4.21) > (A)ab(Xk)a,e(Aj)ea( Sk b
a,b,c,d:

(Ai)a,b7#0,(Aj)c,a#0

because A; and A; contain only very few nonzero elements. Hence direct access
to elements of S, ' is essential. This is a drawback of the ICF. Note that (4.21)
is not used for all j = 1,...,m. Because there is a dense A; from (4.13), for
only this column, Avec(X;A;S; ") is implemented.

We use the same implementation of the ICF in Section 3. The parameter
u of Algorithm 2.2 is selected to be 1. For the p nonzero elements kept in
each column of the preconditioner, we select 10m!/3 largest elements in order
to keep the same order of storage. In other words, O(m*/?) storage is taken for
the preconditioner; this is the same as O(r*) when m = O(r3). We start the
conjugate gradient method with the zero vector and stop the iteration when the
relative residue

J(AGSE ® X AT) Ay — by + 3377 Ai e ((hs — Xiha) S )]z
| —h1+ 200, Ao ((hs — Xiha)S; )2 o

(4.22)

where € = 10~* for the predictor step, e = 5 - 10~* for the corrector step, and
hi,ha and hz are the right-hand sides of (4.5) and (4.6). The main reason for
using a larger tolerance for the corrector step is that h; and ho are both zero
and hence the denominator of (4.22) is smaller. The number of CG iterations is
limited to be the maximum of 400 and m?/3. We have noticed in Section 2 that
the I3 and [, norm scaling may not be suitable for dense matrices. Therefore,
the diagonal scaling is implemented.
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Table 4.1: Comparisons of running the same linear systems (NUG problems).

C.-J. LIN AND R. SAIGAL

iter r=12 r=18 r =20 r =25
1 3 3 3 3 3 3 3 3
2 4 4 4 4 4 3 4 3
3 4 4 5 4 5 4 5 3
4 5 5 5 4 5 4 5 4
5 23 62 27 58 34 61 30 55
6 61 119 88 107 83 106 101 130
7 53 33 45 40 48 53 48 76
8 93 36 90 62 100 63 177 99
9 63 34 185 70 59 29 116 59
10 | 132 55 90 48 82 37 113 158
11 | 196 186 336 108 | 401" 161 | 626* 626"
12 | 312 169 208 198 283 329 | 626 626
13 240 110 | 401" 401" | 626 626"
14 278 626"
15 626 626
total | 949 710 | 1326 816 | 1508 1254 | 3384 3720

*: exceeded the maximal number of CG iterations.

4.5 Numerical results.

Our programs were written in MATLAB. Computationally-intensive parts
such as the diagonal preconditioning, the incomplete Cholesky factorization,
and the matrix-vector multiplication A(S, ' ® X;)ATv were written in Fortran
and linked to MATLAB drivers through C subroutines and mex scripts.

Before comparing the overall performance, first we compare the number of CG
iterations by using the diagonal preconditioner and the ICF on the same linear
system. In Tables 4.1 and 4.2, the diagonal preconditioner is used to solve NUG
and TAla problems, both with four sizes; for the same predictor systems, ICF
is also used. Then we report the number of CG iterations for solving predictor
systems by two preconditioners. For example, when r = 12, NUG12 problem
is solved and in Table 4.1, two columns show numbers of CG iterations by two
preconditioners in each interior-point iteration. Note that the first column iter
presents the interior-point iterations. In early iterations, because matrices are
well-conditioned and close to diagonal-dominance, the diagonal preconditioner
performs better than ICF. In later iterations, matrices are more ill-conditioned,
and in general ICF takes fewer CG iterations. For example, fewer CG iterations
are taken by using the diagonal preconditioners in the first eight iterations for
the problem TAI25a; however, after the ninth iteration, ICF performs better.
Hence, the total number of CG iterations is also less. From this experience, we
realized it would be better to start the ICF in the middle of the optimization
algorithm. The rule implemented is that after the number of CG iterations
in one interior-point iteration (either predictor or corrector) reaches more then
0.1572, the incomplete Cholesky factorization is used.
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Table 4.2: Comparisons of running the same linear systems (TAla problems).

iter r=12 r=17 r =20 r =25
1 3 3 3 3 3 3 3 3
2 4 4 4 3 5 3 5 4
3 4 4 4 3 5 3 5 4
4 4 4 5 3 5 3 5 4
5 5 4 5 4 5 4 6 5
6 27 51 26 55 26 53 23 35
7 79 98 | 100 122 121 104 82 164
8 41 32 54 41 57 71 42 125

Nej
—
)
]
t
=~
—_
[en]
Ne

45 123 83 140 68
54 | 401* 217 189 104

—_
o
(S
=)
[\
(=}
o
o

11 216 94 81 49 80 60 528 342
12 3563 149 | 145 104 141 126 151 75
13 227 97 151 232 193 161
14
15

total | 1144 620 | 616 386 | 1023 962 | 1372 1094

*: exceeded the maximal number of CG iterations.

Table 4.3: The incomplete Cholesky factorization and diagonal preconditioner for solv-
ing NUG12.

Diag. Precond. ICF

iter | cgit cgt(sec.) | cgit icft(sec.) cgt(sec.)

1-5 88 88
6 107 23.12 206 6.02 50.83
7 129 27.48 105 6.21 25.50
8 126 26.89 72 9.64 17.84
9 96 20.75 53 9.72 12.79
10 214 45.55 87 9.13 21.16
11 300 64.02 251 8.47 60.66
12 586 125.28 301 11.70 72.82
6-12 | 1558 333.09 | 1075 60.89 261.60

Table 4.3 compares the incomplete Cholesky factorization and diagonal pre-
conditioner for solving NUG12. The first column (iter) shows the outer iterations
(interior-point iterations). For the diagonal preconditioner, the number of CG
iterations and the time of CG are reported in columns cgit and cgt. For the ICF,
the time of preconditioning (the icft column) is also reported. For this problem,
from the first to the fifth iteration, only the diagonal preconditioner is used.
After that, in each outer iteration, the numbers of CG iterations are generally
lower for the ICF. However, the last row of the table shows the diagonal precon-
ditioning approach takes about the same time as using the ICF (333.09 seconds
vs. 322.49 seconds). For small problems, time spent on calculating the ICF is
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Table 4.4: The incomplete Cholesky factorization and diagonal preconditioner for solv-
ing TAI25a.

Diag. Precond. ICF
iter | cgit cgt(sec.) | cgit icft(sec.) cgt(sec.)
1-9 | 616 616

10 261 5260.79 240 496.20 5041.37
11 787  15850.46 555 844.42  11649.75
12 276 5552.93 146 489.64 3110.13
13 420 8860.04 329 706.07 7221.86
8-13 | 1744  35524.22 | 1270 2536.33  27023.11

Table 4.5: Number of CG iterations for the NUG problems.

r Diag. ICF Diag. ICF Ratio
12 1646 1163 1558 1075 69.00%
18 2010 1472 1728 1190 68.87%
20 2250 1401 1966 1117 56.82%
25 4922 3929 4606 3613 78.44%

expensive, and hence the benefit of the decrease in CG iterations does not show
up.

Table 4.4 presents the same comparison for solving problem TAI25a (r = 25).
It can be clearly seen that by using the ICF, the total computational time for the
preconditioning and CG iterations is less. This result shows us that nontrivial
preconditioners such as ICF are useful for large-scale dense linear systems.

We observe consistent results on the decrease in CG iterations when using ICF.
Tables 4.5 and 4.6 show the comparison of the number of CG iterations using
the two preconditioners. The second and third columns are the total number of
CG iterations. In the ICF approach, the diagonal preconditioner is used during
the early iterations. Without considering those CG iterations, the comparison
is shown in the fourth and fifth columns. Their ratios are shown in the last
column. Except NUG25 for which the interior-point algorithm using ICF takes
one fewer outer iterations, all other problem instances require the same number
of outer iterations by using both preconditioners. For ICF, the total number of
CG iterations are less for six of eight problems; in some cases the ratios are very
good.

Table 4.6: Number of CG iterations for the TAI problems (series A).

r Diag. ICF Diag. ICF Ratio
12 1738 1057 1621 940 57.99%
17 1168 1382 952 1066 111.97%
20 1945 2070 1567 1692 107.98%
25 2360 1886 1744 1270 72.82%
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1 2 3 4 1 2 3 4

(a) NUG (r = 12, 18, 20, 25) (b) TATa (r = 12,17, 20, 25)

Figure 4.1: Percentage of ICF time (lower: generating matrices, middle: factorization,
upper: sorting).

We investigated problems TAI17a and TAI20a, for which the ICF approach
takes more CG iterations. Though there is no conclusive explanation yet, we
think the problem is the switch to the ICF. Tables 4.1 and 4.2 show that the
diagonal preconditioner is better in the early stage of the optimization algorithm.
Hence, it is possible that at an iteration, though the diagonal preconditioner
is in fact better, the algorithm switches to ICF. Furthermore, once the worse
preconditioner is used, we observe that usually the optimization algorithm is also
affected. In other words, if the next interior-point iterate is not good because
of using the worse preconditioner, the later iterates tend to generate more ill-
conditioned matrices. We guess these iterates are further away from the central
path. For problem TAI17a, if ICF is used one iteration late, the total number of
CG iterations becomes 976 which is smaller than 1168 of using only the diagonal
preconditioner. On the other hand, if the ICF is used too late, the improvement
of using it becomes minor.

We further analyze the computational time for the ICF. Unlike the results
shown in Section 3, we calculate all matrix elements inside the ICF. Figure 4.1
shows the percentage of doing three computational intensive parts: generation
of the matrix, factorization, and sorting. Generation of the matrix takes most
of the time. The percentage of this part increases as the problem size becomes
larger. This is easy to explain. The gap between the generation of the matrix
(O(m?)) and the factorization ( O(mp?) = O(m®/3)) is O(m'/?), an increasing
function of m.

Another issue which may affect the performance of the ICF is the shift af
added to the original matrix. Table 4.7 shows shifts and CG iterations of pre-
dictor (column cgitl) and corrector (column cgit2) steps in the final stage of
solving TAI20a and TAI25a. It can be clearly seen that from one iteration
to the next iteration, if the shift becomes larger, the number of CG iterations
increases and vice versa. Our experience here reconfirms our conclusion that
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sometimes the shift itself and not the condition number or other properties of
the matrix is the major reason for the large number of CG iterations.

Table 4.7: Shifts of ICF and CG iterations.
TAI20a TAI25a
iter | shift cgitl cgit2 | shift cgitl cgit2
8 8.0 71 96
9 4.0 105 31
10 8.0 401 75 4.0 190 50
11 4.0 278 38 | 16.0 389 166
12 8.0 348 101 4.0 90 56
13 4.0 79 69 8.0 186 143

5 Dense matrices from support vector machines for pattern recog-
nition.

The support vector machine (SVM) is a promising technique of pattern recog-
nition. For surveys of this subject see, for example, Cortes and Vapnik [6], and
Vapnik [35]. Given training vectors v;, ¢ = 1,...,m, of length k in two classes,
and a vector a € R™ such that a; € {1,—1}, the support vector technique re-
quires the solution of a quadratic programming problem

.1
min §xTQx —elx,

(5.1) 0<x; <C, i=1,...,m,

ale = 0,
where e is the vector of all ones, C is the upper bound of all variables, @ is a
positive semidefinite matrix, and @; ; is a function of v; and v;.

Note that v; is considered as a support vector if x is the solution of (5.1) and
x; > 0. For different problems, there are several choices of ); ;. Here we use

T 5
lvi—v; |2 UEET
Qij = aaje”vimvillz/kang aiaj< lkj> .

It has been shown in [35] that under these definitions of Q;;, @ is positive
semidefinite. Solving the quadratic programming problem is the major com-
putational bottleneck of the support vector technique. However, an even more
serious problem is that @ is fully dense, so we are not able to store large in-
stances. For many typical pattern recognition applications, the size of training
samples are bigger than 10,000 or even more than 100,000. Due to this situa-
tion, traditional optimization algorithms such as Newton’s, Quasi Newton, etc.,
cannot be directly applied. Several authors (e.g. [27, 13, 28]) have proposed de-
composition methods to conquer this difficulty. To be more precise, the training
set is separated to two sets B and N, where B is the working set. During each
iteration, an optimization subproblem on B is solved and then B and N are
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updated. If the size of B is fixed and restricted to be small, data of the whole
subproblem could be fully stored.

However, traditional methods like Newton’s method have advantages such as
rapid local convergence. We are interested in modifying Newton’s method for
this application, especially combining the decomposition methods and Newton-
like methods. This implies that in each iteration we have to solve a dense
symmetric positive semidefinite sub-system (bounded variables are not consid-
ered). Hence we would like to exploit the possibility of using the preconditioned
conjugate gradient method for such systems.

Though for practical optimization procedures, sub-matrices of @} usually are
used, we consider for preliminary tests in this section the following linear system:

(Q@+al)z =ce,

where e is the vector of all ones, @« = 0.1, and [ is the identity matrix. We
add af into @ as Q may be only positive semidefinite. We keep the largest
10m'/3 elements in each column of the incomplete factor. All settings and the
experimental environment are the same as in Section 3. The test problems are
from the project Statlog [23]. Some of them contain data in more than two
classes. Here we consider all elements not in class 1 as in class 2. Remember
that a training vector contains k attributes and each of them may be in different
ranges. If training data are directly used, it may lead to ill-conditioned quadratic
programming problems. Thus scaling the original data is in general necessary.
Here we scale each attribute of training vectors to the interval [—1,1].
In Table 5.1 we report the computational results of using

Qi = aiaje—l\vi—vj\lg/k'

The first column shows the size of four problems, ranging from 1,000 to 15,000.
Other columns have the same meaning as columns in Table 3.1. Table 5.2
contains the results of using

T, .\5
viv
00 = (1)
We can see that in most cases, ICF requires fewer terations.
Table 5.1: Support vector machine: Q; ; = aiaj(a*””i*“f“%/k.
Diag. ICF

Problem m | cgit cgt icft  shift cgit cgt
german 1000 41 56.4 | 4.81 32 36 50.32
dna 2000 19 292 | 444 16 14 215
satimage 4435 31 1030 108 256 35 1170
letter 15000 72 24700 | 1570 512 58 20100

Comparing the three computationally intensive parts of the ICF, the calcula-
tion of Q; ; is very expensive so its percentage is higher (more than 80%). The
ratio of the other two parts, factorization and finding the largest elements is
about 3 to 1, similar to the observation in Figure 4.1.
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5
Table 5.2: Support vector machine: Qi ; = a;a; (%) .
Diag. ICF
Problem m | cgit cgt ‘ icft  shift cgit cgt
german 1000 23 372 | 3.08 1 7 115
dna 2000 7 121 19.0 0 3 517
satimage 4435 7 273 | 48.7 0 4 156
letter 15000 11 4410 | 1260 8 12 4440

6 Discussions and concluding remarks.

In this paper, we study the use of an incomplete Cholesky factorization pre-
conditioner for general dense SPD systems. Numerical results show that, when
the size of the system is large, the proposed ICF has the potential to decrease
the number of CG iterations as well as the computational time. On the other
hand, our experience suggests that preconditioning dense symmetric positive
definite matrices is a complicated and difficult issue. Although ICF is suitable
for all general matrices, without using any special knowledge of the application,
the reduction in iterations and time is not large compared to using the diagonal
preconditioner. Naturally, it is arguable whether a 30% reduction in iterations
(or time) is useful or not. In addition, except for the matrix itself, many factors
affect the applicability of the ICF, e.g., the efficiency of calculating the matrix—
vector multiplication in CG and matrix elements in ICF, the required accuracy
of the CG, and the number of right-hand sides for the same linear system. In
general we think ICF could at least save some iterations. However, the compu-
tational time will benefit more if the matrix calculation inside the ICF is cheap.
For example, if the generation of one column of the matrix takes about the same
time as doing one matrix—vector product, ICF will not be a good choice. On
the other hand, if the calculation of the whole matrix takes about the same time
as doing one matrix—vector multiplication, the advantage of ICF may show up
more. In conclusion, many unsolved issues still need investigations.
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