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1. Introduction. Cohn [2, p. 253] characterizes precisely the algebraic closure 
operators which give rise to transitive dependence relations as those enjoying the 
exchange property. His Lemma 2.2 shows that for such closure operators, 
maximally independent sets and minimal generating sets are the same concepts. 
(Using Zorn's Lemma, Theorem 2.4 states the consequence that bases exist and 
are all of the same cardinality.) 

Cohn leaves unanswered the question for arbitrary closure operators as to 
the relation between minimal generating sets and maximally independent sets. 
This note answers this question by showing that a minimal generating set is 
maximally independent but provides a counterexample to show that maximally 
independent sets are not necessarily minimal generating sets. This result justifies 
the use of the exchange property to enforce the equivalence of the two concepts. 

The motivation for considering this question arose by noticing a hole in a 
theorem by Wymore [5] concerning generating sets of inputs for dynamic 
systems. This problem is discussed in the last section of this note. 

Another concept which appears often in algebraic theories (cf. especially the 
Krohn and Rhodes theory in [1, p. 41]) is that of irreducible elements. The 
connection between irreducible elements and generators seems not to have 
been made explicit. Here we also establish such a connection. 

2. Generating Sets and Dependence Relations. I shall briefly review the key 
concepts given in Cohn [2]. 

A closure operator on a set S is a mapping J: 2 s -+ 2 s (2 s being the set of all 
subsets of S) which satisfies 

(J.1) X ~_ Y ~ J (X)  =_ J ( r )  
(J.2) X ~_ J (X)  
(J.3) J . J ( X )  = J (X)  

We shall say that X generates Y whenever Y ~_ J(X).  We write X generates 
y (for y ~ S) to mean X generates {y}. 
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J is said to be algebraic if whenever y is generated by X it is in fact generated 
by a finite subset of X. 

Algebraic closure operators arise precisely by closing a set under the opera- 
tions of an algebra ([2], Theorem 5.2, p. 81). A familiar example of such an 
algebra is a group with its binary operation. 

A subset G of S is called a generating set if G generates S. Such a set is 
minimal if in addition whenever H ~_ G and H generates S we have H = G. 

Let a family ~ of subsets of S be such that X is in ~ if, and only if, some 
finite nonempty subset of Xis in ~ .  ~ is a family of dependent sets; its complement 
in 2 s contains exactly the independent sets. The linearly dependent subsets of a 
vector space are a familiar example. 

An element a ~ S depends on X if a E X or if there is an independent subset 
X '  of X such that X '  w {a} (written X '  w a) is dependent. <X)  = {ala depends 
on X} is called the span of X. X spans S if ( X )  = S; a basis is an independent 
spanning set. The dependence relation ~ is transitive if ((X)) = ( X ) .  

Given an algebraic closure operator J: 2s--~ 2 s we can associate with it a 
dependence relation as follows: 

A subset X of S is dependent if there is an x E X such that X -  {x} (written 
X - x )  generates x. X s 2 s is independent if it is not dependent. Thus a set is 
independent if none of its members can be generated by the others. Obviously 
is independent. An independent set is maximally independent if it is not properly 
contained in any independent set. 

J is said to possess the exchange property if whenever y is not generated by 
X but is generated by X u z we also have that z is generated by X w y (X ~ S, 
y E S ,  zGS).  

Cohn's Proposition 2.1 states that for an operator J enjoying the exchange 
property, the dependence relation associated with J is transitive; moreover, 
from the proof  we see that ( X )  = J(X), hence that X is a generating set, just 
in case X is a spanning set, just in case X is maximally independent (Lemma 2.2). 
As mentioned above, the existence of cardinality invariant bases necessarily 
follows for such operators. 

Let us then consider what can be said if J does not enjoy the exchange 
property. 

First we note that generates can be viewed equivalently as a binary relation 
on 2 s which satisfies 

(G.1) Transitivity 

(G.2) For any family of sets ~ ,  (Vy ~ ~ )  (X generates Y) ¢*. X generates 
U{YIY  } 

(G.3) X ~_ Y ~ X generates Y. 

As a consequence of (G.3) we also have that generates is reflexive. 
The equivalence is stated as 

T H E O R E M  1. Given a closure operator J, the associated generates relation 
(X generates Y¢~, Y ~_ J (X) )  satisfies the axioms (G.1)-(G.3). Conversely, to 
every relation on 2 s satisfying (G.1)-(G.3) there corresponds a closure operator, 
and moreover this correspondence is bijeetive. 
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Proof. (=~) That the axioms are satisfied is easily shown by noting that 
(G.1) follows from (J.1) aod (J.3), (G.2) is a consequence of the definition and 
(G.3) follows from (J.2). 

(¢:) Let R be a relation on 2 s satisfying (G.1)-(G.3). Define JR: 2s-->2s 
by JR(X) = U {ZIXRZ}. Then JR is a closure operator as follows: 

(a) Let X _  Y. By (G,3), YRX. Thus by transitivity X R Z  =~ YRZ and 
{ZIXRZ } c_ {Z[YRZ},  so JR(X) c_ JR(Y). 

(b) Since R is reflexive (G.3), X e  {Z]XRZ}, thus X c JR(X). 
(c) From (b) J R ( X ) c  JR(JR(X)). From (G.2), XRJR(X) and JR(X) 

R JR(JR(X)), so by transitivity (G.1) XRJR(JR(X)) and thus JR(X) ~- 
JR(JR(X)). Thus JR(X) = JR'JR(X). 

Now, let R and R' satisfy (G.1)-(G.3) and suppose JR = JR,. Then XRY=~ 
y c_ JR(X) =~ y c JR,(X). By (G.3), JR,(X)R'Y. But XR'JR,(X), so by transi- 
tivity XR'Y.  By symmetry we have that XRY¢> X R ' Y  so R = R' and the 
mapping R --~ JR is one-to-one. This mapping is also onto since, given a closure 
operator J. it is easily seen that J~e.e,,.,e~ = J" 

We use this reformulation to prove 

THEOREM 2. Let G be a generating set. G is a minimal generating set if 
and only i f  G is maximally independent. 

Proof. (0 )  Suppose G is not independent. Then there is an x e G such that 
G - x  generates x. By reflexivity, G - x  generates G - x  and by (G.2), G - x  
generates G. Since G generates S we have by transitivity that G - x  generates S 
so that G is not a minimal generating set. Thus G is independent. 

Now if G were not maximally independent there would be an x e G such 
that G u x is independent. But this contradicts the fact that G generates x. 

(~ )  Let G be a non-minimal generating set. There is an H c G such that 
H generates S and an x e G -  H such that H generates x. By axiom (G.3) and 
transitivity, G - x  generates x, so that G is not independent. 

The central point of this note is that a maximally independent set is not 
necessarily a generating set. To see this let R be a reflexive transitive relation 
on S. Let /~ be the extension of R to 2 s, i.e., 

XRY.¢¢. (Vy e Y) (3x e X) (xRy). 

One verifies readily that/~ is a generates relation on 2 s. In this class of models, 
X is dependent if there are distinct x, y e X such that xRy. 

In particular let S = {1, 2, 3} with R = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3)} 
as in the graph in Figure I. 

Now {2, 3} is independent; also {2, 3} is maximally independent since 
{ I, 2, 3 } is dependent ({ 1 } generates ( 2, 3 }). But { 2, 3 } is not a generating set 
since 1 is not generated by ( 2, 3 }. Thus it is not true that a maximally independent 
set is necessarily a generating set. (Note however that in agreement with Theorem 
1, { 1 } is both a minimal generating set and a maximally independent set.) 

We see also that generates does not satisfy the exchange property since 3 is 
not generated by 2 and ( 1, 2 } generates 3 but 1 is not generated by { 2, 3 }. 
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Figure 1. 

From Cohn's Lemma 2.2 we know that if J satisfies the exchange property, 
then G is a generating set if, and only if, G is maximally independent. The above 
justifies the use of  the exchange property as an hypothesis. For completeness 
sake we provide a direct proof  of this result. 

T H E O R E M  3. A maximally independent set & a minimal generating set i f  
generates satisfies the exchange property. 

Proqf. Suppose that G is maximally independent but not a generating set. 
Then there is an x ¢ G which is not generated by G. Now G u x is dependent 
(since G is maximally independent) so there is a z ~ G u x such that G u x - z  
generates z. I f  z = x then G u x - x  generates x, a contradiction. So z ~ G. 
Since G is independent, z is not generated by G - z .  Since G - z  u x generates z 
we have by the exchange property G - z  u z generates x, again a contradiction. 

Thus, G is maximally independent implies G is a generating set and by 
Theorem 2, G is a minimal generating set. 

We remark that in the case of  reflexive and symmetric relations R the 
exchange property is always satisfied for the relational extension/~, this being 
the basis for matroid theory. (Symmetry is also necessary as can be seen by 
setting X = ~ in the statement of the exchange property.) 

3. Irreducibles. An element x e S is irreducible with respect to a closure 
operator J if' whenever x is generated by X then necessarily x e X. We see 
immediately that the set of irreducibles, /, is included in every (minimal) 
generating set. Thus if I is a generating set it is also the unique minimal generating 
set. However, I need not be a generating set as the following example shows. 

Let S = { 1, 2}, R = S 2 and let generates be interpreted as _~ as before. 



180 BERNARD P. ZEIGLER 

1 2 

Figure 2. 

Graphically, it is clear f rom Figure 2 that there are no irreducibles (I  = ~), 
yet both { 1 } and {2} are minimal generating sets. 

However, we can show that the only generating set which is included in every 
generating set is the irreducibles L 

T H E O R E M  4. I f  a generating set G is included in every generating set then 
G = I, the irreducible set. 

Proof. Let G be a generating set which is included in every generating set. 
For  x ~ G suppose that X generates x. We will show that x e X. it then follows 
that G _c I, hence G = I. Using axioms (J.1), (J.2) and (J.3) we have J ( G - x  u X)  

J ( G - x )  u J ( X )  D_ G - x t J x  D_ G. Thus J ( G - x u  X) = J ' J ( G - x u  X) 
J(G) D S. Hence G - x  w X is a generating set. Since G is included in it, we 

have x e G - x  u X, hence that x e X, as required. 

4. Application to the Wymore Case. Let S be the set of  functions from the 
reals to the reals. To each real number  there is associated a unary operator 
operator  tr called translation by r such that t , ( f )  (x) = f (r  +x). There is also a 
binary segmentation operator  ] such that 

I f ( x )  f o r x  < 0 
f ig(x)  

[g(x) f o r x > _  0. 

It is well known that to an algebra such as this, there corresponds a canonical 
closure operator J :  2 s ~ 2 s, where J(X)  is the least set o f  functions in S contain- 
ing X and closed under the translation operators t, and segmentation. 1 

Wymore ' s  Theorem 4.8 [5] asserts the existence of  minimal generating sets 
(called input bases) for  the J-closed subsets (called admissible sets). The p roof  
actually demonstrates the existence o f  maximally independent sets. However, 
the identification of  the maximally independent sets with minimal generating 
sets is unjustified since as we now demonstrate, the above cIosure operator does 
not  possess the exchange property. 

To see this, let x and z be two distinct constant functions on the reals, and 
let y = x[z. Now while y cannot  be generated from x alone and y is generated 
from both x and z, it is not  the case that z can be generated from x and y. 

Proof. Say that a function f has a c-tail if there is a t such that f (x )  = c 
for x < t. Note  that both x and x[z have a c-tail where c is the constant value of  

1 The details for this special case are carried out by Cornacchio [3], where a closure operator 
is called a Hammer closure operator (Hammer [4]). 
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x. It is easy to show by induction that any function generated by (in the J- 
closure of) x and xlz must have a c-tail and hence must be distinct from z 
which by assumption has a c'-tail for c' ~ c. 

Of course this does not preclude the existence of minimal generating sets 
for the J-closed sets. Having tried a number of approaches, I have failed to 
establish Wymore's Theorem or find a counterexample. However, Professor 
David Muller has found a counterexample [6]. 
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