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ABSTRACT 

The definition of "model of a system" in terms of a homomorphism on the states of 
the system is evaluated and an alternative definition in terms of sequence generators is 
proposed. Sequence generators are finite graphs whose points represent complete states 
of a system. Sequence generators include finite automata and other information 
processing systems as special cases. It is shown how to define models in terms of a 
projection operator which applies to any sequence generator which has an output 
projection and yields a new sequence generator. A model produced by the projection 
operator is embedded in the system it models. The notion of embedding is discussed 
informally and some questions raised about the relations of deterministic, indeter- 
ministic, and probabilistic models and systems. 

1. Introduction. Zeigler and Weinberg have suggested the following formal- 
ization of the notion of a model for deterministic systems such as biological 
systems ([13], pp. 43-50). Let A = (S, ~-) be a deterministic finite automaton, 
where S is the set of  internal states and .r the transition function. A model of  A 
is another deterministic finite automaton A'  = (S ' ,  -r') satisfying the condition: 
there is a map h: S ---> S '  f rom S onto S '  such that, for every s ~ S, h['r(s)] = 
~"[h(s)]. When h satisfies this condition it is said to be a homomorphism, and 
the automaton A'  = (S', -r') is said to be a homomorphic image of A = (S, ~). 

I f  A'  is a homomorphic image of A, each state of  A is represented by a state 
of  A'  in such a way that the law of A (i.e., the transition function z) is modeled 
by the law of A'  (the transition function ~-'). On this ground, Zeigler and Wein- 
berg argue that the notion of "homomorphic  image" is a good formalization of 
the notion of "model  of" .  I think this is a useful formalization, but that further 
justification of it, and an elaboration of its limitations, are both needed. In my 
opinion, there are many kinds of  modeling relations and this is only a partial 
formalization of one of them. This point will be argued later. First, we will 
discuss some limitations of  formal definitions of models in general. 

The notion "model  o f"  is often treated as a dyadic relation, holding between 
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a model and the system modeled. But it is really a triadic relation, involving also 
some respect, purpose, behavior, function, criterion of importance, or point of 
view. For example, a good model of heart fibrillation need not explain other 
causes of heart failure, and certainly is not intended to model all the properties 
and functions of the heart. Likewise, while all properties of gases needed to 
derive the gas law P V  = T K  are represented in the kinetic ("billiard ball") 
model of gases, many properties of gases (in particular, microscopic properties) 
are not represented in this model. 

Thus a model ~¢ of a system ~ is not a model simpliciter, but a model of 
in some specified respect ~ .  In no case is the model ~ intended to duplicate 
or model the system 5~' in every respect, but only in some limited respect ~ .  
A system is a model of itself only in a Pickwickian sense. We will show in Section 
4 that a model ~ is qualitatively identical to an embedded subsystem of ~ ,  
the relation ~ defining the embedding. 

Given a system ~9 °, a modeling relation .~, and a model ~g, one can ask 
whether ~¢ is a good model of ~9 a in respect #~. For actual systems and models, 
this is not a formal matter but a matter of judgment. This question of "fit" 
can be viewed as a question of size. Model ~ is "too small" if it does not 
contain all the features of system ~9' needed to account for the specified relation 
#~. The model is "too large" if it has unnecessary features which complicate it. 
Whether a model ~ is the "right size" for a system ,9' and the relation ~ is 
an informal question. 

Let us consider next the formal limitations of the specific notion of a homo- 
morphic model. For many applications the notion of a homomorphism is too 
strong in that it imposes a real-time requirement on the model. Each time step 
of the system must be represented by a single time-step of the homomorphic " 
model. But often an actual model has a time-scale different from that of the 
system it models. For example, when one computer simulates another, the 
simulating computer generally takes several time-steps to compute one time- 
step of the simulated computer. 

In its real-time requirement, the notion of a homomorphic model is too 
narrow. In another respect it is too weak. For it is based on a definition of auto- 
maton which treats each temporal state as a lump, and hence ignores the spatial 
or network structure of the actual system. These lumps are too big. No bio- 
logical phenomenon can be understood at this global level, so biological 
modeling must be done at a more local level. To represent the local interactions 
of a system we need a richer kind of automation concept, such as a logical net, 
a cellular automaton, or a block diagram. 

Zeigler and Weinberg find a local structure for their biological model by 
aggregating the coordinates of their state space. The coordinates are concentra- 
tions of various chemicals (amino acids, protein, glucose, etc.), different enzymes, 
various messenger RNA's, the number of cells, etc. Because the chemicals, 
enzymes, and messenger RNA's act as pools, the transition function of the 
whole system reduces to a product of partially independent local transition 
functions governing the pools. The system is then represented by a block dia- 
gram in which each pool is a block, and each block involves transitions to only 
a few other blocks ([13], pp. 51-54, and [12]). 
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This concludes our discussion of the limitations of formal definitions of 
models in general and of the notion of a homomorphic model in particular. A 
general maxim for handling models is appropriate here. This maxim is: Be 
aware of the limitations of your model, so you won't draw the wrong conclusions 
or make the wrong predictions. 

In the present paper I will analyze the notion of a homomorphic model 
further, and suggest a formal notion of  model which does not require that the 
model of a deterministic system be deterministic. For this, the formal universe 
of discourse must be enlarged to include non-deterministic finite automata. I will 
make this extension by means of the notion of  sequence generator developed by 
Jesse Wright and me in [6] and [7]. 

2. Sequence Generators and Homomorphic Models. Sequence generators 
are finite, complete-state graphs which include finite automata and other in- 
formation processing systems as special cases. Input, output, and internals states 
are derived from the complete states of  a sequence generator by means of 
projections. 

The basic definitions follow. A sequence generator F = (S, G, R, P~,. . ., pn) 
consists of  a set S (whose elements are called complete states), a set G (whose 
elements are called generators), a binary relation R (called the direct transition 
relation), and functions P~ , - . . ,  Pn (called projections), for some n = 0, 1, 2, 3, 
• . . ,  satisfying the conditions: (1) S is finite, (2) G is a subset of S, (3) R is 
defined on S, and each pi (for i = 1, 2,. •. ,  n) is also defined on S. The values of 
the function pi, which may be entities of any kind, are called Pi-states. 

A sequence generator may be represented by a finite directed graph whose 
vertices denote complete states and whose arrows indicate when the direct 
transition relation holds between two states. In our diagrams, we will use 
squares at those vertices which represent generator states and circles at vertices 
representing complete states which are not also generators; the names of 
complete states and of P-states are written in the circles and squares. 

We are interested here in input-free finite automata, indeterministic as well as 
deterministic. If  such an automaton has no outputs, it is represented by a 
sequence generator F = (S, G, R). If  the automaton has outputs it is represented 
by a sequence generator P = (S, G, R, O), where O is the output projection. 
The set of  generators G is non-null. Also, there are no terminal states, i.e., for 
each s ~ S, there is an s' E S such that R(s, s'). This sequence generator repre- 
sentation of  a finite automation is more general than the usual one in that it 
allows an arbitrary set of starting states (generators). 

The transition relation R covers both the deterministic and the indeterministic 
case. A sequence generator F = (S, G, R) is deterministic if and only if, for each 
complete state sx e S, there is a unique complete state s2 ~ S such that R(sl, s2), 
i.e., each state has a unique successor; otherwise it is indeterministic. (This 
definition differs from that of [6], p. 153, in that the present definition applies 
only to the input-free case and does not require that there be exactly one 
generator.) If  F is deterministic, there is a function ~- such that R(sl, s2) = 
[s 2 = "r(s~)]~ Hence in the deterministic case the transition relation R reduces 
to the transition function -r. Figure 1 shows a deterministic sequence generator 



298 ARTmm W. BURKS 

and Figure 2 an indeterministic one. Note that we use upper case letters for the 
sets 5: and O and lower case letters for the elements of these sets. 

We will use [~] (0, k), where k is a non-negative integer or o, to denote the 
sequence (~(0), ~(1),'", ~(k)) when k is finite, and the sequence (~(0), ~(1), 
~(2),. • • ) when k = ,,. If P is a projection, P([,,] (0, k))] abbreviates the sequence 
(P(~(0)), P(~(1)),.. . ,  P(~(k))) when k is finite and the sequence (P(~(0)), 
P(~(1)), P(~(2)),.-. ) when k = o,. 

We are interested in two kinds of sequences "generated" by sequence 
generators: sequences of complete states and sequences of output states. These 
are defined as follows. A history of I ~ (or "F-sequence") is any sequence [s] (0, k) 
of complete states of F obtained by starting with a generator and following the 
direct transition relation; k may be a non-negative integer or o,. o~f'(F) is the 
set of histories of F. The behavior ~(F)  of a sequence generator F = (S, G, R, O) 
is the set { O([s] (0, k))}, where [s] (0, k) is a F-sequence (finite or infinite). 

We can now define "homomorphic model" in sequence generator terms. We 
start with a tentative definition. Let F = (S, G, R) and 1" = (~, ~, _R) be 
sequence generators, with F deterministic. Since F is deterministic, the transition 
relation R is in fact a function, and the ordinary transition function ~, is defined 
by the condition R(sl, s2) - [s2 = "r(sl)]. The tentative definition is: I ~ is 
a "homomorphic model" of F if and only if 

(1) I ~ is deterministic 
(2) There is map O: S ~ S from S onto ~ such that 

(a) O maps G onto 6, and 
(b) O[~-(s)] = *[O(s)], where/~(~1, $2) - [~2 = "~(~l)]- 

Condition (2a) has appeared because all sequence generator histories start from 
generators. 

Condition 2 is objectionable because it presupposes condition (1). We will 
replace it by a condition which applies to indeterministic as well as deterministic 
sequence generators. This new condition is based on the following modeling 
relation between sets of sequences. 

Definition 2.1. Let S and ~ be sets of states and let { [s] (0, k) } and { [~] (0, k) } 
be sets of sequences of states drawn from S and ~, respectively. { [~] (0, k] } 
models { Is] (0, k) } if and only if there is a projection O: S -+ ~ from S onto 
such that 

(1) For each [s] (0, k) there is a unique [k] (0, k) such that [~] (0, k) = 
O([s] (0, k)). 

(2) For each [g] (0, k) there is at least one Is] (0, k) such that [g] (0, k) = 
O([s] (0,/,)). 

Note that ~(S,  G, R, 19) always models .~f~(S, G, R). 
The groundwork is now laid for our final definition of "homomorphic 

model". 

Definition 2.2. Let F = (S, G, R) and I ~ = (2~, d,/~) be sequence generators, 
with F deterministic. 1 ~ is a homomorphic model of I ~ if and only if (1) 1 ~" is 
deterministic, and (2) dct~(l ") models ~ ( F ) .  
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This definition makes explicit the warrant for calling a homomorphic model 
a "model". Condition (2) requires that the histories of the model I ~ model the 
histories of the system P via some modeling projection 0 from S onto S. 
Each history of the system F is modeled, step-by-step, by a history of ~, and 
each history of I ~ models some history of P. 

We said in the introduction that modeling is essentially triadic: one system 
J//  models another system d~ in respect ~ .  The notion of a homomorphie 
model fits this pattern: I ~ = (S, ~, R) models I" = (S, G, R) when there is a 
map 0 from S to S which is a homomorphism. Here sequence generator F is 
the model J//, sequence generator F is the system 5", and map O is the modeling 
relation 2 .  Note that the modeling relation does not appear explicitly in the 
definiendum "1 ~ is a homorphic model of F" because it is existentially quantified 
in the definiens. 

Now the map 0 is a behavioral projection applied to the sequence generator 
(S, G, R). It can be added directly to (S, G, R) to give an enriched sequence 
generator (S, G, R, 0). We will show in the next section how to derive the model 
(S, t~, R) from (S, G, R, O) by a projection operator "Proj". This will give a new 
way of looking at models of deterministic systems. These models will turn out 
to be embedded subsystems of the given systems (Section 4). 

3. The Projection Operator and Models of Deterministic Systems. We next 
define a projection operator "Proj (P) ' ,  which applies to any sequence generator 
I ~ = (S, G, R, O) that has an output projection O. Proj (F) yields a new 
sequence generator I ~ = ($, d, R) whose history set ~ ( F )  includes the behavior 
set ~(F) .  

Informally, "Proj (F)" is defined as follows. The projection t9 partitions the 
set of complete states S into equivalence classes. These are called "19-states"; 
that is, if ~ ~ ~ & s e ~ & 19(s) = 0, then "~" is named "0". These 19-states are 
the complete states $ of Proj (P). d is the set of 19-states which occur as pro- 
jections of generators of F. The projection 19 then induces a transition relation 
/~ on $ in a natural way: R(01, 02) holds when 02 directly succeeds 01 in an 
element of g~(F). 

The formal definition of Proj (P) is this. 

Definition 3.1. Let P = (S, G, R, O) be a sequence generator and let x range 
over subsets of S. Proj (F) = I ~ = ($, G,/~) is the sequence generator satisfying 
the following three conditions; 

(I) $ consists of those non-null subsets of S which agree on their projection 
19: 

x ~ :  : -  : : ( x ¢  ~)&(s l ,  s e ) [ { s l ~ S & s 2 ~ S }  
{sl ~ x , i s ~  ~x} --- 19(sl) = 19(s2))1. 

(2) ~ consists of those elements of $ which contain at least one element of G: 

x e(J =- (Es)(s e x  & x  e S  &sEG).  

(3) ~(01, 02) holds when 02 directly succeeds 01 in an element of ~(I ' ) :  

k(~l, ~2) - (Esl, sz) [sl ~ ~1 & s2 e ~2 & R(sl, s~)]. 

See Figures 1 and 2 for an example of Proj (I'). 
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S, = {So, S,,S2} 
a~ = {So} 
R, = { (So, s,), (s,, s2), 

(s~, So > } 
O,(So)  = O,(s,) = eo, 

O,(s2) = O, 

Sequence generator r l  = (s,, G~, R~, Or). The history set .,x~(r,) consists of the history 
(So, s,, s2, So, s,, s2," • ) and all of its initial segments. The behavior ~(F) consists of the 
output sequence (0o, 00, 0~, 00, 00, 0,,. • • ) and all its initial segments. 

Sequence generator r ,  derived from a closed deterministic finite automaton 

Figure 1 

S2 = { 0o, 01} 
G~ = {Oo} 
R2 = {(0o, 0o), (0o, 0x), (01, 0o)} 

Sequence generator F2 = ($2, G2, R2) = Proj (rl). The set of histories ~ ( r 2 )  contains 
(00, 00, 0t, 00, 00, 01,"" ) and all its initial segments, so J :  (r2) includes ~(r t ) .  ~ ( r 2 )  also 
contains (00, 00, 00,... ), so ~(P2)  is larger than ~(Fx). 

Minimal sequence generator P2 whose histories ~ ( r 2 )  include ~(F~). 

Figure 2 

An analysis o f  this definition shows that  the behavior  of  the given sequence 
generator  F is included in the history set o f  the derived sequence generator  

Proj (F). Hence we have 

P R O P O S I T I O N  3.1. ~ ( r )  c ~ ( p r o j  ( r ) ) .  
w e  show next that  Proj ( r )  is the minimal  sequence generator  for  which this 

inclusion holds. Given a sequence generator  r - - ( S ,  G, R, 0) ,  there are 
infinitely many  sequence generators r * =  (s*,  (~*, R*) whose history set 
~ ( r * )  includes the behavior  set ~ ( r ) .  We will say that  one of  these 1 ~ = 
(S, G, R) is minimal  if  every S*, G*, and R* is at  least as large as S, ~,  and 
respectively. 

P R O P O S I T I O N  3.2. Let  F = (S, G, R, O). Proj (I ' )  = (S, (~, R) is the 
minimal  sequence generator  F* = (S*, G*, R*) such that  ~ ( U )  c ~ ( P * ) .  
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Proof. The inclusion ~(F)  c ~ ( p * )  requires that: 

(1') S* contain every 19-state of F; 
(2') G* contain every O-state of P which occurs on an element of G; 
(3') R*(01, 02) contain every pair (01, 02) such that 02 directly succeeds 02 

in ~(I ' ) .  

Hence S*, G*, and R* must be at least as large as S, t~, and/~ respectively. 
The projection operator was so defined that ~(P)  c 3¢(Proj (I')). We next 

prove two propositions concerning the reverse inclusion. 

PROPOSITION 3.3./f(Proj (P) is deterministic, then ~ (Proj (I')) c ~(V). 
Proof. Let P = (S, G, R, t9) and Proj (I') = I ~ = ($, t~,/~). It is given that 

Proj (I') is deterministic. We need to show that every history of Proj (F) is 
included in ~(F).  Consider any such history (0(0), 0(2), 0(3),... ) and two 
successive states 01, 02 of it. Since they are successive,/~(01, 02). By condition (3) 
of the definition of the projection operator "Proj", there are two complete 
states sl, s2 ~ S such that R(sx, s2), 19(sx) = 01, and 19(s2) = 02. Moreover, 
because Proj (P) is deterministic, for any s~, s~ e S such that R(s' 1, s~) and 
19(s'1) = 01, it must be the case that 19(s~) = 02. By a simple induction, the 
given history of Proj (P) can be retraced in P, and will be included in ~(P).  
This completes the proof. (See Figure 3 for an example.) 

? - \  ) 

:) 
F3 

G 00 I_ 

I 
Proj (ra) 

Sequence generator r a with a projection 0 and its projection sequence generator Proj (ra). 
• ~(Proj (ra)) = ,~(ra) = {the sequence (0o, 0~, 0o, 0~,... ) and all its initial segments}. 

Sequence generator 17 a such that ~(Proj (ra)) = .~(ra) 

Figure 3 

PROPOSITION 3.4. There is a sequence generator P such that J/t~( Proj (P)) 
= ~(F) ,  though Proj (F) is indeterministic. (Sequence generator F 4 of  Figure 4 

is an example.) 
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Proj (r,) 

((0o, 01, 01," '" ) ) 
,~'(r4) = gg(Proj (I',)) = ~(0o, 02, 02,'." ) 

[.and all heads of these 
Sequence generator F4 such that gt°(Proj (F4)) = ~'(F4), but Proj (P4) is indeterministic 

Figure 4 

Our earlier approach to finding models of a given deterministic system 
P = (S, G, R) was this (Section 2): we considered other deterministic systems 
I ~ = (S, ~,/~) and asked of each whether there is a modeling homomorphism 
® from S to S. In our new approach we add O to F to obtain an enriched 
sequence generator F o = (S, G, R, O), form the sequence generator Proj (Fo), 
and ask whether Proj (Fo) is a model of the original system F = (S, G, R). The 
next theorem gives a condition for this. 

PROPOSITION 3.5. Let F = (S, G, R) be deterministic and consider 
F o = (S, G, R, ®). Proj (Fo) is a homomorphic model of F if and only if Proj (Fo) 
is deterministic. 

Proof. Since the definition of "homomorphic model" requires that Proj 
(Fo) be deterministic, we need prove only that if Proj (Fo) is deterministic, then 
Proj (Fo) is a homomorphic model of F. By propositions 3.1 and 3.2, if Proj (Fo) 
is deterministic, then ~ ( P r o j  (Fo)) = S~(Fo). By virtue of the definition of 
"behavior", ~ (Po)  models ~ ( P ) ,  with O: S ---> {0} from S of F onto the set of 
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O-states of Proj (F) being the modeling projection. Since Jff(Proj (Fo)) = ~(Fo)  
and ~(Fo)  models J~(F), ~,°(Proj (Fe)) models ~ ( F ) .  This shows that Proj (Fo) 
is a homomorphic model of F. 

We argued in Section 2 that the warrant for calling one sequence generator 
1 ~" a model of another sequence generator F is that the history set ~f~(l ~') models 
the history set ~ ( F ) .  We now take this warrant as the defining condition of a 
weaker notion "model of".  

Definition 3.2. Let r = (S, G, R) and 1 ~ = (S, d,/~) be sequence generators. 
f" is a model of r if and only if ~f~(l ~) models ~ff(r). 

In this sense, a system I ~ models a system F if the histories of I ~ model the 
histories of r via some modeling function 0 from S onto S. Each history of the 
system is modeled, step-by-step, by a history of 1 ~, and each history of 1 ~ models 
some history of F. 

This definition of "model" applies to indeterministic as well as deterministic 
sequence generators, whereas "homomorphic model" applies only to deter- 
ministic sequence generators. The homomorphic models of a deterministic 
sequence generator must also be deterministic, but a model of a deterministic 
sequence generator might be either deterministic, or indeterministic as in 
Figure 4. Moreover, a model of an indeterministic sequence generator may be 
either deterministic or indeterministic. For example, it is easy to construct a 
deterministic model Proj (S, G, R, O) of an indeterministic sequence generator 
(S, G,R). 

It is natural to ask: Which of these definitions of models (2.2 or 3.2) is 
correct? Can an indeterministic system really model a deterministic system, or a 
deterministic system an indeterministic system? 

In my opinion, there is no single correct notion of "model", but many. An 
indeterministic system can model a deterministic system, and vice versa, in a 
good and basic sense of "model", the sense just defined. For in this sense of 
model, each history of the model tells us something about the system modeled 
on a step-by-step basis. We will give further arguments in the next section for 
our thesis that indeterministic systems can model deterministic systems and 
vice versa. We argue there that probabilistic systems can model deterministic 
systems and vice versa. 

In some applications even our weaker definition of model is too strong. We 
require that each history of the model represent some history of the original 
system. But if one could recognize those histories of the model which do not 
represent histories of the original system one could ignore them. We also require 
that one history model another history in a step-by-step fashion. This require- 
ment is sometimes too strong (see p. 305 below). 

We will establish one further condition for Proj (r) being deterministic. This 
concerns the determinism of the behavior ~ ( r ) .  

Definitions. Let { [s] (0, o~) } be a set of infinite sequences of states. This set is 
deterministic if and only if each state s occurring in a sequence of the set has a 
unique successor. In other words, the set of sequences { Is] (0, o 0 } is deterministic 
if and only if, for each state sl, if s I is anywhere followed by s 2 it is always 
followed by s2. Let r = (s, G, R, O) and note that the behavior set ~ ( r )  
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includes both finite and infinite sequences. Let ~ ( I ' )  be the set of infinite 
sequences of ~(I ' ) .  We can now define the notion of a behavior set being 
deterministic: the behavior ~ (F)  is deterministic if and only if :~°'(1-') is deter- 
ministic. 

PROPOSITION 3.6. Let I' = (S, G, R, 0). Proj (I') is deterministic if  and 
only i f  ~(F)  is deterministic. 

Proof. Let Proj (F) = 1" = (S, d,/~). The two directions of the theorem will 
be proved separately. First, assume Proj (F) to be deterministic. The history set 
~ ( 1  ~') of a deterministic sequence generator r' = (~, (~, _~) is deterministic, so 
~ ( P r o j  (F)) is deterministic. By Propositions 3.1 and 3.3, 3(f(Proj (F)) = M(F). 
Hence ~ ' (r)  is deterministic. Next, assume that :~(F) is deterministic. By the 
definition of "Proj",/~(01, 02) holds when 02 directly succeeds 01 in an element 
of ~(I ' ) .  Since :~(I') is deterministic, Proj (F) is. 

Combining Propositions 3.5 and 3.6, we get the following result concerning 
homomorphic models. Suppose that we start with a deterministic system 
F = (S, G, R), add a projection O to it to obtain I" o = (S, G, R, 19), and form 
Proj (ro). Then Proj (I'o) will be a homomorphic model of 1-' if and only if 
g( I 'o)  is deterministic. In other words, the projection 19 will produce a homo- 
morphic model if and only if it produces a deterministic behavior. 

4. Models and Embedded Subsystems. When the projection operator "Proj" 
produces a model, that model is embedded in the system it models. We will 
study this aspect of modeling in the present section. 

Start with a sequence generator I" = (S, G, R), add an output projection to 
obtain r o = (S, G, R, 0), and then form Proj (1"o) = I ~ = (S, d, k). The 
members of both ~ and (~ are subsets of S, so the states of the system f" are 
sets of states of the system r', derived by means of the projection 0. The law or 
transition relation k of the system I ~ is derived from the law or transition 
relation of the system r by means of the same projection (9. 

Suppose now that I ~ is a model of F, i.e., that ~ ( I  ~) models ~f~(F). Then the 
derived law is such that for any history [i] (0, k) of the model I ~ there is a 
history Is] (0, k) of the system F such that [i] (0, k) = O([s] (0, k)). Hence each 
history of the model is a set of histories of the system it models. This shows that 
the model I ~ is embedded in the given system r in this sense: the states of the 
model are sets of states of the system, and the histories of the model are sets of 
histories of the system. 

More typically a model is separate from the system it models. But often the 
model is isomorphic to an embedded subsystem of the modeled system. We will 
give two examples from natural science which illustrate this. 

The kinetic theory of gases postulates a mechanical, billiard-ball model of a 
gas. Consider a gas in a container at equilibrium conditions. The kinetic theory 
treats this as two distinct systems, an underlying system and an embedded 
subsystem of it. The underlying system is composed of a tremendously large 
number of rapidly moving, small, hard particles, which bounce elastically against 
each other and the walls of the container. The temporal states of this system are 
the so-called "microscopic states". Each contains the coordinates, velocity, and 
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acceleration of every particle. The underlying system is governed by the laws of 
moving bodies and of elastic collisions. 

The embedded subsystem consists of the gas as defined by its macroscopic 
states, each with its pressure, volume, temperature, mass, energy, and entropy. 
This embedded subsystem is governed by the gas law: pressure times volume 
equals temperature times a constant. The kinetic theory of gases defines the 
pressure of the subsystem in terms of the forces exerted by the particles on the 
walls of  the container. The temperature of the gas is defined in terms of the 
average velocity of the particles. The kinetic theory of gases derives the gas law 
from the mechanical laws of the underlyingsystem and the assumption that the 
initial states of the particles are randomly distributed. 

Galileo's law s = gt describes an idealized system (or "model") of a body 
falling in a vacuum. This model can be construed as an embedded subsystem 
of an actual underlying system. The underlying system consists of one or more 
objects of various sizes, shapes, weights, colors, etc., moving in the earth's 
gravitational field through a fluid or gas. Galileo's law of falling bodies covers 
the behavior of a simple system embedded in this more general system. We can 
derive the Galilean system from the general system by allowing only those 
initial states in which the buoyancy and friction of the fluid or gas have a negli- 
gible effect, and through ignoring differences in the size, shape, color, etc., of  
objects which have the same mass. Galileo's law of falling bodies follows from 
Newton's law of mechanics under these special conditions. 

In the examples considered thus far the states of the embedded subsystem 
are sets of states of the underlying system. The next example shows that some- 
times the states of the subsystem are sets of sequences of state of the system. 

Consider a universal Turing machine ql which simulates or models another 
Turing machine de.  q / i s  given a description ~ ( ~ D  of ~ and a description of 
the initial state of d-,(. ~'  simulates ~ by calculating its states for t = 1, 2, 3,. • .. 
Viewed over all time, q/contains the complete history of J [ /which results from 
the given initial state. Moreover, q/ can calculate the history of ~ for any 
possible initial state of J [ .  Hence all' is an embedded subsystem of ~'. Since 
~' uses several time steps to simulate one time step of ~t', finite sequences of 
states of q/ represent  single states of J¢'. 

The preceding examples illustrate the essential aspects of embedding, so let 
us now abstract these. The histories or possible universes of an embedded sub- 
system are derived from those of the system in which it is embedded by applying 
either or both of the following operations. First a proper subset of the initial 
states of the system are chosen as the initial states of the subsystem. This 
operation restricts the allowed initial states of the system to obtain the initial 
states of the subsystem. The second operation is: sets of system states or sets of 
sequences of system states are designated as the states of the subsystem. This 
operation groups together states or sequences of states of the system to form 
states of the subsystem. Under these two operations, the law or rule of the system 
yields a derived law or rule for the subsystem such that the histories of the sub- 
system are sets of histories of the system. 

The relation of embedding is set-theoretic. The states of the subsystem are 
sets of states (or of sequences of states) of the system, and the histories of the 
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subsystem are sets of histories of the system. Consequently, a complete descrip- 
tion of the system yields a complete description of the subsystem. A separable 
physical part (e.g., the carburetor of an automobile) is an embedded subsystem, 
but it is a very special case. More generally, an embedded subsystem is distri- 
buted throughout the underlying system. 

Let us now draw a conclusion concerning the relation of modeling to em- 
bedding in the kinds of systems we have been studying. At least in these applica- 
tions, the concepts of "model" and "embedded subsystem" are qualitatively 
identical: a model is isomorphic to an embedded subsystem of the system being 
modeled. Formally speaking, the modeling and embedding relations are the 
same. 

Thus far our analysis of modeling and embedding has been for deterministic 
and indeterministic systems. A complete theory of modeling and embedding 
must encompass probabilistic systems as well, so we will conclude with some 
remarks concerning them. 

A probabilistic system is, in essence, a probability assignment to an in- 
deterministic system. An indeterministic transition relation allows more than 
one state of a system to follow a given state. A probabilistic system may be 
obtained by assigning probabilities to the different possible transitions. 

Modeling and embedding involve two systems, and the laws of these two 
systems may be very different. We saw that the law of a model may be deter- 
ministic while the law of the system is indeterministic, and vice versa (p. 303). 
On the account of probabilistic systems just given, we would expect that a model 
may be deterministic while the system modeled is probabilistic, and vice versa. 
The following examples make this plausible. 

A nuclear diffusion process is probabilistic. Suppose it is modeled in a 
computer by a Monte Carlo process which use pseudo-random numbers as the 
source of randomness. Here the embedded subsystem (the model of the nuclear 
diffusion processes) is probabilistic while the underlying system (the computer) 
is deterministic. 

The converse relation is also possible. The Monte Carlo method may be used 
to solve the differential equations of a deterministic system such as fluid flow. 
The system described by the differential equation is, in a limiting fashion, an 
embedded subsystem of the computational system. Random numbers for a 
Monte Carlo calculation are usually generated by a deterministic algorithm. But 
one could use a natural source of randomness, such as a device which measures 
a random electronic effect. In that case the embedded subsystem would be 
deterministic while the underlying system would be probabilistic. 

The notion of embedding plays a crucial role in the foundations of quantum 
mechanics. Quantum theory describes a probabilistic system, not a deterministic 
("causal") system. Moreover, in the opinion of most physicists, quantum 
mechanics cannot be embedded in a deterministic system. This was the point of 
John von Neumann's famous "proof"  that there are no hidden variables in 
quantum mechanics ([11], pp. 209-211 and 323-328). Kochen and Specker [10] 
prove yon Neumann's theorem for a wider and better definition of "hidden 
variable". 

A determinist thinks that nature is one large deterministic system. He is 
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therefore committed to the view that every natural probabilistic system is 
embedded in a deterministic system. It would seem, then, that quantum mech- 
anics refutes determinism. The determinist, however, can point out that the 
interpretation of quantum theory is controversial. Einstein, for example, held 
to determinism even in the face of quantum mechanics. He thought that quantum 
theory is incomplete, and that when a complete theory of quantum phenomena 
is developed, it will be deterministic. If Einstein was right, present quantum 
theory describes a probabilistic system embedded in a deterministic system ([8], 
pp. 176 and 666). 

Actually, David Bohm has given a deterministic interpretation of quantum 
mechanics ([2], [3], [4]). He calls his theory a "hidden variable" theory, but 
he is using "hidden variable" in a much wider sense than Kochen and Specker, 
for his theory is not excluded by their proof (Bub [5], Gudder [9]). 

Thus, whether or not the probabilistic system described by quantum theory 
can be embedded in a deterministic system depends on the kind of deterministic 
system one is willing to consider. Quantum mechanics cannot be embedded in a 
deterministic system described by a hidden-variable theory of the yon Neumann, 
Kochen, and Specker type, but it can be embedded in a deterministic system 
with hidden variables of the Bohm type. The real controversy in the foundations 
of quantum mechanics is over the status and desirability of hidden-variable 
theories of these different types, and thus over the nature of an acceptable 
deterministic system. 

We mention finally a different embedding relation of quantum mechanics. 
Neils Bohr's correspondence principle relates this subject to classical mechanics. 
His principle is: In the limit, where large numbers of quanta are involved, 
quantum laws lead to classical laws as statistical averages ([1], p. 30). This makes 
the deterministic system of classical mechanics the limit of a sequence of sub- 
systems embedded in the probabilistic system of quantum mechanics. When this 
view is combined with Einstein's, a three-layered system of mechanics results. 
The deterministic system of classical mechanics is embedded in the probabilistic 
system of quantum mechanics, which is embedded in the deterministic system 
described by a complete quantum mechanics! 

The present paper has been devoted mainly to embedding and modeling 
relations among deterministic and indeterministic systems. Our last examples 
show that there are also interesting embedding and modeling relations between 
deterministic and probabilistic systems. Clearly, then, the formal theory of 
modeling and embedding must be extended to cover probabilistic systems before 
it will be complete. 
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