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Summary. The local stability of unbranched biosynthetic pathways is exam- 

ined by mathematical analysis and computer simulation using a novel non- 

linear formalism that appears to accurately describe biochemical systems. 

Four factors affecting the stability are examined: strength of feedback 

inhibition, equalization of the values among the corresponding kinetic 

parameters for the reactions of the pathway, pathway length, and alter- 

native patterns of feedback interaction. The strength of inhibition and 

the pattern of feedback interactions are important determinants of 

steady-state behavior. The simple pattern of end-product inhibition in 

unbranched pathways may have evolved because it optimizes the steady- 

state behavior and is temporally most responsive to change. Stability in 

these simple systems is achieved by shortening pathway length either 

physically or, in the case of necessarily long pathways, kinetically by 

a wide divergence in the values of the corresponding kinetic parameters 

for the reactions of the pathway. These conclusions are discussed in the 

light of available experimental evidence. 
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INTRODUCTION 

Of all biochemical control systems, the unbranched pathways 
for the biosynthesis of amino acids and nucleotides in micro- 

organisms are the most thoroughly studied at the molecular 

level. For several of these pathways, e.g. tryptophan 

An earlier report of this work was given at the Annual Meeting of the 

American Society for Microbiology, Miami Beach, Florida, 1973 
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(Creighton & Yanofsky, 1970) and histidine (Brenner & Ames, 

1971), all of the molecular components have been studied and 

kinetically characterized to some degree. Despite our rather 

extensive knowledge at the molecular level, we are still re- 

latively ignorant of the behavior of the intact system as it 

operates in the cell. We are only now beginning to understand 

the principles behind the design of these marvelous control 
systems. 

In the previous study of the steady-state behavior of 

these types of systems it was found that the experimentally 

observed pattern of end-product inhibition tends to be opti- 

mal with respect to a variety of functional criteria (Sava- 

geau, 1974). This is consistent with the postulate of optimal- 

ity as the basis for selection (Rosen, 1967). One would ex- 

pect these control systems to have been selected also for lo- 

cal stability, since presumably one of the prime functions of 

the amino acid biosynthetic pathways is to provide a relative- 

ly constant supply of their end-products for protein syn- 

thesis. 

The stability of linear models of chemical reaction net- 

works was examined by several authors (e.g., see Hearon, 

1953; Bak, 1963) before the general molecular architecture of 

control patterns in biosynthetic pathways had been discovered 

and appreciated. Consequently, the biological questions 

raised by more recent discoveries were not specifically ad- 

dressed in these early analyses. Others have used mathemati- 

cal models to investigate the conditions for stable oscilla- 

tory behavior in the circuits for enzyme synthesis as well as 

in biosynthetic pathways subject to feedback control by in- 

hibition (Goodwin, 1963; Morales & McKay, 1967; Viniegra- 

Gonzalez & Martinez, 1969; Walter, 1970). For these models a 

particular approximation to the actual nonlinear systems is 

used, the so-called Goodwin equations. All of the nonlineari- 

ty is lumped into the description of the first or allosteric 

enzyme. The remainder of the system is assumed to be linear, 

composed of simple first-order reactions with identical kine- 

tic parameters. Even with these simplifying assumptions, the 

resulting nonlinear model is difficult to analyze mathemati- 

cally and much of the information has been gained by computer 

simulation. Recently, Hunding (1974) has reexamined the 

original analysis of Viniegra-Gonzalez & Martinez (1969) and 

shown that theirs is not a necessary condition for the exist- 

ence of an unstable steady state or a stable limit-cycle. The 

same criticism applies to the independent derivation of this 

condition by Higgins et al. (1973). The more recent analysis 

by Viniegra-Gonzalez (1973), however, avoids these difficul- 

ties for the most part. Hunding (1974) and Hastings & Tyson 
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(1975) also have reexamined the computer simulation results 
of Walter and discounted some of his claims. Walter (1974) 

has gone on to simulate a modified Goodwin model in which 

the unregulated reactions are represented by specific "hyper- 

bolic" or "sigmoidal" rate laws. 

The power-law formalism used in this paper represents an 

alternative approach to the analysis of biochemical systems. 

Starting with the observation that biological systems are 

composed of networks of enzyme-catalyzed reactions and using 

the well-established postulates of enzyme catalysis, one can 

in principle write differential equations with rational func- 

tion nonlinearities for an arbitrary system. It is practically 

impossible to deal with these equations in any general sense. 

Nevertheless, one can use a logical approach analogous to 

linearization and derive a nonlinear approximation to the 

original equations that involves multidimensional power-laws. 

This representation is guaranteed to accurately represent the 

original system over an appropriate range of the dynamic 

variables in the same manner that a linearization will, except 

that the appropriate range is greater than that for any linear 

approximation (Savageau, 1969). 

The dynamic aspects of optimal control by feedback inhibi- 

tion in biosynthetic pathways, the integration of these pro- 

perties with the steady-state properties described in the 

previous paper (Savageau, 1974), and correlations with experi- 

mental data will be considered in this paper. For this pur- 

pose I shall Assume that these systems normally operate in a 

stable steady state and focus on the conditions for local 

stability. Analytical techniques for examining local stability 

in terms of the parameters of the power-law formalism are 

presented in the Appendix. These techniques, along with com- 

puter simulations, are used to examine four factors affecting 

stability: (i) strength of feedback inhibition, (ii) degree 

of equality among the corresponding kinetic parameters of the 

unregulated reactions in the pathway, (iii) number of reac- 

tions in the pathway, and (iv) alternative patterns of feed- 

back inhibition. Finally, the results are compared and found 

to agree with available experimental evidence, which is con- 

sistent with the assumption that local stability is an impor- 

tant factor in metabolic regulation and provides insight into 

how such stability is achieved in nature. 

STRENGTH OF FEEDBACK INHIBITION AND STABILITY 

The pathway represented in Fig.1 will be analyzed for local 

stability first when n=3. We shall derive an expression for 

the threshold of stability which is a function of the para- 
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X o ~ X I D ..... J X n 

Fig.l. Model of an unbranched biosynthetic pathway. Xi's represent metab- 

olite concentrations, the arrows from one X i to another represent enzyme 

catalyzed reactions, and the arrow from X n to the center of the arrow re- 

presenting the first reaction denotes an allosteric modulation of the 

first reaction by the end-product X n. The initial substrate X O is subject 

to independent experimental manipulation 

meters of the system. The equations describing this system in 

the power-law formalism are 

gloX3gl3 hll 
(1) Xl = ~ lXo - BlXl 

g21 h22 
X2 = ~2Xl - B2X2 

X3 = ~3X2 g32 - B3X3 h33 

The rate law for each reaction is represented by a product of 

power-laws, one for each of the reactants and modifiers as- 

sociated with the reaction. The exponent gij represents the 

apparent kinetic order with respect to Xj, for the synthesis 

of X i. ei is the apparent rate constant for this reaction. 

When a rate law appears in a degradative term of the system's 

equations, the corresponding parameters are hij and Bi, re- 

spectively. Since the rate of degradation of X i is the same 

as the rate of synthesis of Xi+ I in Fig.l, we have the fol- 

lowing equalities: 

e2 = BI ; g21 = h11 

~3 = B2 ; g32 = h22 

All the parameters in Eq. (I) are positive except for g13; it 

represents the apparent kinetic order of the first reaction 

with respect to the end-product inhibitor and is therefore 

negative. X O is an independent concentration variable. 
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The linearized equations describing the behavior of this 

system for small variations about the normal operating point 
are readily obtained from Eq. (I) by using the techniques de- 

veloped in the Appendix. 

(2) ul = FI [-hllul + g13u3 ] 

~2 = F2 [ h11ul - h22u2] 

u 3 = F 3 [ h22u 2 - h33u3] 

The characteristic equation for this system is 

3 2 
(3) l + (F1h11 + F2h22 + F3h33)l + 

+ (FiF2hllh22 + FiF3hllh33 + F2F3h22h33)l + 

+ FiF2F3hllh22(h33-g13) = O 

or 
3 2 

+ %11 + ~21 + %3 : O 

From Routh's criterion for stability the critical condition 

among these coefficients is ~i~2 > ~3' which implies 

I F1hl I F2h22 F1hl I F3h33 
(4) -g13 < 2 + - -  + - - + - -  + - -  + 

F2h22 F1h11 F3h33 F1h11 

+ F2h22 F3h 3 

P3h3------- ~ + F2h2 h33 

This equation defines the conditions that must exist among 

the parameters in order for the system to be stable. If a 

change in the strength of inhibition g13 were accompanied by 
a compensatory change in the apparent rate constant ~I, then 
the steady-state rate of the first reaction would be unaffect- 
ed by the change in g13- In this way the stability of the 
same steady-state operating value can be examined in systems 
with different strengths of inhibition but otherwise identi- 

cal. As the magnitude of g13 is increased in this fashion, 
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Fig.2. Strength of feedback inhibition and stability. The model in Fig.1 

is simulated with n=3 and various strengths of inhibition (-g13) as in- 

dicated. The threshold value of -g13 for instability is about 4. The in- 

dependent concentration variable X O is perturbed at t=O. See text for 

further discussion. 

the threshold for instability is approached and then ex- 

ceeded. 

This is graphically illustrated for the nonlinear system 

by a computer simulation in Fig.2. The method of simulation 

using the power-law formalism has been previously described 

(Savageau, 19Y0). Each curve in this figure represents the 

concentration of the end-product X 3 as a function of time 

after a perturbation in the level of the initial substrate 

X O. The system is in a steady state with the concentrations 

normalized before the disturbance. At t=O the initial sub- 

strate is increased and maintained at this elevated level 

during the subsequent time period. Each response represents 

the system having different strengths of end-product inhibi- 

tion g13- The magnitude of g13 in each case is shown in asso- 

ciation with the appropriate temporal response. The case with 

g13 = O represents the pathway without inhibition. 

As the strength of inhibition is increased, the overall 

gain is decreased (i.e., the new steady state differs less 

and less from the predisturbance steady state). However, in 

approaching the new steady state the system begins to show 

more and more overshoot and eventually exhibits oscillations. 

With a further increase in the strength of inhibition, the 
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Fig.3. Strength of feedback inhibition and stability. The model in Fig.l 

is simulated with n=lO, and for various strengths of inhibition as in 

the previous figure. The threshold value of -gl,lO for instability in 

this case is about 0.8 

system becomes unstable and oscillates with increasing ampli- 

tude. At this point, the system ceases to regulate the supply 

of the end-product. Of course in any real system the concen- 

trations would reach a limit for other physical reasons, but 

the conclusion remains unchanged: the system is no longer 

effectively regulated by feedback inhibition. 

A necessary limitation on the strength of inhibition to 

ensure stability is found for more general pathways than the 

n=3 case we have been discussing. To illustrate just one such 

case, I have shown in Fig.3 a nonlinear system identical to 

the previous one except that n=10. The behavior is very simi- 

lar to that already described in Fig.2. However, the threshold 

value of gi,10 which is necessary for instability is clearly 

different from that for g13 in the previous case. We can con- 

clude that, in general, there is a limit to the strength of 

inhibition for a stable system and this limit depends in part 

on the length of the pathway. The interrelationship between 

strength of inhibition and pathway length will be more fully 

explored in a later section. 
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EQUALIZATION OF THE KINETIC PARAMETERS AND STABILITY 

Let us return for the moment to the case with n=3 and examine 

a second important feature of Eq. (4): namely, the effect of 

the other kinetic parameters in determining the threshold of 

instability. First, it will be helpful to emphasize the mean- 

ing of the kinetic parameters in Eq. (4). The Fi's are relati- 

vely complex expressions of the apparent kinetic orders and 

rate constants for the system (see Appendix). Nevertheless, 

they have a rather simple interpretation for the systems we 

are considering. F i is the ratio of the steady-state rate 

for the pathway to the concentration of X i in steady state. 

Consequently, if the K M for the i th intermediate reaction is 

doubled, the substrate X i for that reaction will increase un- 

til it is also doubled and the steady-state rate for the 

pathway is reestablished. The corresponding value for F i is 

therefore halved by this doubling of the i th K M while all 

other parameters remain unchanged. In other words, 

steady-state rate I 
(5) F. = 0% KM ' 

l Xio l 

It is important to emphasize that for the pathway in steady 

state this common type of enzyme modification only affects 

the corresponding F i parameter and not the apparent kinetic 

order hii. However, a change in the molecular activity of an 

enzyme can be reflected in changes of both F i and hii. 
From Eq. (4) it is clear that the system in Fig.1 can be 

made more stable by increasing the differences in value among 

the corresponding kinetic parameters for eachl reaction. Con- 

versely, as the corresponding kinetic parameters become more 

nearly equal, the system becomes more unstable. The minimum 

value for any pair of terms in Eq. (4) such as (F1h11)/(F2h22) 

and (F2h22)/(F1h11) is 2; this can occur when the two steps 

have identical kinetic parameters. Therefore, 

(6) -g13 < 8 h33 

is a sufficient condition to ensure stability of the system 

even when the corresponding kinetic parameters for all the 

remaining reactions are identical. Independently, Viniegra- 

Gonzalez (1973) carried out a similar analysis of the Good- 

win model. 

This effect, and the strength of inhibition effect dis- 

cussed in the previous section, are closely related by means 
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Fig.4. The threshold of sta- 

bility as a function of the 

parameter values. Equality in 

Eq. (4) represents the 

threshold of stability and 

when -g13/h33 is plotted as a 

function of Flhll , the region 

of stability lies below the 

curve. (a) F2h22 = F3h33 = i. 

(b) F2h22 = 0.5 and F3h33=l.5. 

The hyperbolic nature of these 

curves indicates that values 

of F1hll different from the 

other parameters allow a 

greater strength of inhibition 

for stability. The shaded area 

indicates the increase in the 

region of stability when 

F2h22 and F3h33 also differ 

of Eq. (4). This equation shows that an unstable system can be 

stabilized by either decreasing the magnitude of g13 or in- 

creasing the differences in value among the corresponding 

kinetic parameters for the other reactions. The effect of 

parameter "mismatch" in promoting stability also can be shown 

by plotting the threshold of stability in the parameter space 

and showing that the region of stability increases when the 

parameters differ. This is done in Fig.4, where the shaded 

area represents the increased region for stability when the 

parameters F2h22 and F3h33 differ. 

The stabilizing effect of unequal values among the corre- 

sponding kinetic parameters is not restricted to systems with 

n=3. The analytical treatment of cases with n > 3 is, however, 

much more difficult. Computer simulation of these systems pro- 

vides valuable insight, as can be seen for the case with n=5 

depicted in Fig.5. We begin with a matched system that is 

unstable (a) ; progressive stabilization is achieved as more 

and more of the corresponding kinetic parameters are made to 

differ, (b) and (c). Many other specific examples could be 

represented and the conclusion is the same: inequality among 

the corresponding kinetic parameters tends to promote the 

stability of the system. 
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Fig.5. The stabilizing effect of unequal kinetic parameters. The model in 

Fig.l is simulated, as in Fig.2, except with n=5 and various values of 

the KM'S for the last four reactions in the pathway. Relative values of 

the last four KM'S: (a) i,I,i,i; (b) 4,1,1,O.25; (c) 16,4,O.25,0.O625 

The generality of this conclusion can be seen from a physi- 

cal argument, which also illuminates the basis for the effect. 

Consider the situation where the corresponding kinetic para- 

meters of the reactions in a sequence are sufficiently dif- 

ferent in value that some of the reactions occur with a much 

faster rate. From the kinetic point of view, the pathway may 

be considered to have fewer reactions than it actually does, 

and we shall see in the next section, this decrease in the 

effective length of the pathway leads to a more stable system. 

PATHWAY LENGTH AND STABILITY 

A general analytical expression representing the threshold 

for stability as a function of the path length n is difficult 

to obtain. However, as was indicated in the preceding section, 

a pathway with a suitable variation among the corresponding 

kinetic parameters of the individual reactions can be con- 

sidered as a shorter length pathway for kinetic purposes. By 

eliminating the faster reactions from considerationthe kine- 

tic parameters for the remaining reactions in the pathway 

tend to be more nearly equal. Thus, for the purposes of this 
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section we need only consider pathways in which the corre- 

sponding kinetic parameters of each reaction are equal. Under 

these conditions, stability can be easily determined by direct 

examination of the roots of the characteristic equation. 

The characteristic equation for the general system in Fig. 

I is obtained from the following determinant equation: 

(7) -(Fh + I) 0 

Fh -(Fh + 

O Fh 

O ... Fgln 
O 0 

-(Fh + k) O 

O O O ... Fh - (Fh +~) 

= 0 

Since all the kinetic parameters of the reactions after the 

first are identical, this can be expanded to give 

n gln(Fh) n 
(8) (Fh + I) : O 

h 

where gln is the only negative parameter. The roots of Eq. (8) 

are obtained by solving directly for I. The real parts of all 

the characteristic values must be negative for stability. 

Thus, Re(A m ) < O implies that 

I/n (2m-I 
(9) (-gln/h) cos n )7 - I < O 

m = 1,2 ..., n 

2m-I 
For a given value of n, the largest value of cos(--h----)~ 

occurs when m=1, so that the condition for stability is the 

following: 

(10) 
1/n 

(-gln/h) cos(~/n) - I < O 

This is always satisfied for n=1 and n=2. For n > 3 we can 

write Eq. (I0) as 

(11) -gln < h secn(~/n) 

An analysis similar to this was carried out for the Goodwin 

model by Viniegra-Gonzalez & Martinez (1969) and Higgins et 
al. (1973), and was criticized by Hunding (1974). However, 
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Fig.6. Pathway length and stability. The model in Fig.l is simulated as 

in Fig.2, except with a fixed strength of inhibition (-gln=2) and various 

values of n as indicated. Pathways with n > 4 are unstable 

his criticism does not apply to the analysis given above be- 

cause comparisons were made under conditions in which the 

steady-state solution does not change as the strength of in- 

hibition gln is changed. For a given strength of inhibition, 

provided it is greater in magnitude than h, the threshold of 

instability is approached as n increases. Eventually, for 

some sufficiently large n the threshold is surpassed and the 

system becomes unstable. 

This can be graphically illustrated for the nonlinear sys- 

tems by computer simulation as shown in Fig.6. For this simu- 

lation gln has been fixed and the responses of systems with 

increasing n have been plotted. For lower values of n the sys- 

tems approach a new steady state with damped oscillations. A 

threshold is reached when n=4 and the system continuously os- 

cillates. For larger values of n the systems begin to oscil- 

late with increasing amplitude. Fig.7 shows a similar set of 

simulations for a lower fixed value of gln- The general be- 

havior is the same except that the threshold value of n for 

instability is different. 

From the above results we conclude that increasing the 

length of the pathway generally leads to instability of the 

system. This effect is closely related to the strength of in- 

hibition effect, and this is seen from Eq. (11). Thus, for 

stability, longer pathways cannot be as strongly inhibited as 

shorter ones. The maximum strength of inhibition for stability 

as a function of the path length is shown in Table I. The 

asymptotic value of (-gln/h) is unity as n becomes large. 
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Fig.7. Pathway length 

and stability. The 

model in Fig.l is sim- 

ulated as in the 

previous figure, ex- 

cept for the strength 

of inhibition -gln = 

0.9. For this set of 

conditions, only 

pathways with n > 9 

are unstable 

Thus, as 10ng as Iglnl < h the system will always be stable. 

Let us now turn to an examination of alternative patterns 

of control to see what effects these have upon the stability 

of the system. 

Table i. Pathway length and the maximum strength of inhibition allowing 

for stability 

Length of Pathway 

n 

Strength of Inhibition at the Threshold of 

Stability 

-gln/h 

i 

2 

3 

4 

5 

6 

7 

8 

9 

iO 

8.0 

4.O 

2.9 

2.4 

2.1 

1.9 

1.8 

1.7 

I.o 

~Stable for all allowable values of gln 
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Fig.8. Alternative patterns of control by feedback inhibition in un- 

branched biosynthetic pathways 

ALTERNATIVE PATTERNS OF CONTROL AND STABILITY 

So far we have only considered pathways controlled by simple 

end-product inhibition, because the bulk of experimental evi- 
dence indicates that this is the predominant pattern of con- 

trol in unbranched biosynthetic pathways (Monod et al., 1963). 

Nevertheless, other patterns of control could conceivably be 
employed for such pathways. Several such alternatives are 
shown in Fig.8. 

General Comparison for Systems with n=3 

By allowing for all possible feedback interactions, the lin- 
earized equations corresponding to Eq. (2) can be written as 

(12) u I = F I [(g11-h11)u1+(g12-h12)u2+(g13-h13)u3] 

u 2 = F 2 [ h11 u1+(h12-h22)u2+(h13-h23)u3] 

[3 = F3 [ h22 u2+(h23-h33)u3] 

All the parameters in Eq. (12) are positive except those re- 

presenting feedback inhibitions --g11' g12' g13' h12' h13' 

h23-- which are all negative. We shall require this general 

system and the simple one in Fig.8a to be identical except for 
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the differences in their pattern of regulation. Under these 
conditions all the parameters in Eq. (12) are identical to the 
corresponding parameters in Eq. (2). 

The characteristic equation for the general system is the 
following: 

13 + E(F1h11+F2h22+F3h33)-(F1g11+F2h12+F3h23)~ 12 + 

+ L(FIF2hllh22+FIF3hllh33+F2F3h22h33)+(FIF2gllh12 + 

+FiF3gllh23+F2F3h12h23-FiF2hllg12-F2F3h22h13 - 

-FiF2gllh22-FiF3hllh23-FiF3gllh33-F2F3h12h33~1 + 

+ LFiF2F3hllh22(h33-g13)+FiF2F3(gllh22h13+ 

+hllg12h23+gllh12h33-hllg12h33-gllh12h23 - 

-gllh22h33)~ = 0 

or 

3 ' 2 ' ' 
(13) I + ~I I + ~21 + ~3 = O 

! I ! 

~I' ~2' and %3 in Eq, (13) are all greater than the corre- 
sponding coefficients in Eq. (3). This is seen by inspection 
when the signs of the various apparent kinetic orders are 
taken into account. The critical condition for stability is 

! ! ! 

~I~2 > ~3" For Eq. (13) this condition can be written as 

(14) (~I+A) (~2+B) > (~3+C) 

where ~I, ~2, and ~3 are defined in Eq.(3), and A, B, and C 
are sums of positive terms given in Eq. (13). Rearranging the 

terms in Eq. (14) yields 

(15) (~1%2-~3)+(AB+~1B-C)+~2A > 0 
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When the first term in parentheses is zero, the system in Fig. 

8a will be on the boundary of instability. However, the re- 

maining terms in Eq. (15) are all positive, since (AB+%1B-C)>O , 

so that the system with the general pattern of feedback in- 

teraction is always further from the boundary of instability 

than the simple system in Fig.8a. Thus, the system with an 

arbitrary pattern of feedback inhibitions is always more 

stable than the system in Fig.8a. 

The results in this section are not restricted to the case 

with n=3. A variety of control patterns has been compared 

with the simple pattern of end-product inhibition for equiva- 

lent systems with n > 3. These comparisions have been made 

using computer simulations, and in some cases, analytical 

techniques. In these comparisons, the system in Fig.8a has 

always been nearer than the other systems to the boundary of 

instability. This conclusion may be generally true for arbi- 

trary patterns of control in systems with an arbitrary number 

of reactions, although we have no proof. It appears to be 

another extremum property possessed by the system in Fig.8a 

that, once proved, could be added to those already established 

for this system in steady state (Savageau, 1974). 

DISCUSSION 

. f =  In the preceding sections we have considered four dl_lerent 

factors that affect the local stability of biosynthetic con- 

trol systems. These factors were strength of end-product in- 

hibition, equalization of the values for the corresponding 

kinetic parameters of the reactions in the pathway, pathway 

length, and alternative patterns of control. In a previous 

paper (Savageau, 1974), I showed that the pattern of control 

and the strength of end-product inhibition were important de- 

terminants of steady-state behavior in biosynthetic pathways. 

The results from this previous paper, together with those 

presented in the preceding sections, provide a rational ex- 

planation for the selection of kinetic parameters and regula- 

tory patterns in unbranched biosynthetic pathways. This ex- 

planation will now be discussed in light of available experi- 

mental evidence. 

Given the initial substrate and the end-product desired, 

their structural differences will determine roughly the num- 

ber of elementary reactions required in the pathway. The free- 

energy difference and the energy required for the synthesis 

of the necessary enzymes would also be expected to influence 

the number and nature of the reactions in the pathway. By 

grouping biosynthetic pathways in families according to struc- 

214 



tural similarity of their end-products, and the extensive use 

of branching pathways, the cell has been able to minimize the 

length of most unbranched segments. For example, in the bac- 

terium Escherichia coli 60% of the amino acids are synthesized 

by pathways shorter than 4 reactions, and during the evolu- 

tion of higher forms it has been the longer pathways that 

have been dispensed with: 55% of the amino acids are not 

synthesized in mammals and those that are involve fewer than 

4 reactions (Davis, 1961). In addition to the conservation 

of energy, these influences tend to promote the stability of 

metabolic control systems by shortening the pathway length, 

as we have already seen. 

Nevertheless, there are several pathways of 5 to 10 reac- 

tions in microorganisms, and other means of stabilization are 

especially important for these pathways. Mismatch among the 

corresponding kinetic parameters for the reactions in the 

pathway will also promote stability. This mechanism allows 

the organism to effectively shorten the length of the pathway 

kinetically, even under conditions where it is impossible to 

physically reduce the number of reactions because of struc- 

tural or thermodynamic reasons. This prediction could be 

verified by an examination of the kinetic parameters for the 

reactions in long biosynthetic sequences. 

Although there are few pathways that have been experimen- 

tally examined in such detail, the available evidence does 

support the prediction of widely different kinetic parameters. 

A case in point is the histidine biosynthetic pathway of Sal- 

monella typhimurium. This unbranched pathway consisting of 10 

reactions has been under extensive biochemical and genetic 

analysis by Ames & Hartman for more than 20 years. In a re- 

cent review Brenner & Ames have reported the specific activ- 

ities in crude extracts for the enzymes in this pathway. 

They range from a low of 0.3 to a high of 50 (pmoles of prod- 

uct formed/gm dry weight bacteria x minutes) with the other 

values distributed more or less equally between these ex- 

tremes (Brenner & Ames, 1971). The KM'S for these same en- 

zymes have been measured under a common set of conditions in 

crude extracts. The values range from a low of 1.1 x 10 -5 M 

to a high of 60 x 10 -5 M with intermediate values distributed 

between these (R.G.Martin & H.Whitfield, personal communica- 

tion). The ratio of specific activity to K M value for the en- 

zymes of the pathway has an equally wide range of values. 

Under normal operating conditions, one can calculate the 

equivalent kinetic parameters in the power-law formulation 

(Savageau, 1971), and these will show a similar degree of 

variation for the reactions in the pathway. 

The mismatch of the corresponding kinetic parameters in 

the histidine pathway cannot be due entirely to chance. If 
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the parameters were nearly equal, the system would surely be 

unstable from what we know of the strength of end-product in- 

hibition and a path length of 10. Such a configuration would 

be under strong negative selective pressure. 

Another mechanism for achieving stabilization is to reduce 

the strength of end-product inhibition. However, this solu- 

tion does not appear to be of primary importance for most 

pathways. In 1956 Umbarger first reported end-product inhibi- 

tion at the molecular level in the isoleucine pathway of E. 

coli. He observed that the apparent kinetic order for this in- 

hibition was two. Since this initial observation, numerous 

regulatory enzymes have been examined and the apparent kinet- 

ic order generally tends to be between second- and fourth- 

order. 

There is a structural basis for this kinetic fact. The 

study of quaternary structure has revealed that most enzymes 

are composed of subunits, not arbitrary numbers of subunits 

but mostly dimers and tetramers (Klotz et al. 1970). Further- 

more, the symmetry of subunits and binding sites appears to 

be the same for most cases (Monod et al., ]965; Koshland & 

Neet, 1968). It is the multiplicity of binding sites that can 

lead to kinetic orders greater than unity, although under 

certain conditions other mechanisms can produce this result 

(Ferdinand, 1966). 

These large apparent kinetic orders would normally make 

all pathways with greater than 4 reactions unstable, if it 

were not for the mismatch among the kinetic parameters for 

the reactions of the pathway. One reason why the cell has not 

utilized lower apparent kinetic orders to achieve stabiliza- 

tion may be due to constraints on the allowable structures 

for regulatory enzymes, although this seems to be an insuf- 

ficient explanation. Another reason, having to do with the 

function of the intact control system, is that such a reduc- 

tion would simultaneously detract from advantageous steady- 

state behavior. This was shown in a previous paper, where 
decreasing the strength of end-product inhibition (apparent 

kinetic order of the controlled reaction with respect to the 

end-product concentration) decreased the ability of the sys- 

tem to respond to a change in demand for the end-product 

(Savageau, 1974). The accumulation of intermediate metabolites 

was also shown to be aggravated by a reduction in the strength 

of inhibition. Thus, optimum steady-state behavior requires 

that this parameter be sufficiently high, and that stabiliza- 

tion be achieved in another way. 

AIternative patterns of control by feedback inhibition 

could also be used to achieve stabilization as we have seen. 

However, these alternatives generally have less than optimal 
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steady-state behavior (Savageau, 1974). This conflict between 

two desirable goals appears to have been resolved in favor of 

optimal steady-state behavior, since the predominant pattern 

of control in unbranched pathways is simple end-product in- 

hibition (Monod et al., 1963); however, this conflict may be 

more apparent than real. Surely a degree of stability is 

necessary for survival. But beyond this degree, overstabili- 

zation can be a disadvantage, since it may make the system's 

temporal response to change very sluggish. Thus one could 

argue that the system will be selected to be as near the 

boundary of instability as possible and yet have a sufficient 

margin of safety to ensure stability. In this way end-product 

inhibition will be the fast-acting, fine control it is nor- 

mally assumed to be. 

In summary, the simple pattern of control by end-product 

inhibition in unbranched biosynthetic pathways appears to 

have evolved because it optimizes the steady-state behavior 

and is temporally most responsive to change. Stability in 

such systems is achieved by shortening pathway length either 

physically or, in the case of long pathways, kinetically by 

a wide divergence in the corresponding kinetic parameters for 

the reactions of the pathway. 
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APPENDIX: ANALYTICAL EXamINATION OF LOCAL STABILITY 

Questions about the stability of nonlinear systems are gen- 

erally quite difficult to answer. A notable exception is the 

case of local stability analysis. This type of stability is 

important in the design of biosynthetic control systems. In 

this appendix a systematic method of examining biochemical 

systems which can be accurately described by power-law non- 

linearities (Savageau, 1969) is developed. A general two- 

variable case will be examined first; the general n-variable 

case follows as a natural extension. 

The Two-Variable System 

The general two-variable system is represented by the follow- 

ing equations 

(A1a) dX 1 = g l l  g12 h l l  h12 
alX I X 2 - BIX I X 2 

dt 
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(A1b) dX2 g21 g22 h21 h22 
dt = a2Xl X2 - B2X1 X2 

where the X's denote chemical concentrations, the ~'s and B's 
are apparent rate constants, and the g's and h's are apparent 
kinetic orders. The nonzero steady-state solution for this 
system can be obtained using the techniques previously des- 
cribed (Savageau, 1969). This solution may be written as 
follows: 

(A2) 
a22 al 2] 

XIO = (BI/~ I) (~2/B2) 

E a a211 X20 = (B2/~2) 11 (~I/BI) 

I/(a I 1a22-a1 2a21 ) 

I/ (a I 1a22-a1 2a21 ) 

The additional "o" subscript denotes the steady-state value, 
and aij is defined as the difference (gij-hij). 

If we consider only small variations about this steady- 
state operating point, we may substitute for each expression 
in Eq. (AI) its Taylor series and retain the first two terms. 
The resulting equations are 

g11 -I g12 (A3a) d(X10+Xl) g11 g12+ ~I g X x 
dt = IXIo X20 11XIo 20 I 

g11 g12 -I 
+ ~1g12X10 X20 x 

hl I h12 h11-I h12 
- IXIo X20 + B1hIIX10 X20 x I 

h11 h12-I 
+ B1hI2X10 X20 x 

(A3b) d(X20+x2) ~ g21 g22 g21 -I g22x1 
dt = 2XIo X20 + ~2g21X10 X20 

g21 g22 -I 
+ ~2g22X10 X20 x 
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F h21 h22 h21-I h22x1 
-~2XIo X20 + 62h21X10 X20 

h21 h22-I 21 
+ 62h22X10 X20 x 

In Eq.(A3), x I and x 2 represent small variations about the 
normal operating values XIO and X20. Since 

g11 g12 h11 h12 
~IXIo X20 = 61XIo X20 

and 

g21x2og22 h21 h22 
~2XIo = B2XIo X20 

and since the time derivatives of XlO and X20 are zero, we 
can simplify Eq. (A3) as follows: 

dXl g11 -I g12 
(A4) dt - alX10 X20 (g11-h11)x1 

g11 g12 -I 
+ ~iXio X20 (g12-h12)x2 

dx2 g21 -I g22 
dt = e2X10 X20 (g21-h21)x1 

g21 g22 -I 
+ ~2XIo X20 (g22-h22)x 2 

Divide the small variation x i by the corresponding steady 
state value Xio to obtain a new variable u i which represents 
the percent variation in X i. Then Eq. (A4) can be written 

(A5) 
gl I -I gl 2 

u I = elX10 X20 [allU1 + a12u23 

g21 g22 -I 
u 2 = ~2XIo X20 ~a21ul + a22u23 
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where the dot (.) denotes the time derivative. The factors in 

front of each equation are simply positive numbers, since XIO 

and X20 are constants given by Eq.(A2), and they are defined 
as follows: 

g11 -I g12 
(A6) F I = ~iXio X20 

g21 g22 -I 
F 2 : ~2Xio X20 

As a result, one can finally rewrite Eq. (A5) to give those 

shown below. 

(A7) u I = F I [allU I + a12u2 ] 

u 2 = F 2 [a21u I + a22u2 ] 

The stability of such a linearized system is determined by an 

examination of the roots of the characteristic equation ac- 

cording to well-known methods. The characteristic equation 

in this case is 

(A8) 
2 

I -(F1a11+F2a22)1 + FiF2(alla22-a12a21 ) = O 

Application of the Routh stability criterion (Timothy & Bona, 

1968) yields the conditions for stability: 

(A9) F1a11+F2a22 < O 

a11a22-a12a21 > 0 

The n-Variable System 

The equations for the n-variable case corresponding to Eq. 

(AI) are 

77-n gij n hij 
(AIO) X. = ~. II x. - Bi~ x. i=I, 2, .... n. 

1 1 J jl~1 j j=1 
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By a direct extension of the procedures in the previous sub- 

section, we can write a set of linearized equations. These 
are 

(A11) u.1 = F.I Eailul + ai2u2 + "" "+ ainUn ] 

where 

gil gi2 gii -I gin 
F = ~ ...X ...X i iXl 0 X20 iO no 

for i = I, 2, ..., n. 

The stability of this system is determined by the nature 

of the roots of the characteristic equation, which is given 

by 

(A12) (F1a11-l) Flat2 F1a13 .-. F1aln 

F2a21 (F2a22-l) F2a23 .-~ F2a2n 

F3a31 F3a32 (F3a33-l) ... F3a3n 

Fnanl Fnan2 F a n n3 ... (Fnann I) 

= 0 

It is analytically difficult to characterize the roots of 

this equation for an arbitrary case when n is larger than 3. 

Nevertheless, for any particular case it is straightforward 
to expand Eq. (A12) and ascertain the number of roots with 

positive real parts using the Routh criterion. 

In the preceding sections these techniques are used for 

the analysis of the factors affecting the dynamic behavior of 

biosynthetic pathways. 
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