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Abstract. In this paper, we describe the design and implementation of a synthetic workload (SW) for a 
distributed real-time system. A SW is a set of parameterized synthetic or artificial programs which serve as 
the workload for a system under study. The parameterized nature of the programs allows the user to change 
their behavior to create different resource demands on the system. The SW is easy to use, flexible, and can be 
representative of a real-time workload. The SW consists of a driver and a set of synthetic tasks. The synthetic 
tasks are generated by a synthetic workload generator (SWG) from the user's specification written in SWSL, 
a synthetic workload specification language. We describe the design goals of our SW and discuss its software 
structure and how it meets these goals. 

1. Introduction 

The field of real-time systems is aimed at providing system support for real-time ap- 

plications. The hardware, operating system, and network must be able to support the 
resource demands of the application. As systems are developed, the developers must 
experimentally evaluate the system's ability to meet its performance requirements. Dur- 

ing evaluation, the system's performance is characterized using an appropriate set of 
performance indices, such as CPU utilization, task scheduling delay, message latency, or 

number of deadlines missed. The values of these indices depend on both the system and 
its workload. 

The workload is the set of inputs to a computer system. It includes the application 
tasks, their input data, and the user commands. The resource demands produced by 

the workload are the workload characteristics. Many performance indices vary as a 
function of one or more workload characteristics. Hence, to fully characterize a perfor- 
mance index, one would like to be able to selectively alter the value of the workload 
characteristics. One tool which provides this ability is a synthetic workload (SW), an 
executable workload model (Ferrari, 1978) which consists of a set of artificial programs 
which produce controllable demands on the resources of the system. The programs are 

parameterized such that the user may control the workload characteristics. A SW differs 
from a traditional benchmark program in that it is tunable and thus can be used to pro- 
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duce a wide range of workload conditions. By contrast, a benchmark program exercises 
the system in a very limited manner. 

A SW should be representative, flexible, and simple to construct (Ferrari, 1978). The 
desire to attain these properties has guided SW design since the first SW was developed 
by Buchholz (Buchholz, 1969) for data processing systems. Buchholz's SW consisted 
of a single synthetic job. It was designed to model a commercial file update system 
common to business applications. The parameters specified the amount of data to be 
processed and the amount of processing to be performed on each data element. Vari- 
ous improvements were made to this workload by others (Schwetman and Brown, 1972, 
Sreenivasan and Kleinman, 1974, Wood and Forman, 1971). All attempted to increase 
the degree which the SW represented a real workload by adding parameters to the work- 
load and/or by using multiple copies of the synthetic job, each with different parameter 
values. A variation of this latter concept was proposed by Lucas (Lucas, 1972). Lu- 
cas' system used a job mix which varied both the parameters of the synthetic jobs and 
their structure. Different job structures would be chosen to represent different types of 
applications. Since then, the design of SW's has been studied extensively by Ferrari 
(Ferrari, 1978, Ferrari, 1981, Ferrari, 1984). 

To date, most SW's have been developed for general-purpose computing systems. 
They do not attempt to be representative of real-time workloads. Real-time workloads' 
characteristics are different from other workloads because real-time computers are often 
part of an embedded control system. Hence, real-time workloads typically contain a 
large proportion of periodic tasks whose periods are dependent on the required sampling 
interval or output rate of the system being controlled. They also contain a number of 
asynchronous tasks which execute in response to random events. Both periodic and 
asynchronous tasks may have hard deadlines to meet. 

SW's for real-time systems are scarce. An early example was the SW for NASA's 
Fault-Tolerant Multiprocessor (FTMP), which is discussed in (Feather, 1984, Feather et 
al., 1986).. FTMP's SW was designed to exercise the system and perform a limited 
number of timing measurements. It defined the workload as a number of periodic tasks 
divided into three rate groups. A rate group was a collection of periodic tasks with the 
same period which were invoked at the same time. The periods of the rate groups were 
aligned at major cycle boundaries. A major cycle was the least common multiple of the 
lengths of the periods. Thus, at the beginning of each major cycle, all tasks were invoked 
simultaneously. The deadline for each task was equal to the length of its period. This 
SW was designed specifically for FTMP. Its applicability for use on other systems was 
restricted by its inflexibility. It had a fixed synthetic program structure, fixed deadline 
policy, and lack of aperiodic tasks. 

Support for real-time SW's has also been built into Scheduler 1-2-3, a schedulability 
analyzer developed at Carnegie-Mellon University (Tokuda and Kotera, 1988). Sched- 
uler 1-2-3 is capable of producing workload tables as a part of its schedulability analysis. 
The main workload parameters in the table are the period, priority, and phase (alignment 
of the periods) of the tasks. These tables can then be included into the SW which is 
used to test the ART Real-Time Testbed. 
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We describe in this paper our efforts to remedy the lack of SW's for real-time systems. 
We have designed and implemented a SW for a distributed real-time system. It has been 
developed to execute on the Hexagonal Architecture for Real-Time Systems (HARTS) 
being built at the Real-Time Computing Laboratory (RTCL) (Shin, 1991). While it has 
been developed for this target system, the design is general enough that it should be 
portable to other distributed multiprocessor systems. 

We have developed a model of real-time workloads based on a common software 
specification notation. We then created SWSL (Kiskis, 1994), a synthetic workload 
specification language, to allow users to specify SWs using the constructs in the model. 
A SWSL specification is compiled by the synthetic workload generator (SWG) to produce 
an executable SW. The workload model and SWSL are defined in (Kiskis, 1994); only 
a brief outline of them is presented here for completeness. In this paper, we describe 
how the SW is implemented and how it supports the constructs in the abstract SWSL 
specification. 

The paper is organized as follows. Section 2 describes the HARTS architecture for 
which the SW has been developed. We discuss the process of specifying and generating 
SWs in Section 3. In Section 4, we briefly describe how SWs are used in experimentation. 
In Section 5 the structure of the SW is outlined, and its implementation and use are 
described. In Section 6, we present emperical measurements of the overhead incurred 
by the control portions of the SW. The paper concludes with Section 7. 

2. Target System 

The facilities in the RTCL provide the means to demonstrate and verify basic research 
results in a carefully controlled realistic environment. The SW was initially constructed 
for a 19-node version of HARTS (Shin, 1991). Each HARTS node is a shared memory 
multiprocessor formed by up to three Motorola 680x0 microprocessors which serve as 
the application processors (AP's) for the node. The architecture of a node and its 
relationship to the development environment are shown in Fig. 1. The multiprocessor 
nodes are to be connected via a wrapped hexagonal mesh network. A hexagonal mesh 
is a 6-regular homogeneous graph. The AP's are connected to the network by custom- 
designed communication hardware, called the network processor (NP). The nodes are 
connected by a dedicated Ethernet to each other and to a workstation. The workstation 
serves as the console for the HARTS nodes. 

A first version of the operating system for HARTS, called HARTOS, has already been 
completed and is operational (Shin et al., 1992). It is built upon the real-time kernel 
pSOS (Software Components, 1986) which provides a number of basic real-time kernel 
functions. The computation model for pSOS is process-based and supports preemp- 
tive, priority-based scheduling of processes. Within a priority class, execution may be 
FCFS, round-robin by timeslice, or manual round-robin, pSOS does not support periodic 
scheduling of processes nor does it enforce deadlines. Communication between processes 
is via event signalling and message passing through mailbox structures called message 
exchanges. 
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Figure 1. HARTS node architecture and operating environment. 

A major objective of HARTOS is to provide internode and intranode communications 
by exploiting the NP in each HARTS node. HARTOS extends the pSOS message passing 
primitives for use between processes on different processors which are located either in 
the same node or different nodes. While the hexagonal mesh network is being designed 
and built, the HARTOS communication software executes on the Ethernet processor 
(ENP). Most of the operating system and software developed with the Ethernet is expected 
to be portable to the hexagonal interconnection network. 

3. Specifying and Generating a Synthetic Workload 

3.1. The Workload Model  

In this section, we give an overview of our model of real-time workloads. A detailed 
description is provided in (Kiskis, 1994). We model the workload of a real-time system 
as a parameterized dataflow graph. The notation for the dataflow graph is borrowed from 
ESML (Bruyn et al., 1988). ESML is a widely accepted notation for the specification of 
real-time software systems. It is a high-level notation which is independent of the target 
architecture. By basing our workload model on this notation, we aim to maintain the 
same generality and platform independence. We should be able to model a wide range 
of disparate workloads, and the SW which implements the model should be portable to 
a wide range of platforms. 



A SYNTHETIC WORKLOAD 9 

TRANSFORMATION 
FLOWS 

STORES Data 
Continuously Available 

I X Dep letable I~ 
Intermittently Available 

TERMINATOR I ] Non-depletable Control(Event) 
Intermittent 

Figure 2. Data flow symbols. 

The model represents the workload as consisting of transformations, stores, termina- 
tors, and flows. The symbols used for depicting these objects are shown in Figure 2. We 
have extended the ESML notation by defining parameters to specify the objects' char- 
acteristics. Parameters may be added or deleted for different target systems with, e.g., 
different scheduling policies or interprocess communication mechanisms. The parameters 
described here are those which are appropriate for HARTS. 

Tasks are modeled as transformations. Transformations operate on data from their 
inputs and produce data on their outputs. The parameters for transformations are shown in 
Table 1. They define the scheduling and resource usage behavior of the task. Of particular 
importance is the FUNCTION parameter. It defines the function which is executed by 
the transformation. This function determines the internal behavior of the transformation. 
The control flow of the function is modeled using the D-structures described by Ledgard 
and Marcotty (Ledgard and Marcotty, 1975). The D-structures are a small functionally- 
complete set of control constructs for programs. They consist of simple operations 
(assignments, computations, system calls, or input or output statements), composition of 
D-structures, a conditional branching construct, and a loop construct. 

Data structures are modeled as stores. Stores may be depletable or nondepletable. 
Data placed in depletable stores is removed when it is read. Data in nondepletable stores 
remains in the store until it is overwritten. The parameters for stores are listed in Table 
2. 

Interfaces between the workload and external devices are model using terminators. 
Source terminators generate data or signals to the workload from objects outside the 
workload. Sink terminators receive data from the workload and pass it to objects outside 
the workload. The parameters for terminators are listed in Table 3. 

All the workload components listed above are connected by flows. Flows are specified 
using the INPUT and OUTPUT parameters of the transformations, stores, and terminators 
that they connect. There are two types of flows, dataflows and controlflows. Data flows 
carry data between components. Data is available on discrete flows only at specific 
instances of time. Data is always available on continuous flows. Control (or event) 
flows carry control signals. Data is differentiated from control signals in that for data, 
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Table 1. Transformation parameters. 

Parameter Name Description 

PERIOD 
START_TIME 
SPORADIC 

DEADLINE 

FUNCTION 
PRIORITY 
INPUT 
OUTPUT 

The period of a periodic transformation. 
The time of the first invocation of the transformation. 
The function which returns the time between invocations for a sporadic 
transformation. The default of 0 may be used for transformations which are 
triggered by the availability of data or control signals. 
The deadline of the transformation, either a scalar value or distribution 
name or 0 to indicate no deadline. 
The name of the function which is executed by the transformation. 
The priority of the transformation. 
The name of the store, terminator, or transformation providing input. 
The name of the store, terminator, or transformation accepting output. 

Table 2. Store parameters. 

Parameter Name Description 

TYPE 
ELEMENT 
CAPACITY 
ACCESS 
POLICY 
INPUT 
OUTPUT 

The type of the store: DEPLETABLE or NONDEPLETABLE. 
The size (in bytes) of each element in the store. 
The storage capacity of the store measured in number of elements. 
The access policy for the store: EXCLUSIVE or ALL. 
The storage policy for a depletable store, either FIFO, LIFO, or PRIORITY. 
The name of the transformation providing input. 
The name of the transformation accepting output. 

Table 3. Terminator parameters. 

Parameter Name Description 

TYPE 
ELEMENT 

RATE 

START_TIME 
ACCESS 
INPUT 
OUTPUT 

The type of the terminator: SOURCE or SINK. 
The size (in bytes) of each element generated or accepted by the terminator. 
May be a constant or variable value. 
The time between data arrivals at a source terminator or the minimum time 
between data acceptances for a sink terminator. Either a constant value or a 
value taken from a specified distribution. 
The time that the terminator is to begin producing or receiving data. 
The access policy for the terminator: EXCLUSIVE or ALL. 
The name of the transformation providing input. 
The name of the transformation accepting output. 
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the value is important. For control signals, only the presence or absence of the signal is 
important. 

3.2. SWSL 

SWSL provides language constructs to represent the components of the workload model 
in order to specify SWs. 

A SW is not a real application. It does not execute on real data; it merely produces the 
same workload characteristics as an application which does execute on real data. Since 
there are no real data values upon which to base branching decisions, branching, and thus 
looping, are done probabilistically. Similarly, in a real application, some behaviors of 
the workload occur in response to random external events. To model this behavior, the 
invocation time of sporadic tasks and the generation times for asynchronous data from 
terminators are determined probabilistically. SWSL provides random number generators 
with a range of probability distributions (e.g., uniform, geometric, Poisson, etc.) for use 
in specifying loop counts, task deadlines, invocation times for sporadic transformations, 
and rates for terminators. Probabilistic branching and loop counts were also used in the 
SW specification language for Pegasus (Singh and Segall, 1982). 

Likewise, real-time systems control physical processes. For some applications, the sys- 
tem cannot be evaluated while connected to live sensors and actuators. This is especially 
true when using a SW, which cannot properly interpret data from sensors nor send the 
proper commands and data to actuators. For this reason, the SW simulates the input and 
output behavior of the workload via synthetic terminators. Our implementation of syn- 
thetic terminators is an expansion of external event generation (Singh and Segall, 1982) 
and techniques for device simulation, e.g., (Gomaa, 1986). 

A SWSL specification consists of three files. The first file contains the specification 
of the dataflow graph using the components described above. It also contains the as- 
signment of each component to its appropriate processor in the distributed system. The 
second file contains the specification for the functions executed by the transformations. 
Synthetic operations are defined to produce the effects of computation, data movement, 
and I/O. Loops are specified with a fixed or randomly generated loop count. In branches, 
probabilities are specified for each of the possible branch paths. 

The third file contains parameters used by the SW to control specific behaviors in an 
experimental context. These include the duration of the experimental run and seeds for 
the various random number generator streams used by the SW to simulate stochastic 
behavior. The use of these parameters is described in the Section 4. 

3.3. Synthetic Workload Generation 

Our SWG compiles SWSL specifications and thus completely automates the generation 
of SWs. The synthetic workload generation process is shown in Figure 3. The SWG 
compiles the SWSL graph file to produce an internal representation of the task graph. It 
checks the graph for compliance to the connection rules. Next, it compiles the experiment 
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file. Then, it compiles the functions file and produces C language code for each function. 
Then, it generates files containing tables of the parameter values for the objects on each 
processor. The files for the SW on each processor are then compiled and linked to create 
an executable image. Compilation of the SW files is controlled by the SWG which uses 
the processor assignment information from the graph file to direct the make utility. 

Task Graph Description Experiment 
Parameters 

Run_length 
Seeds 
Time_unit 

1 

Task Functions 

Functionl 
Input x; 
Output y; 
Begin 

End; 

Function2 1 Input n; 
Output m; �9 �9 �9 
Begin 

End; 

Synthetic Workload Generator 

I Parameter 
Arrays 

Driver object 
code 

Application 
tasks C code 

Executable Synthetic ][[[ 
Workload 

Library of 
Operations 

Library of 
Distributions 

Figure 3. Synthetic Workload Generation. 
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4. Experimentation Using a Synthetic Workload 

The purpose of the SW is to aid in performing experiments on HARTS. The SW code is 
developed and compiled on a separate workstation and the executable code downloaded 
to the various processors in HARTS, via the Ethernet. An experiment generally consists 
of the following steps. 

1. Specify the SW using SWSL. 

2. Compile the SW. 

3. Download the executable code to the HARTS processors. 

4. Execute the SW. 

5. Collect performance data. 

These steps are then repeated for each subsequent experiment. To minimize the time 
between experiments, a multiple run feature has been implemented in the SW. With this 
feature, the parameters for a number of experiments are specified at one time. Then the 
SW is compiled and downloaded. Next, steps 4 and 5 may be repeated to perform a 
number of consecutive experiments. After the execution of each run, the SW waits for  
input from the processor's console. This wait gives the user time to upload performance 
data or reset measurement instruments before the system is reinitialized for the next run. 

The length of a run can be specified by the TIm~OUT parameter in the experiment file. 
To ensure statistical independence of performance measurements, no history information 
is kept between runs. All tasks and data structures are deleted at the end of each run 
and reinitialized at the beginning of the next run. Also, all random number generator 
streams are reinitialized as specified by the user. 

5. Synthetic Workload Structure 

5.1. Overview 

The synthetic workload (SW) executes on a distributed real-time system. Our target 
system, HARTS, does not have shared memory, nor does it support remote invocation 
of tasks. Therefore, distributed control must be used in the SW. This control strategy 
requires that the SW on each processor be composed of two groups of processes: the 
synthetic application tasks 1 and the driver processes. The synthetic application tasks 
implement the user-specified SW. The driver controls the SW in the context of an exper- 
iment. 

The graphical representation of the SW for each processor is shown in Figure 4. The 
driver processes and data structures are shown in the labeled box. All other transforma- 
tions, stores, and terminators represent the user specified SW. 

The use of a driver to control a SW is not a new concept. A good discussion on 
workload drivers may be found in (Ferrari, 1978). Our contribution is to describe the 
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Figure 4. Data flow model for the SW processes on a single processor. 

important features of a driver for SWs to be used in distributed real-time systems. These 
features have been implemented in the driver for our SW. 

Our distributed control mechanism is designed to minimize communication overhead 
which would adversely affect the performance indices being measured. The only commu- 
nication overhead is caused when the distributed SW drivers synchronize at the beginning 
and end of each run. Synchronization is necessary if synthetic tasks on different pro- 
cessors require synchronous communication. It is especially important if the tasks are 
periodic. Synchronous communication between unsynchronized, periodic tasks on dif- 
ferent processors can cause intolerably long waits for the task which is invoked first as 
it waits for the other task to be invoked. The SW is different from a distributed discrete 
event simulation, where simulation tasks execute in simulated time. If some processors 
start later than others, then the algorithms which maintain global consistency of simula- 
tion time can quickly bring the processors into relative synchrony. In the SW, all tasks 
run in real ("wall clock") time. The execution cycles of periodic tasks are fixed and are 
independent of the behavior of the periodic tasks. They will not become synchronized 
through the actions of the tasks. Explicit synchronization is required. 

The SW implements all the experimental support provided by SWSL. It fully supports 
the multiple run facility. The duration of each run is determined by the TIMELIMIT 
parameter. Between runs, the workload is completely reset. It is then recreated using 
the parameter values for the next run. The SW is implemented to work in harmony 
with monitors and other measurement mechanisms. It presents itself to the system as an 
application program. Therefore, existing monitors may be used without modification. 

In addition to these behavioral features, the SW has implementation features to make it 
easier to use and easier to port to a new system. Although the synthetic tasks may change 
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for each evaluation, the driver has a fixed structure. It is compiled once for a given target 
system. After that, it is only necessary for the SWG to link the driver's object code with 
the SW. This separation between SW tasks and the driver makes it faster to compile 
SW specifications because the driver code does not need to be recompiled for each new 
specification. Also, the driver and the library of operations contain the system-dependent 
code for the SW. Porting is simplified by localizing the system dependencies. 

5.2. Synthetic Application Tasks 

The synthetic application tasks are responsible for generating the resource demands on 
the processor. They are the implementations of the transformations in the SWSL specifi- 
cation. They execute code generated from the function file. Computation and communi- 
cation are performed using synthetic operations. We have developed a library of synthetic 
operations. A synthetic operation may be called from a SWSL function to produce a 
specific resource demand or communication behavior. Examples of thes operations are 
f l o a t  (n) and w r i t e  (d). The former performs n floating point arithmetic operations, 
and the latter sends a message to the destination exchange d. The size of the message is 
determined by the size of the data elements specified for d. Tile probabilistic branching 
and looping constructs use independent random number generator streams. A library of 
random number generators for different distribution functions is available. 

5.3. Driver Processes 

The driver controls the execution of the SW in the context of an experimental evalua- 
tion. The driver processes are responsible for initializing and starting the SW, for the 
synchronization between the SWs on the various processors, and for the scheduling of 
stochastic events and simulated I/O. 

The root process executes first at system initialization. It spawns all the other driver 
processes and synthetic application tasks and creates the data structures that implement 
the stores. It also synchronizes with the root processes on the other processors at the 
beginning and end of each execution. 

The driver uses the TIMEOUT parameter from the experiment file to specify the maxi- 
mum time that each run is to execute. When this time is reached, the run ends. At the 
end of a run, all SW tasks, data structures, and processes, except for the root process, 
are deleted. No history information is kept between runs. Hence, runs are statistically 
independent. After the execution of each run, the root process waits for input from the 
user. This wait gives the user time to upload performance data or reset measurement 
instruments before the system is reinitialized for the next run. 

The two other driver processes are the trigger and dispatcher. Together, they provide 
a facility for dispatching periodic and asynchronous tasks to the pSOS scheduler, which 
does not directly support periodic scheduling. The trigger acts as a software timer that 
periodically sends clock tick messages to the dispatcher. The time interval between these 
messages is specified with the TIME_UNIT parameter in the experiment file. 
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The dispatcher uses the trigger messages to count time. The time value is used for 
the scheduling of activities, which, on HARTS, include dispatching periodic tasks and 
the enforcement of task deadlines. On a system whose operating system fully supported 
periodic tasks, these functions of the dispatcher would not be necessary. Therefore, 
scheduling of periodic tasks and enforcement of deadlines are not considered to be 
permanent parts of the SW. The dispatcher maintains an activity 2 queue which is similar to 
event queues used in discrete event simulation systems. Activities correspond to actions 
that are to be performed by the dispatcher at specific times. Activities indicate each task's 
start time, as defined by the START_TIME, PERIOD, and/or SPORADIC parameters, and 
deadline, as specified by the DEADLINE parameter. There are also activities to indicate 
the times when the simulated terminators are to produce or consume data. 

The dispatcher uses the RATE parameter for terminators to determine when to send 
messages or events from source terminators and when to read messages or events at 
sink terminators. The SW simulates terminators by using a data structure and a task 
for each terminator. The data structure is used if the simulated terminator is to produce 
or receive data. Synthetic application tasks that communicate with the terminator will 
send and receive messages to/from the data structure. The terminator task is used if the 
simulated terminator is to produce or receive signalled events, since only tasks may send 
and receive events in pSOS. When instructed by the dispatcher, it sends signals to the 
appropriate application tasks or reads signals sent by application tasks. 

When the dispatcher invokes each task, if that task has a specified deadline, then the 
dispatcher places a deadline activity with the proper time value on the activity queue. 
Each task sends a message to the dispatcher when it has completed execution. (It is 
assumed that a task executes its function completely within each period.) The dispatcher 
uses this information to cancel the corresponding task deadline activity in the activity 
queue. If the time indicated for a deadline activity is ever reached, then the dispatcher 
kills the corresponding task and creates another task with the same characteristics. This 
ensures that the task will be in its initial state when it is next invoked. 

6. Driver  Overhead 

As was stated earlier, the application tasks are to produce the desired workload charac- 
teristics. It is their structure and behavior which has been specified by the user. The 
structure of the driver is fixed. Obviously, its behavior is influenced by the workload 
parameters. The dispatcher, for example, will execute more frequently in a workload 
with short period tasks than it will in a workload with longer period tasks. However, 
the amount of time that it executes per task invocation will be fixed. The driver thus 
produces a calculable overhead per task execution. This overhead may be measured and 
taken into account as the workload is being tuned for a particular experiment. Since 
we are working with real-time systems, we want the driver overhead to be as low as 
possible. We want to minimize the amount that the driver perturbs the performance of 
the application tasks. 

We ran the synthetic workload on HARTS in order to measure the driver overhead. 
The workload consisted of four application tasks. The execution of each task consisted of 
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simply a loop to use CPU time. Since the per invocation overhead is fixed, this workload 
was sufficient. Data was collected for each of the three driver processes (root, dispatcher, 
and trigger). The dispatcher time was measured separately for each of the functions that 
it performs. These functions include: invoking a task, aborting a task which has reached 
its deadline, and performing a time update. The times given for each operation is the 
time from when the dispatcher reads the message until immediately before it makes the 
system call to request the next message. The time to perform this system call is of the 
order of 100 #sec. The average time for a single task invocation was 118 #sec. The 
time here is clearly dominated by the approximately 100 #see. it takes to perform the 
resume_p0 system call which is used to invoke a task. The time to process a deadline 
event is 469 #sec. This time is inflated by the number of system calls that must be 
performed to destroy the task and spawn and activate a new version of it. 

The trigger process took 247 #sec. per trigger. The actual amount of code in the trigger 
process is small, but the execution time is inflated because two pSOS system calls are 
made per trigger. Finally, the root process executed for less than 60 milliseconds total. 
This time is primarily used in system initialization. The root process is suspended while 
the rest of the workload is executing. 

7. Summary and Conclusions 

A SW is a useful tool for use in performance analysis of prototype systems. It allows 
the user to create arbitrary workloads. These workloads may be representative of real 
workloads, or they may be designed to represent artificially extreme operating conditions. 
This capability is achieved by allowing full flexibility in the SW application tasks in 
addition to the parameterized SWSL specification. Experiments demonstrating both the 
ability of the SW to be representative of a real robot control system and the ability to 
generate specific, controlled workload characteristics are described in (Kiskis, 1992). 

By creating SWSL, the SWG, and the SW, we have provided a tool for generating 
SWs. The SWG does not have to be used as a stand-alone tool. Because we have based 
the workload model, and hence, SWSL, on ESML, an established software specifica- 
tion notation, the SWG can be integrated into toolsets which support ESML or similar 
notations. In such a toolset, the high-level software specification in ESML could be aug- 
mented with SWSL parameters. Such a system would allow the developers to produce 
an SW which is representative of the software they are building. Of course, the level 
of representativeness is determined by the ability of the developers to accurately predict 
the resource demands of the tasks being modeled. As the various software components 
are developed, the real code may be used in place of the corresponding components of 
the SW. The caveat here is that, as described in Section 3.2, the synthetic tasks can- 
not manipulate real data and, thus, cannot interact with the real tasks in complex ways. 
Therefore, the level of granularity for replacement of SW components with real code 
may be relatively coarse. 

The primary enhancement planned for the SW is to enable the specification and gen- 
eration of SWs for Posix compliant systems. This will require an evaluation of all 
components of the synthetic workload generation system, from workload model to SW, 



18 D. KISKIS AND KANG G. SHIN 

to determine what modifications must be made to support the wide range of tasking, 
resource usage, and interprocess communication that is supported in such systems. Due 
to the generality of the workload model, these changes should be isolated to the selection 
of object parameters and the implementation of the driver and workload objects. 

Notes 

1. The term "task" is used to distinguish the synthetic application processes from the driver processes. 

2. The term "activity" is used to avoid confusion with events in the workload model. 

References 

W. Bruyn, R. Jensen, D. Keskar, and E Ward. ESML: An extended systems modeling language based on the 
data flow diagram. ACM Software Engineering Notes, 13(1):58-67, 1988. 

W. Buchholz. A synthetic job for measuring system performance. IBM Systems Journal, 8(4):309-318, 1969. 
E Feather. Validation of a fault-tolerant mulfiprocessor: Baseline experiments and workload implementation. 

Master's thesis, ECE Dept., Carnegie-Mellon University, Pittsburgh, 1984. 
F. Feather, D. Siewiorek, and Z. Segall. Validation of a fault-tolerant multiprocessor: Synthetic workload 

implementation. In Proc. Int'l Conf. on Distributed Computing Systems, pages 303-312, May 1986. 
D. Ferrari. Computer Systems Performance Evaluation. Prentice-Hall, Englewood Cliffs, 1978. 
D. Ferrari. A performance-oriented procedure for modeling interactive workloads. In D. Ferrari and 

M. Spadoni, editors, Experimental Computer Performance Evaluation, pages 57-78, New York, 1981. North- 
Holland. 

D. Ferrari. On the foundations of artificial workload design. In Proc. of 1984 ACM SIGMETRICS Conf. on 
Meas. and Modeling of Comp. Sys., pages 8-14, August 1984. 

H. Gomaa. Software development of real-time systems. Communications of the ACM, 29(7):6574568, July 
1986. 

Daniel L. Kiskis. Generation of Synthetic Workloads for Distributed Real-Time Computing Systems. PhD 
thesis, University of Michigan, August 1992. 

Daniel L. Kiskls and Kang G. Shin. SWSL: A synthetic workload specification language for real-time systems. 
IEEE Trans. Software Engineering, 20(10):798-811, oct 1994. 

H. F. Ledgard and M. Marcotty. A genealogy of control structures. Communications of the ACM, 18(11):629- 
639, November 1975. 

H. C. Lucas, Jr. Synthetic program specifications for performance evaluation. In Proc. ACM Annual 
Conference, pages 1041-1058, Boston, August 1972. 

H. D. Schwetman and J. C. Brown. An experimental study of computer system performance. In Proc. ACM 
Annual Conference, pages 693-703, 1972. 

K. G. Shin, D. D. Kandlur, D. L. Kiskis, P. S. Dodd, H. A. Rosenberg, and A. Indiresan. A distributed 
real-time operating system. IEEE Software, pages 58-68, September 1992. 

Kang G. Shin. HARTS: A distributed real-time architecture. IEEE Computer, 24(5):25-35, May 1991. 
A. Singh and Z. SegalL Synthetic workload generation for experimentation with multiprocessors. In Proc. 

lnt'l Conf. on Distributed Computing Systems, pages 778-785, 1982. 
Software Components Group, Santa Clara, CA. pSOS User's Guide, 1986. 
K. Sreenivasan and A. J. Kleinman. On the construction of a representative synthetic workload. Communica- 

tions of the ACM, 17(3):127-133, March 1974. 
H. Tokuda and M. Kotera. Scheduler 1-2-3: An interactive schedulability analyzer for real-time systems. In 

Proc. of the 12th Annual Int'l Computer Software & Applications Conference, pages 211-219, 1988. 
D. C. Wood and E. H. Forman. Throughput measurement using a synthetic job stream. In AFIPS Fall Joint 

Computer Conference, volume 39, pages 51-55, November 1971. 


