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Abstract. A new formulation for the channel capacity problem is derived 
by using the duality theory of convex programming. The simple nature of 
this dual representation is suitable for computational purposes. The results 
are derived in a unified way by formulating the channel capacity problem 
as a special case of  a general class of concave programming problems 
involving a generalized information measure recently introduced by Burbea 
and Rao [10]. 

1. Introduction 

Channel capacity, a basic concept in information theory, was introduced by 
Shannon [27] to specify the maximum rate at which information can be reliably 
conveyed by the channel. Roughly speaking, the basic theorem of information 
theory, the so-called "noisy channel coding theorem," states that if a given noisy 
channel has capacity C, it is possible to transmit, over this channel, messages of 
sufficiently large length and still be able to decode them with an arbitrary small 
probability for error, provided the rate of transmission is less than C. Methods 
for computing the capacity C of a discrete channel have been studied by Muroga 
[21], Cheng [12], and Takano [28]. The best-known algorithm, however, is the 
one introduced independently by Arimoto [2] and Blahut [7]. A somewhat similar 
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iterative procedure based on the method of quasi-concave programming was 
proposed by Meister and Oettli [20]. In these previously mentioned works, the 
computational schemes are derived using the primal formulation of the channel 
capacity problem. 

In this paper the classical channel capacity problem is embedded in a family 
(P~) of linearly constrained concave programming problems, each member of 
which is determined by a choice of a convex function q~; the classical case 
corresponding to ~(t)  = t log t. The objective function in (P~) is the generalized 
average mutual information measure, recently introduced by Burbea and Rao [10], 
and the optimal value of (P~) is our generalized channel capacity C,p. 

A duality theory is developed for (P~) resulting in a dual representation of 
C~. As a special case, a new formulation of the classical channel capacity is 
obtained. The dual of (P~) (denoted (Dr))  is a specially structured unconstrained 
minimax problem, thus rendering itself to efficient computational methods. The 
dual formulation is also very useful for obtaining upper bounds for C~. The 
paper is organized as follows. In Section 2 the formulation of the classical channel 
capacity problem is given and the iterative method of Arimoto [2] and Blahut 
[7] is briefly reviewed. In Section 3 we formulate the generalized capacity C~ 
and develop the theory leading to two different dual representations, the first 
(Theorem 3.1) is suitable for computations and the second (Corollary 3.1) is 
useful for deriving upper bounds. The bounds are given in Section 4, it is also 
shown there that the bound is attained for symmetric channels, i.e., an explicit 
formula for C~ is obtained. Section 5 contains concluding remarks and a brief 
discussion on possible extensions. 

2. The Channel Capacity Problem 

Consider a communication channel described by an input alphabet A =  
{1, 2 , . . . ,  m}, an output alphabet B = {1, 2 , . . . ,  n}, and by a probability transition 
matrix Q = { Qkj}, where Qkj is the probability of receiving the output letter k c B 
when input letter j c A was transmitted, i.e., }~n k = ~ Qkj = 1 for all j ~ A and Qkj >- 0 
for all k c B, j c A. The capacity of the channel is defined as 

C : = m a x  I(p, Q) :=max  Y~ pjQkjlog m Qkj (2.1) 
p e p , , ,  p e P , , ,  j = l  k = l  ' ~/=1PlQm' 

where 

P,,:={p~,m: pj>-O, VjcA, ~ p~=l} (2.2) 
j = l  

is the set of all discrete finite probability measures on the channel input, and 
I(p, Q) is known as the average mutual information between the channel input 
and channel output, considered here as a function of p. The utility of the concept 
of capacity is widely discussed in the literature and for more details the reader 
is referred to Shannon [27], Gallager [15], and Jelineck [16], and to the more 
recent book of Csiszar and Korner [14]. For a given probability transition matrix 
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Q, it is shown in Gallager [15] that I ( . ,  Q) is a concave function of  p and 
therefore problem (2.1) is a concave programming problem over the simplex P,,,  
then any of a number of readily available nonlinear programming codes can be 
used to compute C. However, as reported by Blahut [7], computational experience 
with nonlinear programming codes applied to problem (2.1) have proved to be 
inefficient even for small alphabet sizes and to be impractical for the larger 
alphabet sizes. This motivated Arimoto [2] and Blahut [7] to develop indepen- 
dently a systematic iterative method for computing the capacity. This was done 
by exploiting the special structure of the objective function I ( . ,  Q). More 
specifically, let P =  (Pjk) denote a transition matrix from the channel output 
alphabet to the channel input alphabet, then 

I(P, Q) = max J(p, P; Q):= }~ pjQkj log (2.3) 
P6T j=l k=l pj J '  

where 

T : = { P ~ m x " ' :  ~ Pjk=l, a l l k=l , . . . , n ,  Pjk>--Oallj and k}. 
j= l  

This can be verified by noting that the maximum of J is attained at 

QkjPj 

The Arimoto-Blahut algorithm can be summarized as follows: 

(0) Choose an initial probability vector p(°) ~ pro. 
At iteration r, where p(r) is given: 

(i) Compute p(r)= argmaxv~T j(p(r), p; Q). 
(ii) Updatep (r+l) = argmaxp~p,,, J(p, p(r); Q). (2.4) 

(iii) Iterate re- r+ 1. 
The solution of (2.4) is explicitly given by 

p(r+l)_ _(r) cj(P (~)) (2.5) 
/ -1-9 ~pic:(p(r)), 

where for any p c Pm 

cj(p)=exp{~ Qkjlog Okj "~ 
ZI plQkiJ" 

That the method (2.5) converges, i.e., lim~oo I(p (~), Q) = C, see Arimoto [2] and 
Blahut [7]. The amount of computation involved depends upon the size of the 
channel matrix. Some conditions under which the amount of computation can 
be reduced are discussed in Cheng [12] and Takano [28]. 

In this paper we suggest a dual formulation to the channel capacity problem. 
The simple nature of this dual problem opens the possibility of applying many 
of the recent numerical schemes available in the mathematical programming 
literature, in particular for a large alphabet size (see e.g., [26]). This will be 
discussed in the next sections. 
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3. The Generalized Capacity Problem and Its Duals 

In this section we derive, in a unified way, a dual representation for the channel 
capacity problem. Recall that the channel capacity C is given as the optimal 
value of the following optimization problem: 

sup ~'~2.,pjC.~kj~l ~,, Q kj (3.1) 
p~P,,, j °gL, t-,  PtQkI" 

rn 
We denote by qk the output probabilities, then qk := ~ j = l  PjQkj, qk >- 0 for all 
k = 1 , . . . ,  n, ~k=l qk = 1, i.e., with our notation q ~ P, .  In the decision variables 
(Pj, qk), problem (3.1) can be written equivalently as 

(P) sup sup ~ S~ pjQkj log Qkj- ~ qk log qk (3.2) 
p~P,,, q ~ , ,  j k k = l  

s.t. ~ PjQkj= qk, V k =  1 , . . . ,  n. (3.3) 
j=l 

The objective function in (3.2) is concave in (p, q), therefore problem (P) is a 
linearly constrained concave program. Also note that the feasible set of (P) is a 
compact convex polyhedron in Era+,, hence the sup in (P) is actually attained. 
The special structure of the objective function formulated in (3.2) (linear in p 
minus strictly convex in q) motivated us to consider the following general class 
of concave programming problems: 

(P~) max max 2 Pj ~ ( 0 k j ) -  ~ q~(qk) 
p~p,,, qcP,, j = l  k - I  k = l  

(3.4) 

s.t. ~ PjQkj= qk, k = l, . . . , n. 
j - - I  

Throughout the rest of this paper, we assume that ¢, is a given twice continuously 
ditterentiable strictly convex function defined on an interval containing (0, 1], 
normalized such that ~ (0 )=p (1 ) , g , ' ( 1 )<oo ,  and satisfying the additional 
assumption lim,~o+ ~ ' ( t ) = - c o .  Note that the latter assumption holds if ~ is 
essentially smooth in [0, +oo) (see, e.g., Rockafellar [24]). We denote the class 
of such ~ by ~,  accordingly, C~, will denote the optimal value of problem (P~,). 
An important example of functions q~ ~ d~ is provided by the family ~ of functions 
(parametrized by a):  

~ ( t ) = I 1  l ~ a ( t - t  ~) for 0 < a < l ,  

[. t log t for a = 1. 

Clearly, with ~ ( t )  = t log t, problem (P~) is just the classical channel capacity 
problem (P). 

The objective function used in (P~) is exactly the generalized average mutual 
information measure introduced and studied by Burbea and Rao [10]. A related 
generalized measure of information was also recently introduced by Ben-Tal and 



Capacity and Generalized Information Measures 125 

Teboulle [6] and the associated rate distortion function was studied. For addi- 
tional generalizations and applications of generalized information measures the 
reader is referred to Aczel [1], Arimoto [3], Burbea [8], [9], Burbea and Rao 
[11], Csiszar [13], Rao and Yayak [22], Renyi [23], and Ziv and Zakai [30]. 

The dual representation of (P~) will be derived via Langrangian duality. 
Before stating the main result of this section we introduce the following notations 
and definitions. For any ~p c qb, let f :  R" ~ R be defined by 

f(v)=inf(r~+,EaL k=l ~ ¢*(Vk--rl)} ' (3.5) 

where ¢*(y)  = sup ,{ ty -  ~p(t)} denotes the usual convex conjugate of ¢. Also, let 
l: R" ~ R be defined by 

/ (v )=  max {lj(v)+bj}, (3.6) 
l - - < j < m  

where {/j} are the linear functions given by lj(v)=--y~km~ VkQkj and bj denotes 
the constants bj = ~ k ' l  ~P(Qkj). 

Theorem 3.1. The dual problem of  ( P¢ ), for ~p c d~ , is given by 

(D~) i n f  { f (v )+l (v)} .  (3.7) 

I f  ( P~) is feasible the minimum in ( D~) is attained and the optimal values coincide: 

C~ = max(P~) = min(D¢). 

Proof The Langrangian for problem (PC) is 

n r n  n n 

L(p,q,v)=- Z p, Z q vk-2pjvkQ j 
k=, j=~ k 1 k-~ j.k 

and is separable in the decision variables (p, q). The dual objective function is then 

) h(v) = maxp~,,, J~l pj I ~(Qkj)--VkQkj +maXqE~,, k=l qkVk - - ~ ( q k )  (3.8) 

and the dual problem is defined as min~R,, h(v). The first "max" in (3.8) is easily 
computed: 

m a x  E Pj ~ (  Qk2) -- VkQkj = ~ (  Qkj)  -- VkQkj • (3.9) 
p E P , , ,  j 1 k 1 

To evaluate the second "max" in (3.8) we note that a Langrangian dual of 

a : = m a x  ~ qkVg--~(qk) (3.10) 
q Eff~ , k = l  

is given by 

fl := min('q + ~ m a x  {qk(Vk--~)--q~(qk)}}, (3.1l) 
-qE~ t. k qk~-O 
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where 77 is the Lagrange multiplier for the equation ~ qk = 1. Problem (3.10) is 
a linearly constrained concave program trivially satisfying the Slater constraint 
qualification and hence by standard duality arguments [23] we have a =/3. 

To compute /3, we consider the problem e(y)=sup,>_o{ty-~o(t)}. By the 
monotonicity of ¢', it follows that 

f sup{ ty-~( t )}=ch*(y)  if y->~'(0),  
tcR 

e(y) = t. - ( (0 )  if y <  q~'(0). 

But since we assumed that ¢ ' (0 )=-oo ,  we conclude in fact that e(y)= q~*(y). 
Using this result in (3.11) we get 

/3=min/rt+,~nt k=l ~ ¢*(Vk -- r/)}. (3.12) 

Substituting (3.9) and (3.12) in (3.8) and using the notations (3.5) and (3.6) we 
thus obtain h(v)=f (v )+ l(v) and hence the dual representation (3.7) is proved. 
Further, for ~ c qb, q~ is convex and then ~7 +~k q~*(Vk -- 77) is jointly convex in 
(~/, v) c R × •", hence (by Theorem 1 of Rockafellar [25]) f (v)  is convex. Finally, 
since (P~) is assumed feasible and is linearly constrained, the Slater regularity 
condition holds trivially and then it follows from standard duality results (see, 
e.g., [24]) that the inf(D~) is attained and max(P~)= min(D~). [] 

The next result shows how to obtain the optimal solution of the primal 
problem (PC) from an optimal solution of the dual. 

Theorem 3.2. Let ~ be the optimal solution of ( D~). Then the optimal solution 
(p, :1) of theprimalproblem (P~) is computed as follows: 

qk = (~')-l(fk - f/), k = 1 , . . . ,  n, (3.13) 

where ~7 is the unique solution of the equation 

E (~')-l(/Sk -- ~)---- 1 (3.14) 
k 

and ~ is the optimal solution of the linear program 

(L~) max ~ p : (~  q~(Okj)) 

s.t. ~ p/Qk: = (lk, k= 1, . . . ,  n, 
J 

~pj  = 1, pj>--O, j = l , . . . , m .  
J 

Proof. The expression (3.13) for qk is just the optimality conditions for qk = fflk 

to solve the inner maximization in (3.11) (recall that the optimal qk cannot be 
zero as explained in the proof of Theorem 3.1). The optimality condition for 
r /= ~ to solve the convex unconstrained problem (3.12) is 

(¢*)'(Vk -- ~7) = 1. (3.15) 
k 
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But (~o*)'= (q~')-~ (see, e.g. Section 26 of [24]) and thus (3.15) is exactly (3.14). 
Now, since ~cqb,~o'(0)=-co and q~'(1)<~ implying ( ¢ ' ) - ' ( - ~ ) = 0  and 
(q~')-~(oo)> 1. Thus equation (3.14) has a solution ~ = ~7(15) for all iS, which is 
also unique since ~' (and hence (¢ )  1) is strictly monotone. The statement 
concerning/5 follows immediately from (3.4). [] 

The dual problem (3.7) is an unconstrained discrete minimax problem. Many 
algorithms for such problems have been proposed in the nonsmooth optimization 
literature, see, e.g., Wolfe [29], Lemarechal [18], [19], and, more recently, Kiwiel 
[17]. Alternatively, the dual problem (3.7) can be reformulated as a linearly 
constrainted convex program in R "+~. Indeed, by defining V,+~:= 
maxl<j<, {lj(v)+ bj}, problem (3.7) is equivalent to 

min f ( v )+ v,+~ 
v c ~  n+ l  

(3.16) 
s.t. l j ( v )+b j -v ,+~O forall j - -1 , . . . , rn ,  

in which case many nonlinear programming codes are readily available for solving 
the dual formulation (3.16) (see, e.g., Schittowsky [26] or the recent generalized 
reduced gradient code of Lasdon). 

The special structure of the dual problem 

min { f ( v ) +  m a x  {/j(/))+bj}} 

suggests a method in which f is approximated at the rth iteration by a polyhedral 
function (i.e., pointwise maximum of finitely many affine functions) 1r~(v), and 
the next iteration point v r+~ is the optimal solution of 

min{ 7rr(v) + max{lj(v) + by}}. (3.17) 
v 

Since (3.17) is a linear minimax problem it can be efficiently solved with simplex- 
like algorithms (e.g., [4] and [5]). The new polyhedral approximation 1rr+l(V) is 
obtained by 

1r,+~(v) = max{Trr(v), s~+,(v)}, 

where Sr+l(') is the affine support o f f  at v r+l. 
Let us derive the dual representation of the classical channel capacity C. 

This is done simply by substituting ~o(t) = t log t in problem (Dr). The conjugate 
is ¢*( t*)= e '*-~ and so 

f (v)=min{~7+~e~k-1} =l°g ~ k k=l ~ e~, 

by simple calculus. 
Then, using Theorem 3.1, a dual representation of C is given by 

C = rain log ~ e ~k + max Qkj log Qkj - OkjVk • (3.18) 
v ~ "  k = l  l < J  <rn 
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In the last part of this section we present an alternative dual problem to (P,) 
which is given directly in terms of the problem's data. 

Corollary 3.1. Let ~ ~ ~,  then 

C~ = miny~p,, l~J <-mmax {~k ~P'(Yk)(Yk--QkJ)+~(Qki)--~P(Yk)} " (3.19) 

Proof From the proof of Theorem 3.2 it follows that f ( v )  defined in (3.5) is 
given by 

f ( v )  = r / (v )+~  ~p*(vk- ~7 (v)), (3.20) 
k 

where r/(v) is the unique solution of the equation 

E (~*)'(vk- ~)= 1. 
k 

Define new variables yk=(¢*)'(Vk--~(V)).  Then ~ k y k = l  and yk>--0 since 
(~p*)'(-oo) = 0 and (~*)' is increasing, hence y ~ P, .  From the definition of yk, 
and using (¢*) '= (¢')-~, 

Vk -- ~(V) = ¢'(Yk). (3.21) 

Substituting (3.21) in (3.7) and using (3.20) we obtain 

C~ = minf~(v)+Y~ ~p*(q~'(yk)) + max ~ q~(Qkj)- Okj(rt(V)+¢'(Yk))l.  
v,y k l ~ j ~ m  k J 

But Y~k Qkj = 1, hence 

C~ = m i n t ~  q~*(~p'(yk))+ m a x  ~ ~p(Qkj)--Qkj~p'(yk)}. (3.22) 
y k k l~j<--m k 

Finally, using in (3.22) a simple fact concerning conjugate functions, 

~p*(~p'(t)) = tq~'( t) - q~( t), 

we get the desired result (3.19). [] 

Applying Corollary 3.1 to the classical case ~p(t)--t log t, a little algebra 
shows that a dual representation of C is 

Q~j 
C = min max ~ QkjlOg 

Y~P,~ l<--J ~ m  k Y k  

and we recover here a result given in Meister and Oettli [20]. 

4. Upper Bound for C~ 

The dual representation derived in Corollary 3.2 is also useful for deriving an 
upper bound on C,. 
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Theorem 4.1. For any ~ ~ c~, 

¢ y Qkj + max 2q~(Qkj)--Qkjq~ 
j m \ j  m / t j  l ~ J  "<m k 

129 

(4.1) 

)Ol 
Qkj + m a x - -  Qkj Qkj - 2 Q~j 

m k 1 - -  O[ l<~j ~ r n  m a - -  1 g 

U~--  if O < a < l ,  

l o g m +  max ~Qkj log Qkj if a = l .  

In particular, we see that the classical lower bound derived in Arimoto [2] is 
recovered, i.e., 

C-= C 1 -  < U1. 

An interesting special case for which the upper bound is attained is in the case 
of a symmetric channel, i.e., one with the same set of entries in columns and 

m 

rows of Q, with possible permutations. In that case we have ~j=~ Qkj = const. = 3 
for all k. 

with 

Theorem 4.2. I f  the channel is symmetric, then, for any ~ ~ c~, C~ is equal to the 
upper bound, i.e., 

C~ = - n ~  ~. q~( Qkj). (4.3) 
m j,  k 

Example 4.1. Let us consider the family q~ with functions q~ given by 

~ p ~ ( t ) = t l _ ~ l a ( t - t ~ ) ,  0 < a < l ,  

[. t log t, a = 1. 

We denote respectively by Ca and U~ the corresponding capacity and its upper 
bound. Using Theorem 4.1 we get 

Proof From the dual representation (3.19) 

C~-< l-~j-<,,max {~k=l q~'(Yk)(Yk--QkJ)+~(QkJ)--q~(Yk)} (4.2) 

n 

for every y satisfying ~k=l Yk = 1 and Yk -->0, k = 1 , . . . ,  n, in particular, for Yk = 

r n  

(~j=l Qkj)/m. Substituting this special choice in (4.2), and rearranging the terms, 
we obtain the upper bound in the theorem. [] 
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Proof 

C~>---~.q~(qk) + ~ Pj ~ ¢(Qkj) 
k j~l k=l 

for any (p, q) ~ Pm X P .  satisfying 

Y~ PjQkj = qk, k = 1 . . . .  , n. 
J 

A, Ben-Tal and M. Tebou|le 

From the primal formulation of C¢ (see (3.4)) a lower bound is given by 

(4.4) 

(4.5) 

Since the channel is symmetric, ~.~ Qkj = ~ for all k and this implies that m = n6. 
Thus, p* = 1/m and q* = 1/n satisfy (4.5). Substituting (p*, q*) in (4.4) we obtain 
the lower bound 

( ! ]  q_L ~ q~(Okj). (4.6) C'P>--n~\n/  m j ,  k 

From Theorem 4.1, using the fact m = nt~, we have the upper bound 

C ~ < - - n ~ ( 1 )  +max~'~(okj)'~ k (4.7) 

Since the channel is symmetric, it has the same set of entries in each column, 
thus ~,k ~(Qkj) = Yj = const, for all j and, hence, 

max ~ ~(Qkj) = 1  ~ ¢(Qkj). (4.8) 
l<J  ~rn k m j , k  

Therefore, substituting (4.8) in (4.7), we see that the upper bound for C~ coincides 
with its lower bound given in (4.6). [] 

Example 4.2. Consider the Binary Symmetric Channel (BSC) defined by 

/3 1 

Using Theorem 4.2 we obtain, for any ~ c qb, 

cBSC -2~(½) + ~p(1 - /3 )  + ~(/3). 

In particular, for q~(t) = t log t we get the well-known result (see, e.g., [15] and 
[16]) 

C ~sc = log 2+ (1 - /3 )  log(1 - /3 )+ /3  log/3. 

5. Conclusions and Extension 

A new formulation of the channel capacity problem has been obtained by using 
the duality theory of convex programming. This new dual representation seems 
useful for computational purposes and the derivation of bounds. Furthermore, 
the results in this paper demonstrate that the new information measure of Burbea 
and Rao [10] can be successfully used to develop a generalized channel capacity 
theory. 
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F ina l ly ,  we  r e m a r k  t h a t  o u r  dua l i t y  f r a m e w o r k  c a n  be  eas i ly  e x t e n d e d  to  the  

mu l t i p l e  c o n s t r a i n e d  c h a n n e l  c a p a c i t y  p r o b l e m  (i.e., w h i c h  i n c l u d e  a d d i t i o n a l  

l inea r  i n e q u a l i t y  c o n s t r a i n t s  on  the  i n p u t  p r o b a b i l i t y  p, see [5])  to  p r o d u c e  a 

s i m p l e  d u a l  f o r m u l a t i o n .  Also ,  at the  p r i ce  o f  s o m e  a d d i t i o n a l  t e c h n i c a l i t i e s ,  t he  

c o n t i n u o u s  a l p h a b e t  c h a n n e l  p r o b l e m  [7] [15] can  be c o n s i d e r e d ,  via  a d u a l i t y  

t h e o r y  f o r  i n f i n i t e - d i m e n s i o n a l  o p t i m i z a t i o n  p r o b l e m s  f r a m e w o r k ,  to  o b t a i n  t he  

c o n t i n u o u s  v e r s i o n  o f  T h e o r e m  3.1 a n d  its co ro l l a ry .  
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