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Abstract. This paper introduces a globally convergent  algori thm for solving 
a class of nonsmooth  optimization problems, involving square roots of 
quadratic forms. The class includes in particular limit analysis problems in 
plasticity. The algori thm combines smoothing  with successive approximation.  
The main computa t ional  effort in each iteration is solving a linear weighted 
least-squares problem. The convergence of the algori thm !s proved and an a 
priori error estimate is obtained. Numerical  results are presented for two limit 
analysis problems. 

1. Introduction 

This paper is motivated by certain problems in mechanics, in particular Limit 
Analysis of beams and plates, and by an algori thm of  Yang [12], which solves 
them by using the (discretized) dual problems and employs a smoothing technique 
combined with successive approximations steps to obtain efficiently good  ap- 
proximate solutions. 
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Here, we embed the above limit analysis problems in a wider class of 
nonsmooth functionals (involving sum of square roots), which contain other 
problems in mechanics, and also some location problems (e.g., the Fermat-Weber 
problem), see Section 2. We provide an algorithm for minimizing functionals in 
the above class, which is based on a combination of smoothing and successive 
approximation (CSSA algorithm). For  the limit analysis problems considered in 
this paper, the CSSA algorithm is a modification of Yang's algorithm. Although 
the two algorithms behave numerically quite the same, it is only the CSSA 
algorithm which lends itself to a rigorous convergence analysis. For  the Fermat-  
Weber problem, the CSSA algorithm coincides with an algorithm by Morris [9] 
which is a modification of the well-known Weisfeld algorithm [7], [11]. More 
recent algorithms for location problems can be found in, e.g., [3] and [8]. 

Our main contribution is providing a comprehensive convergence analysis for 
the CSSA algorithm. Moreover, we show that the main computational effort of 
the CSSA algorithm is to solve a linear weighted least-squares problem, see Section 
3. The convergence analysis developed in Section 4 also furnishes an interesting 
explanation to a phenomenon already observed by Yang, namely the excellent 
performance of the algorithm in the first step, regardless of the starting point and 
the size of the smoothing parameter. In Section 5 we derive a dual problem to the 
smoothed primal and show how to use it to obtain a stopping criterion for the 
algorithm and an estimate on the suboptimality of the solution reached. In Section 
6 we report on computational results in using the CSSA algorithm for solving two 
limit analysis problems: a small-scale three bar truss and a large-scale (2500 
variables) simply supported square plate. 

2. A Class of  Nonsmooth Problems 

In the theory of plasticity, a prototype problem from limit analysis of beams [12] 
is to find the plastic collapse load 2* which is the optimal solution of 

max{2: m"(x) = 2qo(x), [M(x)l < 1, a _< x < b}, (2.1) 

where M(x) is the moment in the beam; qo(x) is a given load distribution and the 
static boundary condition on M(x) at the ends a and b should also be included 
in (2.1) if they are prescribed. This prototype problem is an important special case 
of more general problems of mechanics given in two and three dimensions. They 
involve a partial differential equation for equilibrium and a more general norm 
inequality for material behavior. For  example, the simply supported plate problem 
[12] is to find the maximum load parameter 2* solving 

max{2: V' V" u = 2~0, F(u) < Uo, boundary condition on u} (2.2) 

where 

gly x b l y y /  

ux~, uyy are the bending moment  components, u~y is the twisting moment, u o is a 
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material constant, ~o(x, y) is a given distribution function, and 

F(u)..= (uL + 2u~, + u,~) 1/~ 

is the Frobenius norm. 
For the above-stated problem (2.2), namely the primal problem, we can derive 

a dual problem, see, e.g., [12]: 

u o ffaF(VVv) dx dy (2.3) min 

subject to 

ffnv~o dy = 1, boundary on v. dx conditions 

Note that the dual problem has a nonsmooth objective function due to the 
presence of the square root. Minimization of the square root of functionals arise 
in other applied mechanic problems. For  example, the minimal surface or plateau 
problem [4] is 

~ f , j  2 2 dx min 1 + ux + uy dy (2.4) 

subject to 

u = 9 a given function on ~f~. 

The discretization of the above problems (in the dual formulation) can be 
embedded in the following class of convex nonsmooth optimization problems: 

(P) min{f (x ) :=  ~ hi(Qix - ri): x ~ ,"}, 
a=l  

where Qa ~ ~P×", ri~l~ p, hi: ~P~ ~ is the convex function (weighted norm) 
hi(x) = ( z r D : U  2 = I Iz [ ID:  and Da ~ ~P×P is a diagonal positive definite matrix. 

Example 1: Beam. Applying a finite-element approximation scheme, problem 
(2.1) is 

max{2: Bq = 2qo, Ilqll~o < l}, (2.5) 

where B E ~m ×,, ]lql] ~ = maxa = 1 ...... ]qai. It is easily seen that the constraint of the 
problem implies 

121 < o-, (2.6) 

where 

IIBI] 
O'- -  

I[qolloo' 

With the constraint (2.6) added to problem (2.5) we can derive the following dual 
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problem of (2.5): 

min{lln*u]l, + alq'ou - 11}, (2.7) 

which is an unconstrained linear ll-norm minimization problem. Problem (2.7) is a 
special case of (P) with p - -  1, N = m + 1, and Qi = ith row of B, r i = 0, D i = 1, 
hi(z) = , f f i  = Izl for i = 1 . . . . .  N - 1, and QN = qT, rN = 1, ON = a 2, hN(z) = alzl .  
We note that  the l~-norm problem (2.7) also models the limit analysis problem of 
trusses, see Section 6, Example 6.1. 

Example 2: Simply Supported Plate. In the plate problem (2.2), a bound of the 
type ]2[ < a can be added, arguing as in the previous example. In this case an 
equivalent unconstrained problem of (2.3) is 

m~n{uo ffaF(VVu) d x d y + a  ! - -  f f  ~pvdxdy }. (2.8) 

The discretized form of problem (2.8) is 

N - 1  

min y '  x/(Qix - ri)TDi(Qi x -- ri) d- a l l  - qTox] (2.9) 
x E R  n i = 1  

with appropria te  matrices Qi~ R 3 ×", Die  R 3 × 3 (positive diagonal matrix), and 
vectors r i ~ R 3, q0 ~ R". This problem is in the format  of our  pro to type  problem (P). 

Example 3: Plateau Problem. A discretization of problem (2.4) leads to solving 

min{F(x) :=  i=1 ~ x / ½ x r p i x + d r x + q :  x ~ " } ,  (2.10) 

where for every i the matrix g~ ~ R" ×" is positive definite and the scalar c i satisfies 
1 T - ci > 7di Pi ldl (a necessary and sufficient condit ion for the convexity of F). Then 

w i t h p = n +  1, 

: E ~ p × n ,  

where p~/2 denotes the square root  of Pi, 

[ --Pi-'/2di 1 : 1 G R p, 
ri _x /e  i _ 1/2diP7 di 

Di = I, and hi(z ) = [IzU, problem (2.10) is in the form (P). 

Example 4: Fermat-Weber Problem. With the choice p = n, Qi = I, and hi(z ) = 
>< i]]zH, where wl are given weights, problem (P) reduces to the well-known location 
theory problem (see, e.g., [7]): 
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3. The CSSA Algorithm 

The convex objective function of problem (P) 

N N 

f ( x )  = ~ IlOix - rillD,:= ~ fii(x) 
i = l  i= l  

is not continuously differentiable at the points x satisfying 

Qix - ri = 0 

for some i, and so we use (as in, e.g., [5]) a perturbation of f ( x )  

N 
f~(x) := ~, (f2(x) + e2) 1/2, (3.1) 

i=1 

where e >  0 is a smoothing parameter. The function f~(x) is a differentiable function 
in x for every e > 0, and, for any fixed x, f~(x) ~ f ( x )  as e ~ 0, moreover f~(x) 
preserves the convexity o f f ,  which is a consequence of the following lemma. 

Lemma 3.1. The function x - ~  f~(x) is convex. 

Proof For each i, the function g(ti):= (t 2 + e2) 1/2 is convex and increasing for 

all ti >_ O. Hence, ~ x - r i l l o  ~ + e 2, which is a composition g ( N Q i x -  riHo) , 
is convex by Theorem 5.1 of [10] and thus f~ being the sum of such terms is 
convex. [] 

Since f~(x) is differentiable and convex the necessary and sufficient optimality 
conditions for x* ~ •n to solve the perturbed (approximating) problem 

(P~) min{f~(x): x ~ •"} 

are given by 

N~ Q T D i ( Q I x .  _ rl ) %(:)  i=I '~ {IIQ/--~-E* ~ ~2},/2 = 0 .  (3.2) 

For  each i = 1 . . . . .  N define the positive numbers 

1 
#i(x, e):= {ijQix _ rillS, + e2} 1/2" (3.3) 

Equation (3.2) can now be written as 

N N 
~. pi(x*, e)QTD, Q,x* = ~,,/t,(x*, e)Qf D:~. (3.4) 

i=1 i = l  

This system of equations reduces to the following compact form: 

Ar  M~(x*)Ax * = Ar  M~(x*)b, (3.5) 
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where 

I I A:=  • ~R  pN ×", b :=  i e~PN, 

L(D~/:)T QND~/2 LrNJ 

and M~(x):= diag(#l(x, e), . . . ,  /~N(X, e)) is an N x N positive definite matrix. Let 
m := p N  and assume in the following that m > n > 2 and that rank A = n, then 
ArM~(. )A is nonsingular and it follows from (3.4) that 

x* = (Ar  M~(x*)A) - ~ A r  M~(x*)b. (3.6) 

Then (3.6) is a fixed-point equation x* = T(x*) with the map T 

T: x ~ r (x )  = (ArM~(x)A) - 1ArM~(x)b. (3.7) 

This naturally suggests using successive approximations 

X k  + 1 = r(Xk),  k = O, 1 . . . . .  

to compute x*. 
For  each k, the right-hand side of the above equation is in fact the solution 

of the normal equations (3.5) corresponding to the weighted least-squares (WLS) 
problem: 

min II M~/2(Xk)AX --  M~/2(Xk)b II, (3.8) 

where Ml/2(x):= diag(x/#l(X, e) . . . . .  ~x/~s(x, e)). 
Thus the basic algorithm for solving problem (P~) consists of the following 

steps: 

The CSSA Algorithm 

0. Choose e > 0 and x o~ ~ ' .  Set k = 0. 
1. Solve the WLS problem (3.8): 

Xk + 1 = argmin ]l M~/2(xk)Ax - M~/2(xk)b II. 

2. If an appropriate stopping rule holds, then stop. Otherwise, set k = k + 1 
and go to step 1. 

The stopping rule given in step 2 is discussed in Section 5 using duality results 
to provide a bound on the suboptimality of the iterate Xk. 

The performance of the above algorithm has the remarkable property of 
producing practically acceptable solutions even from bad starting points and for 
a wide range of e values, see Section 6, for numerical examples. The insensitivity 
to bad starting points is a consequence of Corollary 4.1, where we prove that the 
first iterate must lie in a compact set (see Section 4). The next result demonstrates 
that if e becomes large, then x~ approaches the least-squares solution of A x  = b. 

Lemma 3.2. Let z denote the least-squares solution of  the overdetermined linear 
system of  equations A x  = b. Then l i m ~  ~ x~ -- z. 
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P r o o f  For  each i = 1 . . . . .  N define 

1 
fl,(x, e)..= 

{(HQix - ri[lo/O a + 1} 1/2" 

Then M ~ ( x ) =  (1/e)ffI ,(x) where !Q~(x):= diag(fll(x, e) . . . . .  flu(x, e)). The optimal 
solution x* satisfied (3.3) which can be rewritten as 

T -- * * A M~(x~)Ax~ = ArM~(x*)b .  (3.9) 

As e ~ oo then M~(x*)~ I, the identity matrix. Hence, taking limits in (3.9) 
produces the result. [ ]  

4. Convergence Analysis 

In this section we prove the convergence of  the CSSA algorithm. The first result 
demonstrates  that the algori thm for problem (Pc) possess a descent property.  

Consider the perturbed function 

N N 

L ( x )  = ~ {f,(x) 2 + ~2},/2..= y~ k,(x). 
i = 1  i = 1  

Then it is easy to verify that step 1 in the algori thm is the same as 

x ,  + 1 = argmin 9~(x, Xk), 

where 

g~(x, xO := 
f,(x) 2 + 

~ 2 '  i = 1 % / . . ] / ~ X k j  2 + 

Lemma 4.1. I f  T(Xk) ¢ x k, then f~(Xk+O < f~(Xk). 

Proof.  With the notat ions defined above we have 

N 

g~(xk + 1, xk) = Y'. k , ( x O -  lk,(x~ + 1) 2. 
i = 1  

Applying the inequality, see, e.g., [1], 

a b 1 1 
al/pb ~/q > - + - ,  p < l ,  a, b > O, - + - = 1 ,  

P q P q 

to (4.1) with a = ki(Xk), b = ki(Xk+O, and p = --1 it follows that  

g~(Xk + l, Xk) >-- --  ~ ki(Xk) + 2 ~ ki(Xk + O = --  f~(Xk) + 2f~(Xk+ 0- 
i i 

N o w  observe that X---,g~(X, Xk) is strictly convex. Indeed, we can 

(4.1) 

(4.2) 

write 
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g~(x, Xk) = O(Ax -- b) by defining 0: R" ~ N: 

N 

O(z) = Z ~i(xk, ~)llzihl~,. 
i = 1  

Since I~(Xk, e) > O, Vi = 1 . . . . .  N, the function ~ is strictly convex. Let x, y e N", 
x ¢ y. Since rank A = n, it follows that A x ¢  Ay  and therefore the strict convexity 
of ~ implies that g is strictly convex. Hence, Xk+ 1 is the unique minimizer of 
g(x, Xk). Since -~k+ 1 = T(Xk) ¢ Xk, if follows that 

g~(Xk + 1, XR) < g~(Xk, Xk) = f~(Xk). (4.3) 

Combining inequalities (4.2) and (4.3) we have 

2L(xk+ 0 - f~(xk) < f~(Xk) 

and the result f~(Xk+ 1) < fE(Xk) is proved. []  

The next result follows immediately from the definition of the mapping T. 

Lemma 4.2. Let x* be the minimizer off,(x). Then Xk = X* if and only if T(Xk) = Xk. 

A crucial step in proving that the sequence {Xk} generated by the map T (i.e., by 
solving the WLS problem (2.14)) converges is to demonstrate that it resides in 
some compact set. Such a result was obtained recently by the first two authors in 
[2] and is summarized below. 

Let A be a real m x n matrix (m > n) and let M be a given positive definite 
diagonal matrix. Consider the solution of the WLS problem: 

A r M A x  = ATMb.  (4.4) 

Let P,,,, be the collection of all index sets containing m distinct integers out of 
the set {1 . . . . .  m}. Let YIj be the solution of the j th n x n subsystem corresponding 
to rows of A indexed by Ij = {il . . . . .  i,} ~ P,,,,, i.e., 

AljYt~ = bij. 

Denote P~+,, = {j ~ P,,,,: det Air ¢ 0}. We state the result in a form appropriate 
for our purposes. 

Theorem 4.1 [2]. Let x be the solution of  the WLS problem given by (4.4). Then 

x e convex hull {YI /J  E P+.,}. (4.5) 

Moreover, the y1,'s depend only on the data A, b and not on the matrix M.  

Returning to the algorithm defined in Section 3 by the map T, we then have as 
an immediate consequence of Theorem 4.1: 

Corollary 4.1. The sequence {xk}kk ~ ~ generated by the map T lies in a compact set. 
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From the last statement in Theorem 4.1 it follows in particular that the first iterate 
Xl lies in a fixed compact set which depends only on the problem data (A, b), and 
which is independent on the algorithmic information Xo and e. This explains why 
the CSSA algorithm performs initially well, even from distant (from the optimal 
solution) starting points. 

We are now in position to prove the convergence theorem, proceeding along 
the same lines as Kuhn [7] and Morris [9]. 

Theorem 4.2. Given any x o, define X k =  T ~ ( X o ) f o r  k =  1, 2 . . . . .  Then 
limk~ ~ Xk = X*, where x* := argmin{f~(x): x ~ ~"}. 

P r o o f  By Corollary 4.1, the sequence {Xk} lies in a compact  set. Hence, by the 
Bolzano-Weierstrass theorem, there exists at least one point, say 92, and a 
convergent subsequence Xk, such that lim~. ~ XR, = 92. We prove below that 92 = x* 
in all cases. 

Case 1. If x k + 1 = T(Xk) = Xk for some k, then the sequence repeats from that 
point and :2 = XR. But then 92 = x* by Lemma 4.2. 

Case 2. If x k + 1 ~ T(Xk), then by Lemma 4.1 

L(x~ + ~) < L(xk) 

and thus 

L(Xo) > L ( ~ )  > " "  > L(x~) > " "  > L(x*). 

Hence, 

lim { f~(Xk) -- f,(T(Xk,)} = O. 
k ~ o o  

Now from the definition of the map T(x),  all the diagonal elements /A(x, 0, 
i = 1 . . . . .  N, of the matrix M(x)  are continuous functions of x, and thus T is a 
continuous map, which implies that 

lim T(XR) = T(92) 
l--* oo 

and hence we have 

f~(92) -- f~(T(92)) = 0. 

Therefore by Lemma 4.1, :2 = T(92) and hence :2 ~ x* by Lemma 4.2 and the 
theorem is proved. [] 

The rest of this section is devoted to error analysis; here we attempt to answer 
the following question: 

If the sequence {Xk} generated by the CSSA algorithm converged to x*, how 
far is it (in terms of the objective function value) from the true optimal solution 
x*? This is answered in Theorem 4.3. First we demonstrate that f~(x) converges 
uniformly to f ( x )  as e ---, 0. The result is valid for arbitrary functions f~(x). 
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Lemma 4.3. For  all x E ~n, I f~(x) - f(x)] < N' e. 

P r o o f  We use the following inequality: 

( a + b ) ~ < a ~ + b L  ¥ a , b > _ O ,  0 < a < l .  

Pick a = f/(x) 2, b = e 2, a = ½. Then, for all i = i . . . . .  N, 

{f/Z(x ) + ~2}1/z <_ [fi(x)l + e. 

Summing the N inequalities above we obtain 

f~(x) -- f ( x )  < N ' ~  

and the result follows. [] 

Theorem 4.3. For  every  e > O, 

f ( x * )  -- f ( x * )  < N ' e .  

Proof. Note that by the definition of f~(x) we have 

f~(x) > f ( x ) ,  Vx. (4.6) 

Hence, 

f ( x * )  -- f ( x * )  < f~(x*) -- f ( x* ) .  (4.7) 

Since x* solves min f~(x), then 

f~(x*) < f~(x), Vx, (4.8) 

and thus in particular f~(x*) _< f~(x*). Combining with (4.7) it follows that 

f ( x * )  - f ( x * )  <_ f~(x*) - f ( x * )  <_ f~(x*) - f ( x * )  <_ N ' ~ ,  (4.9) 

the last inequality following from Lemma 4.3. [] 

The inequality (4.9) gives an a priori bound on the suboptimali ty of the optimal 
solution x* produced by solving the approximate  problem (P~). 

A. Ben-Tal, M. Teboulle, and W. H. Yang 

5. A Stopping Rule via Duality 

The dual problem of the approximate  problem (P~) can be computed  (we leave this 
to the reader) and we obtain 

N 

(D~) maxd~(y):= ~ r~y~ + en/1 - Hyill~/ 
y c ~  m i =  1 

subject to 
N 

E Q y, = o, 
, = l  

IlY~llo;-' < i, i - 1  . . . . .  N. 
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Let the optimal solution of (D~) be denoted by y*. Recall that x* is the optimal 
solution of (P~). By the duality theory of convex programming, 

max(D~) = d~(y*) = f~(x*) = min(P~). (5.1) 

The dual solution y* can be expressed explicitly, in terms of the primal solution 
x*, by 

D i ( Q i x *  - ri) 
(Y*)i = = I~i(x~,* e)Di(Qix~* - rl). (5.2) 

N / l i Q i x .  _ rill2o~ + ~2 

T * To verify this, note that by (3.2) it follows that ~ =  1 Qi (ye)i = 0, and also 

IIQi x *  --  rill 2, 
II(y*),IIDT' qlQ~x* - rill 2, + ~2 ~ 1, (5.3) 

Thus, y* is feasible for (D~). Moreover, de(y* ) = f~(x*), hence y* is optimal for (De). 
Let 6 > 0 be a small positive number 

6 < ~2. (5.4) 

Suppose that the following inequalities hold: 

IlQixg - rill~ ~ - IlQiXk _ , - rill~ ' < (~, i = 1 . . . . .  U .  (5.5) 

Since the sequence {Xk} generated by the CSSA algorithm converges, the in- 
equalities (5.5) indeed hold for sufficiently large k. Recall that Xk is obtained as 
the solution of the weighted normal equations: 

N N 

~.  # , (Xk-  1, e ) Q f  O , Q , X k  = ~ #,(Xg_ 1, e )Q~Oir , .  (5.6) 
i = 1  i = 1  

Define vectors y~ e ~P (i = 1 . . . .  , N) by 

yk = ]2i(Xk - 1 '  e)Di(QiXk - -  ri)" (5.7) 

By (5.6), 

N 
~ Tk 

Qi yi -~ O. 
i = 1  

Moreover, by (5.4), (5.5), 

[lY~'I o7' = IlQiXk --  rl ~7' 
I IQixk-1  -- rillS-' + e 2 < 1, (5.8) 

hence yk is a feasible solution of the dual problem (D~), and by weak duality 

d~(y k) < f~(x*) < f~(Xk). (5.9) 

Note that as k ~ oo, then Xk ~ X* and yk ___, y ,  (compare (5.7) with (5.2)), thus the 
lower and upper bounds in (5.9) become tighter. The above discussion suggests 
using (5.5) as a s topp in9  rule  for the CSSA algorithm. If the algorithm stops at 
iteration k, with the current iterate Xk, and if yk is computed via (5.7), then the 
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suboptimality of Xk is estimated by 

o _< L(x~)  - L(x*)  <_ L(xk)  - d~(y~). 

Combining inequalities (4.9) and (5.9) it can be easily shown that in order to get 
an overall prescribed accuracy eo when stopping at x k, i.e., 

f (Xk)  --  f ( x * )  < %,  

we can choose e = eo/(N + 1) and use the stopping rule f (Xk)  --  d~(yk) < e. 

6. Numerical Examples 

Two examples presented in this section serve to illustrate the convergence behavior 
of the CSSA algorithm given in Section 3 and its efficiency for very large problems. 
In our implementation, the least-squares problems were solved by preconditioned 
conjugate gradient methods, see, e.g., [6]. 

f~(u, v) = d l  + d2 -1- d3 q'- ad4, 

where 

dl = x/(cos flu + sin fly) 2 + e 2, 

d2 = N~2  + g2 

da = x/(cos flu - s i n  fly) 2 + e z, 

d 4 = x/(cos Ou + sin Ov - 1) z + e2. 

The fixed-point iteration equation for the CSSA algorithm is 

Example 6.1. First we consider a three-bar truss (Figure 1) whose limit solutions 
have been presented in [13] using Yang's original algorithm. We present the results 
computed by the new CSSA algorithm. The data for problem (2.4) are 

 cos ) 
B = \ s in f l  0 - s i n f l J  qo \s in  ' 

where 0 < fl < n/2,  0 <_ 0 <_ 2n are parameters. The unconstrained/ l-norm mini- 
mization problem has an objective function: 

f ( u , v )  = Icosflu + sinflv] + [ul + [ c o s f l u -  sinflvl + ~]cos0u + s i n 0 v -  II, 

(6.2) 

where a = IlB]] o~/]]qo]] o0 is a constant when the parameters are fixed. The modified 
objective function is constructed as 

(6.3) 

\a21 a22,/ \b2//  
(6.4) 
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Figure 1. A three-bar truss. 
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where 

a l l =  cos 2 + + ~ + cos 2 0 d~, 

f l ( ~  13)  1 a22 = sin 2 + + o- sin 2 0 - - ,  
d4 

al2 = a21 = cos fl sin - + a cos 0 sin 0 , 
d4 

and 

cos 0 sin 0 
bl = a d4 b2 = a d4 

With an arbitrary (Uo, v0) as a starting point  and a chosen e, inner iteration may  
begin. A tolerance on the change of the vector (u, v) and that  of  the objective 
function will serve as the s topping criterion for the inner iteration. Then the value 
of e is reduced and the iteration begins again with the latest value of  (u, v) as its 
starting point. We can continue to reduce the value of  e in the outer loop until 
the solution is deemed converged. The algori thm requires only a starting point  
(Uo, Vo) and a given sequence of  e. A convenient  sequence may  be chosen for the 
purpose of extrapolat ing to the limit, ~ --* 0. In order to demonstra te  the behavior  
of  convergence we fix the parameters:  fl = 45 and 0 = 0, 90 degrees. A starting 
point  (4.0, 7.0) and a sequence e = (1.0, 0.1, 0.01, 0.001) are chosen, a l though other  

(a) 

Figure 2. 
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(b) 

Initial (a) and first iterated solution (b) of a simply supported plate. 
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values produce similar results. The sequences of iterates are shown in Table 1, 
where a fixed limit of five inner iterations is enforced for the purpose of producing 
a tidy output. After a few iterations, global convergence to an approximate optimal 
solution and insensitivity to the choice of e is observed, as was expected from the 
theoretical analysis. Since this is a small problem (two variables), the subsequent 
convergence is also rapid as shown in Table 1. It  should be pointed out that the 
0 = 0 case admits nonunique solutions u = 1, - 1 < v < 1. Different starting point 
may converge to different values of v in the range. The minimizer for the case 
0 = 90 is unique. The converged results for 50 parameter  variations (fl = 15, 30, 
45, 60, 75 and 0 = 0-90 in 10-degree increments) are presented in Table 2. The 
efficiency of the new CSSA algorithm remains excellent at least in the initial stages 
of the iteration. For moderate accuracy requirements, a few iterations will produce 
acceptable results without extrapolation. We demonstrate this claim with a very 
large problem (2500 variables). 

Example 6.2. The problem of a simply supported square plate under a uniform 
load as described in Example 2.2 is solved. We seek the limit value of the multiplier 

Table 1. Convergent sequences of the CSSA algorithm. 

f l = 4 5 ° , 0 = 0  ° 

u v f 

e = 1.000 

4.00000 7.00000 21.14214 

0.88006 0.47487 2.41421 
0.99005 0.14070 2.41421 

0.99892 0.04648 2.41421 
0.99988 0.01548 2.41421 

= 0.100 

0.99999 0.00516 2.41421 
0.99999 0.00506 2.41421 
0.99999 0.00496 2.41421 
0.99999 0.00486 2.41421 
0.99999 0.00477 2.41421 

e = 0.010 

0.99999 0.00467 2.41421 

0.99999 0.00467 2.41421 
0.99999 0.00467 2.41421 
0.99999 0.00467 2.41421 
0.99999 0.00467 2.41421 

= 0.001 

0.99999 0.00467 2.41421 
0.99999 0.00467 2.41421 
0.99999 0.00467 2.41421 

0.99999 0.00467 2.41421 
0.99999 0.00467 2.41421 

fl = 45 °, 0 = 90 ° 

u v 

e = 1.000 

4.00000 7.00000 28.38478 

0.27646 0.96103 1.72965 
0.04117 0.99915 1.45623 
0.00617 0.99998 1.42040 

0.00092 l.O0000 1.41514 

= 0.100 

0.00014 1.00000 1.41435 

0.00002 1.00000 1.41423 
0.00000 1.00000 1.41422 
0.00000 1.00000 1.41421 
0.00000 1.00000 1.41421 

= 0.010 

0.00000 1.00000 1.41421 

0.00000 1.00000 1.41421 
0.00000 1.00000 1.41421 
0.00000 1.00000 1.41421 
0.00000 1.O0000 1.41421 

= 0.001 

0.00000 1.00000 1.41421 
0.00000 1.00000 1.41421 
0.00000 1.00000 1.41421 
0.00000 1.00000 1.41421 
0.00000 1.00000 1.41421 
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Table 2. Converged solutions for the range of/3 and 0. 

287 

0 U ~ V* fmin 

/3 = 15 ° 

0 0.99949 0.03202 2.93185 
10 0.25862 0.96598 2.45200 
20 0.25133 0.96790 2.02512 
30 0.05244 0.99862 1.89829 
40 0.00152 1.00000 1.56216 
50 0.00049 1.00000 1.20310 
60 0.00031 1.00000 0.91029 
70 0.00019 1.00000 0.69445 
80 0.00009 1.00000 0.56222 
90 0.00000 1.00000 0.51764 

/3 = 30 ° 

0 0.99984 0.01804 2.73205 
10 0.50023 0.86589 2.34202 
20 0.49980 0.86614 2.00552 
30 0.49921 0.86648 1.73326 
40 0.44206 0.89698 1.57641 
50 0.03973 0.99921 1.60541 
60 0.00095 1.00000 1.36555 
70 0.00039 1 . 0 0 0 0 0  1.16479 
80 0.00018 1.00000 1.04160 
90 0.00000 1.00000 1.00000 

/3 = 45 ° 

0 0.99999 0.00467 2.41421 
10 0.70752 0.70670 2.14392 
20 0.70717 0.70704 1.03336 
30 0.70692 0.70729 1.78961 
40 0.70654 0.70767 1.71681 
50 0.65908 0.75207 1.72457 
60 0.03348 0.99944 1.72983 
70 0.00065 1.00000 1.55994 
80 0.00026 1.00000 1.45104 
90 0.00000 1.00000 1.41421 

0 U '1' V* Jmin 

/3 = 60 ° 

0 1.00000 0.00023 2.00000 
10 0.86679 0.49867 1.85337 
20 0.86619 0.49972 1.76265 
30 0.86603 0.50000 1.73205 
40 0.86586 0.50028 1.76265 
50 0.86526 0.50133 1.85337 
60 0.50000 0.86603 2.0000 
70 0.00154 1.00000 1.85337 
80 0.00032 1.00000 1.76265 
90 0.00000 1.00000 1.73205 

/3 = 75 ° 

0 1.00000 0.00000 1.51764 
10 0.96774 0.25194 1.47545 
20 0.96607 0.25827 1.47363 
30 0.96598 0.25827 1.53195 
40 0.96591 0.25889 1.64699 
50 0.96581 0.25927 1.81554 
60 0.93431 0.35646 2.05937 
70 0.00466 0.99999 2.05058 
80 0.00036 1.00000 1.96141 
90 0.00000 1.00000 1.93185 

60  ̧  ̧
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Figure 3. The convergence of the objective function f~(v(x, y)). 
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2* (collapse load) and the limit solution v*(x, y) (collapse mode). To dramatize the 
presentation of the stable and fast initial convergence behavior, we choose a 
randomized starting point Vo(X, y) as shown in Figure 2(a). After one iteration, the 
random data are changed to an orderly data as shown in Figure 2(b). Although 
the v(x, y) shown in Figure 2(b) is not a converged solution, it is hardly distinguish- 
able from the shape of the optimal minimizer v*(x, y). 
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