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ABSTRACT 

A recursive stochastic integral equation for the detection of counting processes is derived 
from a previously known formula [5] of the likelihood ratio. This is done quite simply by 
using a result due to Dol6ans-Dade [4] on the solution of stochastic integral equations. 

1. Introduction.  Recent ly  mode rn  mar t inga le  theory  has  been used to de-  
scribe Coun t ing  Processes (hereafter  abb rev ia t ed  CP) in a way special ly ap-  
p ropr ia te  to the p rob lems  of de tec t ion  and  filtering. This has given rise to the 
no t ion  of In tegra ted  Cond i t iona l  Rate  ( ICR)  [5], which general izes  the no t ion  of 
r a n d o m  rate. 

Expressions  for l ike l ihood rat ios  ( involving ICR ' s )  for the de tec t ion  of CP 's  
have been ob ta ined  in [5] using a three-step technique  in t roduced  by  Ka i l a th  [9] 
and  D u n c a n  ([6], [7]) in their  works  on de tec t ion  of a s tochast ic  signal in white  
noise. The  three steps are the Like l ihood Ra t io  Repre sen t a t i on  Theorem ([2], [5], 
[6]), the G i r s a n o v  Theo rem ([5], [8], [13]) and  the Innova t ion  Theorem ([2],[5], 
[9]). By this me thod  l ike l ihood rat ios for a large class of CP's  can be found.  
These  expans ions  represent  a genera l iza t ion  of the formulas  given in [1] and  [12] 
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in the context of Poisson processes and [2] in the context of CP's which admit a 
conditional rate. 

The purpose of this paper is not to present a proof of the likelihood ratio 
formula (for that see [5]) but to derive from this formula stochastic integral 
equations by which the likelihood ratio can be computed recursively. This can 
be done quite simply using a result due to Dol6ans-Dade [4] on the solution of 
stochastic integrals equations involving semimartingales. These recursive equa- 
tions are most useful in applications as they give a way of implementing the 
computation of the likelihood ratio continuously in time. 

2. Preliminaries. Let (~, oy, p )  be a complete probability space. By (At) we 
denote a real valued stochastic process defined on R +, the positive real line and 
by a Counting Process (CP) we mean 

Definition 2.1. A CP is a stochastic process having sample paths which are 
zero at the time origin and consisting of right-continuous step functions with 
positive jumps of size one. 

The time of nthjump Jnof a CP (Nt) is the stopping time defined by 

/ i n f ( t : N  t/> n) J.= 
if the above set is empty. 

Let ( ~ )  be a right-continuous increasing family of o-subalgebras of ~ with U0 
containing all the P negligible sets, and suppose (Nt) is a CP, adapted to ~t, with 
the sole assumption that EN t is finite for each t. Then, as a consequence of the 
Doob-Meyer decomposition for supermartingales we can associate to (Art) a 
unique natural increasing process (At), dependent on the family (0y,), which 

A 
makes the process (M t = Nt -A t )  a martingale (see [11]). This decomposition 
(Nt= Mr+At) is intuitively a decomposition into the part (Mr) which is not 
predictable and (At) which can be perfectly predicted. This unique process (At) 
is called the Integrated Conditional Rate (ICR) of (Nt) with respect to (6y,) ("the 
(°Yt) ICR of (Nt)") and has been studied in [5]. The terminology ICR is 
motivated by the fact that when (Art) satisfies some sufficiency conditions its 
ICR takes on the form (ftoXsds) where (Xt) is a nonnegative process called the 
conditional rate (with respect to (~t)) satisfying Xt = limh-~0 E [h-  l(Nt+ h --Art) ] °Yt] 
([5], Section 2.5). The existence of CP's possessing a bounded conditional rate 
with respect to the family of o-algebras generated by the process itself has been 
first shown in [2] and in [5]. Sufficiency conditions for the existence of a 
conditional rate have been given in [5]. By a change of time we can show similar 
results (i.e., existence (see [5], Corollary 3.1.3) and sufficiency conditions) for 
(°Yt) ICR's of the form (HoAsdm~) where (At) is a locally bounded predictable 
process and m t a deterministic increasing right-continuous function with m0=0. 
Denote by ~(°Yt) the class of all locally bounded predictable (with respect to 
(~ ) )  processes (see [3], p. 98). For example, processes adapted to (o~,) and 
having left-continuous sample paths belong to ~ (~ , ) .  
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Remark 2.2. Let the ICR (At) be of the form (fro)tiling) and denote by A the 
union of all intervals of R + on which the function m, is constant. Observe that 
the ICR (At) is not affected by a change of values of (At) for t E A  and we may 
well have X t = m for t E A. To avoid problems due to this indeterminacy we 
adopt  the following convention: for t ~ A  we set )b equal to unity. 

We assume here that modern martingale theory ([11], [3]) is known. Recall 
that a semimartingale (Xt) is a process which can be written as a sum (X t = Xo+ 
L t + At) where X 0 is U0-measurable, (Lt) is a (~,) local martingale and (At) is a 
right-continuous process adapted to (~,) having sample paths of bounded 
variation on every finite interval and with A 0 = 0  a.s. (see [3]). A result basic to 
this study and due to Dol6ans-Dade [4] is the following: the stochastic integral 
equation 

f0' , Z t = l +  _dX s 

where (Xt) is a semimartingale has a unique solution, which is a semimartingale 
given by t 

Z,=exp( x t -  l (x~)t) S~t(l + AX~ )exp(-  AX,) 

where the product in the right hand side converges a.s. for each t. Here we 
define ((XC)t) as the unique natural increasing process (see [3]) associated to the 
continuous part of the local martingale (L~); ((X~)t)  is identically zero when (At) 
is a semimartingale with sample paths of bounded variation on every finite 
interval (see [3]). 

3. The Detection Problem. Let P0 and P1 be two measures carried on (fL ~'~). 
Suppose that (Nt) is a CP defined on (~2, ~ )  and denote by ~)Lt the minimal 
o-algebra generated by (Nt) up to and at time t. The notation El(.) for i=0 ,  1 is 
intended for the expectation operator with respect to the measure P~. 

Definition 3.1. For a (ff~t) stopping time R (possibly infinite) denote b y / S n  
for i =0,  1 the restriction of the measure Pi to the o-algebra ~ R .  

We have the inclusion %R c ~ :  so that if Po<<PI* then /~oR<<P--~ n and the 

Radon-Nikodym derivative dP~/df i (  is well defined. We examine now the 
meaning of this Radon-Nikodym derivative. In the case where the stopping time 

--a --a 
R is equal to a constant a then ~ n  = ~ a  = a(Nu, O < u < a) so that dP o/dP l is 
the likelihood ratio for testing the two hypotheses H i for i=0 ,1  :P1 is the 
probability measure on (fLU), by observations on the CP (Nt) for t < a. The 
detection scheme then consists in selecting H 0 or H 1 according as dPg/dP[ ~ is 
above or below a given threshold. Now in the case where R is a stopping time 

tWhen ft is a right-continuous function with left-hand limits ~ft denotes the jump ~ - f t - .  
*Po<<P means that the measure P0 is absolutely continuous with respect to P while PomP 

indicates that the two measures are equivalent. 
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which is not a constant  we know that  A n D o(Nu/\R,O < u) (this follows f rom the 
fact that  Nu/xR is (.°?LR) measurab le  by T h e o r e m  49-IV of [11]) but  the reverse 
inclusion is not  necessarily true. For  this reason dPoR/dp( is not  the l ikelihood 
ratio for our detect ion p rob lem when the t ime of observat ion  is the stochastic 
interval [0,R], as one could have conjectured.  But one can interpret  dPoR/dP[ ~ 
as a l ikelihood ratio if we assume that  the informat ion  accessible to the observer  
is M R and not  s imply o(N,/\R,O < u). For  i = 0 ,  1 with the measure  Pi carried on 

t ~ki (f2, c~) suppose that  the CP (Nt) has the process (f0 ,din,) for ( ~ )  ICR,  where 
(~,}-[) is a family of o-algebras  with ~ D N t, (X/ )~  % ( ~ )  is a positive process, and  
m, is an increasing determinist ic  funct ion with m 0 = 0. 

It is known that  we can make  a change of measure  under  which (Nt) is a CP 
of independent  increments  with mean  m r =  E N  t under  the new measure  P 
(Theorem 2.6.1 of [5]). Using this fact and  the three-step technique of D u n c a n  
and  Kai la th  (see In t roduct ion)  the likelihood ratio for detect ing CP's  has been 
obta ined  according to 

Theorem 3.2 (Theorem 3.4.4 of [5]). For i=O, 1 let (Nt) be, under the measure 
Pi, the CP described above. Assume 

(a) P0<<P and P~P1 and define for i = 0 ,  1 the (P, GYC,) martingale 

L/= E - - I %  ; 
dp ~ 

(b) For i = 0 ,  1, the stopping times T i are such that there exists increasing 
sequences of stopping times i T i = i g (ln -L~)  2 < oO ( T/~) for which lira, T,~ a.s. and for 
each n. Let T= T 1 A T ° ;  

(c) For i = O, 1 EiHo~idm~ < ~ .  
Then  

d f i ' A r = J " ~ T  L ~Jl"] expL j0 ()ts -- ~ ° )dm ' ]  (1) 

^ . A 

where )tt'= Ei(~/Ic~l) for i = 0 , 1  and ,In is' the time of n th jump of (N,). By 
convention the product I I ( . )  = 1 for Jl > t A T. 

Remark 3.3. (a) The  s topping time T i which is the first t ime after which the 
mart ingale  (L/) can behave  badly  m a y  take the value + Qo. It  is in fact desirable 
for T i to be as large as possible. 

(b) B y  our  convent ion (Remark  2.2) condi t ion (c) above  insures that  the 
process (A/) is well defined. 

4. Recursive Integral Equations for Likelihood Ratios We show here that  the 
likelihood ratio (1) of our detect ion p rob lem can be ob ta ined  as the unique 
solution of a stochastic integral equation. This stochastic integral equat ion can 
be mechanized  by a feedback scheme t an t amoun t  to a recursive filter, as shown 
in Figure 1. 
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Theorem 4.1. The likelihood ratio dp~Ar/ dP~ AT of Theorem 3.2 is the unique 
solution of the following stochastic integral equation: 

Z, = 1 + fotZs_dXsAT 

where 

(2) 

(3) 

Proof By assumption (X/), i = 0, 1, is positive a.s. finite for all t (by condition 
(c) of Theorem 3.2 and Remark 2.2). The process (N,) has a finite number of 
jumps in any finite interval so that the process (f~Ar[(X°/Xsl)- 1]dN,) has sample 
paths of bounded variation on any finite interval; and so does the process 
(ctAT~IjO ~ , -~°)dm~) by assumption (c) of Theorem 3.2. Hence (X, Ar) is a semi- 
martingale with sample paths of bounded variation on any finite interval so that 
((X~)tAT)=0 (see the remark, on p. 90, following proposition 3 of [3]). Then by 
Theorem 1 of [4] the unique solution of (2) is given by 

Z, = exp(XtA v ) H (1 + AXsA r )exp( - AX, A T ) 
s < t  

Now AX, AT=((XO/X2) - 1)ANsA r and hence the product in (4) becomes 

(4) 

s<tI~(')=sI~t[l+[~--llAN~ArleXP[s<~Ar--[ ~° ANnA ~ 

[ I ]] Jn t A T  ~k 0 
~I ~ exp - - - - 1  dN s 

Jo ,AT i) J, 

Substituting the above relation and expression (3) in (4) gives the desired result 
(compare with (1)) 

l 
J. V g t A T  ^ 1 d P o A T  

Z,=  ~I Ti- exp[ J ° (Xs-X°)dms d/~fAr. [] 
J n < t A T  ~k). 

Observe that if under the measure P1 the CP (Nt) is a process of independent 
increments with mean m t then P ~P1,X) = 1 and Eq. (3) becomes 

t ^0 
X, = f (X~ - 1)d(N s - ms) 

Jo 
(5) 
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The process (M~ ~= N t -m,)  is a (P, ~)Lt) martingale. Hence (5) shows that the 
process (XtAr) is a local martingale. In turn, (2) then implies that the process 
(Zt) i s  a local martingale. In this case w e  in fact have Z t = 
EI[(dP~/dP~)[~LIAT], i.e. the likelihood function is a uniformly integrable 
martingale. 

In applications, Eqs. (2) and (3) give a way of implementing the computation 
of the likelihood ratio continuously in time. They represent recursive equations 
if one also obtains the best estimates (~/) in a recursive manner. The block 
diagram of this implementation is given in Figure 1. 
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