Recursive Integral Equations for the Detection of Counting Processes*

Francois B. Dolivo¹
AND
Frederick J. Beutler²

IBM Research Laboratory Zurich, Switzerland and University of Michigan Ann Arbor, Mich. 48109

Communicated by A. V. Balakrishnan

ABSTRACT

A recursive stochastic integral equation for the detection of counting processes is derived from a previously known formula [5] of the likelihood ratio. This is done quite simply by using a result due to Doléans-Dade [4] on the solution of stochastic integral equations.

1. Introduction. Recently modern martingale theory has been used to describe Counting Processes (hereafter abbreviated CP) in a way specially appropriate to the problems of detection and filtering. This has given rise to the notion of Integrated Conditional Rate (ICR) [5], which generalizes the notion of random rate.

Expressions for likelihood ratios (involving ICR's) for the detection of CP's have been obtained in [5] using a three-step technique introduced by Kailath [9] and Duncan ([6], [7]) in their works on detection of a stochastic signal in white noise. The three steps are the Likelihood Ratio Representation Theorem ([2], [5], [6]), the Girsanov Theorem ([5], [8], [13]) and the Innovation Theorem ([2], [5], [9]). By this method likelihood ratios for a large class of CP's can be found. These expansions represent a generalization of the formulas given in [1] and [12]

^{*}Research sponsored by the Air Force Office of Scientific Research, AFSC, USAF, under Grant no. AFOSR-70-1920C, and the National Science Foundation under Grant no. GK-20385 and ENG 75-20223.

¹IBM Forschung Laboratorium, Rüschlitnou, CH 8803, Switzerland; Formerly with the Computer, Information and Control Engineering Program.

²Computer, Information and Control Engineering Program, The University of Michigan, Ann Arbor, Michigan 48109.

in the context of Poisson processes and [2] in the context of CP's which admit a conditional rate.

The purpose of this paper is not to present a proof of the likelihood ratio formula (for that see [5]) but to derive from this formula stochastic integral equations by which the likelihood ratio can be computed recursively. This can be done quite simply using a result due to Doléans-Dade [4] on the solution of stochastic integrals equations involving semimartingales. These recursive equations are most useful in applications as they give a way of implementing the computation of the likelihood ratio continuously in time.

2. Preliminaries. Let (Ω, \mathcal{F}, P) be a complete probability space. By (X_t) we denote a real valued stochastic process defined on \mathbf{R}_+ , the positive real line and by a Counting Process (CP) we mean

Definition 2.1. A CP is a stochastic process having sample paths which are zero at the time origin and consisting of right-continuous step functions with positive jumps of size one.

The time of n^{th} jump J_n of a CP (N_t) is the stopping time defined by

$$J_n = \begin{cases} \inf\{t : N_t \ge n\} \\ \infty \text{ if the above set is empty.} \end{cases}$$

Let (\mathfrak{F}_{t}) be a right-continuous increasing family of σ -subalgebras of \mathfrak{F} with \mathfrak{F}_{0} containing all the P negligible sets, and suppose (N_t) is a CP, adapted to \mathfrak{F}_t , with the sole assumption that EN_t is finite for each t. Then, as a consequence of the Doob-Meyer decomposition for supermartingales we can associate to (N_t) a unique natural increasing process (A_t) , dependent on the family (\mathfrak{F}_t) , which makes the process $(M_t \stackrel{\Delta}{=} N_t - A_t)$ a martingale (see [11]). This decomposition $(N_t = M_t + A_t)$ is intuitively a decomposition into the part (M_t) which is not predictable and (A_t) which can be perfectly predicted. This unique process (A_t) is called the *Integrated Conditional Rate* (ICR) of (N_t) with respect to (\mathfrak{F}_t) ("the (\mathfrak{F}_{t}) ICR of (N_{t}) ") and has been studied in [5]. The terminology ICR is motivated by the fact that when (N_t) satisfies some sufficiency conditions its ICR takes on the form $(\int_0^t \lambda_s ds)$ where (λ_t) is a nonnegative process called the conditional rate (with respect to (\mathfrak{F}_t)) satisfying $\lambda_t = \lim_{h \to 0} E[h^{-1}(N_{t+h} - N_t)|\mathfrak{F}_t]$ ([5], Section 2.5). The existence of CP's possessing a bounded conditional rate with respect to the family of σ -algebras generated by the process itself has been first shown in [2] and in [5]. Sufficiency conditions for the existence of a conditional rate have been given in [5]. By a change of time we can show similar results (i.e., existence (see [5], Corollary 3.1.3) and sufficiency conditions) for (F_t) ICR's of the form $(\int_0^t \lambda_s dm_s)$ where (λ_t) is a locally bounded predictable process and m_t a deterministic increasing right-continuous function with $m_0 = 0$. Denote by $\mathcal{K}(\mathcal{F}_{i})$ the class of all locally bounded predictable (with respect to (\mathfrak{F}_t)) processes (see [3], p. 98). For example, processes adapted to (\mathfrak{F}_t) and having left-continuous sample paths belong to $\mathfrak{K}(\mathfrak{F}_{r})$.

Remark 2.2. Let the ICR (A_t) be of the form $(\int_0^t \lambda_s dm_s)$ and denote by Λ the union of all intervals of \mathbf{R}_+ on which the function m_t is constant. Observe that the ICR (A_t) is not affected by a change of values of (λ_t) for $t \in \Lambda$ and we may well have $\lambda_t = \infty$ for $t \in \Lambda$. To avoid problems due to this indeterminacy we adopt the following convention: for $t \in \Lambda$ we set λ_t equal to unity.

We assume here that modern martingale theory ([11], [3]) is known. Recall that a semimartingale (X_t) is a process which can be written as a sum $(X_t = X_0 + L_t + A_t)$ where X_0 is \mathfrak{F}_0 -measurable, (L_t) is a (\mathfrak{F}_t) local martingale and (A_t) is a right-continuous process adapted to (\mathfrak{F}_t) having sample paths of bounded variation on every finite interval and with $A_0 = 0$ a.s. (see [3]). A result basic to this study and due to Doléans-Dade [4] is the following: the stochastic integral equation

$$Z_t = 1 + \int_0^t Z_{s-} dX_s$$

where (X_t) is a semimartingale has a unique solution, which is a semimartingale given by[†]

$$Z_{t} = \exp\left(X_{t} - \frac{1}{2}\langle X^{c} \rangle_{t}\right) \prod_{s \leq t} (1 + \Delta X_{s}) \exp\left(-\Delta X_{s}\right)$$

where the product in the right hand side converges a.s. for each t. Here we define $(\langle X^c \rangle_t)$ as the unique natural increasing process (see [3]) associated to the continuous part of the local martingale (L_t) ; $(\langle X^c \rangle_t)$ is identically zero when $(\dot{X_t})$ is a semimartingale with sample paths of bounded variation on every finite interval (see [3]).

3. The Detection Problem. Let P_0 and P_1 be two measures carried on (Ω, \mathfrak{F}) . Suppose that (N_t) is a CP defined on (Ω, \mathfrak{F}) and denote by \mathfrak{N}_t the minimal σ -algebra generated by (N_t) up to and at time t. The notation $E_i(\cdot)$ for i=0,1 is intended for the expectation operator with respect to the measure P_i .

Definition 3.1. For a (\mathfrak{N}_i) stopping time R (possibly infinite) denote by $\overline{P_i}^R$ for i = 0, 1 the restriction of the measure P_i to the σ -algebra \mathfrak{N}_R .

We have the inclusion $\mathfrak{N}_R \subset \mathfrak{F}$ so that if $P_0 \ll P_1^*$ then $\overline{P}_0^R \ll \overline{P}_1^R$ and the Radon-Nikodym derivative $d\overline{P}_0^R/d\overline{P}_1^R$ is well defined. We examine now the meaning of this Radon-Nikodym derivative. In the case where the stopping time R is equal to a constant a then $\mathfrak{N}_R = \mathfrak{N}_a = \sigma(N_u, 0 \leqslant u \leqslant a)$ so that $d\overline{P}_0^a/d\overline{P}_1^a$ is the likelihood ratio for testing the two hypotheses H_i for $i=0,1:P_1$ is the probability measure on (Ω,\mathfrak{F}) , by observations on the CP (N_i) for $t \leqslant a$. The detection scheme then consists in selecting H_0 or H_1 according as $d\overline{P}_0^a/d\overline{P}_1^a$ is above or below a given threshold. Now in the case where R is a stopping time

[†]When f_t is a right-continuous function with left-hand limits Δf_t denotes the jump $f_t - f_{t-1}$.

 $[*]P_0 \ll P$ means that the measure P_0 is absolutely continuous with respect to P while $P_0 \sim P$ indicates that the two measures are equivalent.

which is not a constant we know that $\mathfrak{N}_R\supset\sigma(N_{u\wedge R},0\leqslant u)$ (this follows from the fact that $N_{u\wedge R}$ is (\mathfrak{N}_R) measurable by Theorem 49-IV of [11]) but the reverse inclusion is not necessarily true. For this reason $d\overline{P}_0^R/d\overline{P}_1^R$ is not the likelihood ratio for our detection problem when the time of observation is the stochastic interval [0,R], as one could have conjectured. But one can interpret $d\overline{P}_0^R/d\overline{P}_1^R$ as a likelihood ratio if we assume that the information accessible to the observer is \mathfrak{N}_R and not simply $\sigma(N_{u\wedge R},0\leqslant u)$. For i=0,1 with the measure P_i carried on (Ω,\mathfrak{F}) suppose that the CP (N_i) has the process $(\int_0^i \lambda_i^j dm_s)$ for (\mathfrak{F}_i^i) ICR, where (\mathfrak{F}_i^i) is a family of σ -algebras with $\mathfrak{F}_i^i \supset N_i, (\lambda_i^i) \in \mathfrak{K}(\mathfrak{F}_i^i)$ is a positive process, and m_i is an increasing deterministic function with $m_0=0$.

It is known that we can make a change of measure under which (N_t) is a CP of independent increments with mean $m_t = EN_t$ under the new measure P (Theorem 2.6.1 of [5]). Using this fact and the three-step technique of Duncan and Kailath (see Introduction) the likelihood ratio for detecting CP's has been obtained according to

Theorem 3.2 (Theorem 3.4.4 of [5]). For i = 0, 1 let (N_i) be, under the measure P_i , the CP described above. Assume

(a) $P_0 \ll P$ and $P \sim P_1$ and define for i = 0, 1 the (P, \mathcal{N}_t) martingale

$$L_t^i = E\left[\frac{d\overline{P_i}^{\infty}}{d\overline{P}^{\infty}}|\mathfrak{N}_t\right];$$

- (b) For i=0,1, the stopping times T^i are such that there exists increasing sequences of stopping times (T^i_n) for which $T^i=\lim_n T^i_n$ a.s. and $E(\ln^- L^i_{T^i_n})^2 < \infty$ for each n. Let $T=T^1 \wedge T^0$;
- (c) For i = 0, 1 $E_i \int_0^t \lambda_s^i dm_s < \infty$. Then

$$\frac{d\overline{P}_0^{t \wedge T}}{d\overline{P}_1^{t \wedge T}} = \prod_{J_n < t \wedge T} \left[\frac{\hat{\lambda}_{J_n}^0}{\hat{\lambda}_{J_n}^1} \right] \exp \left[\int_0^{t \wedge T} (\hat{\lambda}_s^1 - \hat{\lambda}_s^0) dm_s \right]$$
 (1)

where $\hat{\lambda}_{t}^{i} \stackrel{\Delta}{=} E_{i}(\lambda_{t}^{i}|\mathfrak{N}_{t})$ for i = 0, 1 and J_{n} is the time of n^{th} jump of (N_{t}) . By convention the product $\prod(\cdot) = 1$ for $J_{1} > t \wedge T$.

- Remark 3.3. (a) The stopping time T^i which is the first time after which the martingale (L_t^i) can behave badly may take the value $+\infty$. It is in fact desirable for T^i to be as large as possible.
- (b) By our convention (Remark 2.2) condition (c) above insures that the process $(\hat{\lambda}_i^t)$ is well defined.
- 4. Recursive Integral Equations for Likelihood Ratios We show here that the likelihood ratio (1) of our detection problem can be obtained as the unique solution of a stochastic integral equation. This stochastic integral equation can be mechanized by a feedback scheme tantamount to a recursive filter, as shown in Figure 1.

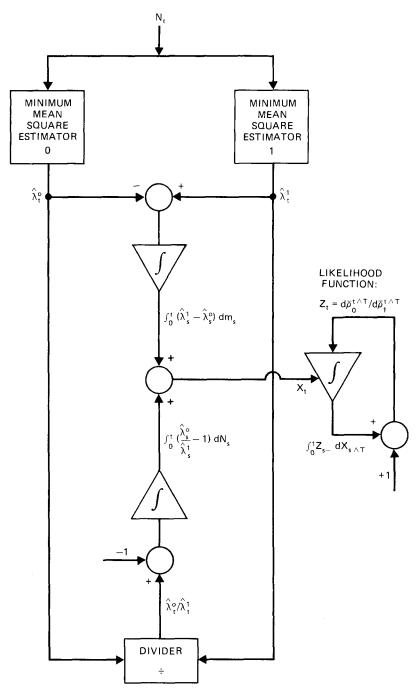


Figure 1. Recursive Scheme for Obtaining the Likelihood Function Z^t

Theorem 4.1. The likelihood ratio $d\overline{P}_0^{t \wedge T}/d\overline{P}_1^{t \wedge T}$ of Theorem 3.2 is the unique solution of the following stochastic integral equation:

$$Z_t = 1 + \int_0^t Z_{s-} dX_{s \wedge T} \tag{2}$$

where

$$X_{t} = \int_{0}^{t} \left\{ \left[\frac{\hat{\lambda}_{s}^{0}}{\hat{\lambda}_{s}^{1}} \right] - 1 \right\} dN_{s} + \int_{0}^{t} \left(\hat{\lambda}_{s}^{1} - \hat{\lambda}_{s}^{0} \right) dm_{s}$$
 (3)

Proof. By assumption (λ_t^i) , i=0,1, is positive a.s. finite for all t (by condition (c) of Theorem 3.2 and Remark 2.2). The process (N_t) has a finite number of jumps in any finite interval so that the process $(\int_0^t \wedge^T [(\hat{\lambda}_s^0/\hat{\lambda}_s^1) - 1]dN_s)$ has sample paths of bounded variation on any finite interval; and so does the process $(\int_0^t \wedge^T (\hat{\lambda}_s^1 - \hat{\lambda}_s^0) dm_s)$ by assumption (c) of Theorem 3.2. Hence $(X_{t \wedge T})$ is a semi-martingale with sample paths of bounded variation on any finite interval so that $(\langle X^c \rangle_{t \wedge T}) \equiv 0$ (see the remark, on p. 90, following proposition 3 of [3]). Then by Theorem 1 of [4] the unique solution of (2) is given by

$$Z_{t} = \exp(X_{t \wedge T}) \prod_{s \leq t} (1 + \Delta X_{s \wedge T}) \exp(-\Delta X_{s \wedge T})$$
(4)

Now $\Delta X_{s \wedge T} = ((\hat{\lambda}_s^0/\hat{\lambda}_s^1) - 1)\Delta N_{s \wedge T}$ and hence the product in (4) becomes

$$\prod_{s < t} (\cdot) = \prod_{s < t} \left[1 + \left[\frac{\hat{\lambda}_{s}^{0}}{\hat{\lambda}_{s}^{1}} - 1 \right] \Delta N_{s \wedge T} \right] \exp \left[\sum_{s < t \wedge T} - \left[\frac{\hat{\lambda}_{s}^{0}}{\hat{\lambda}_{s}^{1}} - 1 \right] \Delta N_{s \wedge T} \right]$$

$$= \prod_{J_{n} < t \wedge T} \left[\frac{\hat{\lambda}_{J_{n}}^{0}}{\hat{\lambda}_{J_{n}}^{1}} \right] \exp \left[- \int_{0}^{t \wedge T} \left[\frac{\hat{\lambda}_{s}^{0}}{\hat{\lambda}_{s}^{1}} - 1 \right] dN_{s} \right]$$

Substituting the above relation and expression (3) in (4) gives the desired result (compare with (1))

$$Z_{t} = \prod_{J_{n} \leqslant t \wedge T} \left[\frac{\hat{\lambda}_{J_{n}}^{0}}{\hat{\lambda}_{J_{n}}^{1}} \right] \exp \left[\int_{0}^{t \wedge T} (\hat{\lambda}_{s}^{1} - \hat{\lambda}_{s}^{0}) dm_{s} \right] = \frac{d\overline{P}_{0}^{t \wedge T}}{d\overline{P}_{1}^{t \wedge T}}. \quad \Box$$

Observe that if under the measure P_1 the CP (N_t) is a process of independent increments with mean m_t then $P \equiv P_1, \lambda_t^1 = 1$ and Eq. (3) becomes

$$X_{t} = \int_{0}^{t} (\hat{\lambda}_{s}^{0} - 1) d(N_{s} - m_{s})$$
 (5)

The process $(M_t \stackrel{\Delta}{=} N_t - m_t)$ is a (P, \mathfrak{N}_t) martingale. Hence (5) shows that the process $(X_{t \wedge T})$ is a local martingale. In turn, (2) then implies that the process (Z_t) is a local martingale. In this case we in fact have $Z_t = E_1[(dP_0^{\infty}/dP_1^{\infty})|\mathfrak{N}_{t \wedge T}]$, i.e. the likelihood function is a uniformly integrable martingale.

In applications, Eqs. (2) and (3) give a way of implementing the computation of the likelihood ratio continuously in time. They represent recursive equations if one also obtains the best estimates $(\hat{\lambda}_t^i)$ in a recursive manner. The block diagram of this implementation is given in Figure 1.

References

- [1] I. BAR DAVID, Communication under the Poisson regime. *IEEE Transactions on Information Theory*, IT-15, 31-37, 1969.
- [2] P. M. Brémaud, A Martingale Approach to Point Processes. Memorandum No. ERL-M345, Electronic Research Laboratory, University of California, Berkeley, California, August, 1972.
- [3] C. DOLÉANS-DADE, and P. A. MEYER, Intégrales stochastiques par rapport aux martingales locale. Séminaires de Probabilités IV, Lecture Notes in Mathematics No. 124, Springer-Verlag, Berlin, 77-107, 1970.
- [4] C. DOLÉANS-DADE, Quelques applications de la formule de changement de variables pour les semimartingales. Z. Wahrscheinlich-keitstheorie verw. Geb., 16, 181-194, 1970.
- [5] F. B. DOLIVO, Counting Processes and Integrated Conditional Rates: A Martingale Approach with Application to Detection. Ph.D. Thesis, The University of Michigan, Ann Arbor, Michigan, June, 1974.
- [6] T. E. DUNCAN, On the absolute continuity of measures. Ann. Math. Stat., 41, 30-38, 1970.
- [7] T. E. DUNCAN, Likelihood functions for stochastic signals in white noise. *Information and Control*, 16, 303-310, 1970.
- [8] I. V. GIRSANOV, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory of Probability and Its Applications, 3, 285–301, 1960.
- [9] T. KAILATH, A further note on a general likelihood formula for random signals in a Gaussian noise. *IEEE Transactions on Information Theory*, IT-16, 393-396, July, 1970.
- [10] H. KUNITA, and S. WANTANABE On square integrable martingales. Nogoya Math. Journal, 30, 209-245, 1967.
- [11] P. A. MEYER, Probability and Potentials. Blaisdell, Waltham, Massachusetts, 1966.
- [12] B. REIFFEN and H. SHERMAN, An optimum demodulator for Poisson processes: photon source detectors. *Proceedings of the IEEE*, 51, 1316-1320, October, 1963.
- [13] J. H. VAN SHUPPEN and E. Wong, Transformation of local martingales under a change of law. Electronic Research Laboratory, Memorandum No. ERL-M385, University of California, Berkeley, California, May, 1973.

(Received October 6, 1975)