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Abstract. The notion of system trajectory of a time-varying input-output, 
dynamical system is reviewed. By introducing a probability measure on a 
class of such systems a stochastic system, the randomized system, is defined. 
The randomized system has a trajectory induced by the trajectories of the 
original systems. A theorem is proved giving fairly general conditions under 
which the randomized system trajectory is generated by a strongly continuous 
semigroup of bounded linear operators in a Banach space. An example is 
presented for a system represented by a quadratic integral operator. 

1. Introduction 

A theorem is stated and proved here giving sufficient conditions for the genera- 
tion of a system trajectory for a stochastic system by a strongly continuous 
semigroup of bounded linear operators. The theorem appears in section 3 and is 
followed by an example in section 4. Since the problem considered (but not the 
analysis) is judged to be somewhat nonstandard, some intuitive and motivational 
background material is included in this introduction. Even the term "sys tem 
trajectory" is presumed not to be immediately meaningful, so the concept is 
developed below in heuristic fashion. 

We are concerned with nonanticipative "dynamical" systems, but no particu- 
lar theory of nonanticipative systems is necessary. The system trajectories are not 
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state trajectories for the system under consideration. Thus the rather extensive 
theory of state in causal systems, in particular involving abstract causality in the 
context of resolution spaces [9] and [10] is not used. However, the system 
trajectories can sometimes be interpreted as state trajectories for a "dominating" 
system (as pointed out below), so it is entirely possible this work could be tied to 
the theory mentioned, and perhaps generalized in one direction with the use of 
resolution spaces. The ideas developed in [6] and [7], particularly the latter, are 
conceptually useful here, but again none of the results of these papers is actually 
used. The theorem of this paper has been stated, in incomplete form and without 
proof, in [8]. 

For the purposes of this paper a system model (Y, F , U )  is a mapping 
F: U ~ Y where U and Y are spaces to be specified. The interpretation is that each 
element u E U represents a possible input and the element y E  Y, y = F(u) ,  is the 
corresponding output. A compound system model (Y, f ,  X, U) is a mapping f:  
X × U ~  Y. The interpretation of U and Y as, respectively, input and output 
spaces remains the same, but the presence of X allows for consideration of a 
family of input-output maps, F ( - ) :  f ( x , . ) ,  x E X. A (compound) system model 
is said to be a dynamical (compound) system model if U, Y and (each) F satisfy 
the following conditions: (1) U and Y are spaces of functions (or equivalence 
classes of functions) defined on the real line R. Both U and Y are to be invariant 
under translation on R. (2) F is a nonanticipative mapping; i.e. if ul, u2E U and 
ul(s ) : u2(s ) for all s ~< t, then [F(ul)](s ) : [F(u2)](s ) for all s ~< t. 

The notations U, Y and F will be used consistently so that they have the sort 
of interpretation assigned, even though they carry affixes and represent various 
spaces and mappings. Any of the system models will be referred to simply as a 
"system," or if appropriate, as a "dynamical system." The output spaces Y are 
always taken to be linear spaces; the input spaces typically are not. Topological 
considerations concerning Y, F, U are deferred till later. 

In any space of functions (or equivalence class of functions) defined on 
R, L v, vE  R, denotes translation to the left by v; thus [Lv(u)](s ) : u(v  + s). If a 
function space is translation invariant, L v is a bijection. A system (Y, F, U) is 
time-invariant if F(LvU ) : Lv (Fu)  for all uE  U, v ~  R; otherwise it is time-vary- 
ing. 

Suppose now that for each t ~  R a space U t is somehow defined so that: (i) 
the elements u t of U t are equivalence classes of u's such that if u ( s ) :  u'(s),  s <~ t, 
u and u' represent the same u t (but not necessarily do two representatives of u t 
satisfy this condition), and (ii) for all s, t E R,  Zt_  s is a 1 : 1 mapping of U~ into U t 
that preserves all of the mathematical structure of Us. This latter property will be 
possible because of the translation invariance of U. Suppose further that linear 
spaces Yt can be defined satisfying the same requirements as just listed, but with 
respect to Y. Finally, suppose F is such that for each t it induces a mapping 
from U t into Yt- Let Ft: U o ~ Yo be defined by 

F t : L t ~ L _  t. 

We call the mapping t ~ F t the trajectory of (Y, F, U) with respect to U 0 and Y0 
and denote it by (U o, Y0; Ft, t E R ) .  Sometimes only a positive trajectory is 
considered, in which case R is replaced by R+ = (t ~>0). This concept can be 
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extended at once to a compound dynamical system (Y, f ,  X, U). If the families of 
spaces {Ut} and (Y,} satisfy the conditions just stated, and if each f (x , . )  = Fx(.) 
induces a mapping Fx, ' from U t into Yt, t ~  R, there is a trajectory (U0, Y0; Fx,,, 
t ~ R) for each F~. Again R may be replaced by R +. 

If the system (Y, F, U) is time-invariant, F t is the same mapping for all t and 
the trajectory is trivial. The condition that F induces a mapping from U t to Yt of 
course implies that F is nonanticipative. In general, however, this condition 
implies more and so amounts to a further restriction one can place on the system; 
it may impose a restriction on the "memory" [7]. 

In addition to topologies for the spaces involved, including the space of 
mappings Ft, some more structure has to be specified before an investigation of 
trajectory properties becomes interesting. The introduction of more structure is 
tied to the question: why might one be interested in time-varying systems? Two 
possible answers to this question that concern us here are as follows. First, 
suppose there is a dominating or "master" time-invariant system that controls 
the dynamical system (X, F,U) in the sense that {Ft} is determined entirely by 
the state of the dominating system. In particular suppose the dominating system 
is an autonomous linear system with state (xt}t>~o generated by a semigroup of 
linear operators in some space, and x, determines F t continuously. Then a 
structured, predictable time-varying system (Y, F, U) is described (subject to the 
condition that the Ft's determine an F);  (Y, F,U) may itself be a nonlinear 
system. This kind of example suggests the problem: give nontrivial conditions on 
(Y, F, U) such that (Ft}t~ 0 is generated by a, say, strongly continuous semigroup 
of bounded linear operators in a Banach space; the conditions will include 
"geometrical" conditions on the trajectory. A solution for such a problem is given 
in [7] which generalizes a result in [6]. 

Second, any nontrivial stochastic system for which sample paths are well- 
defined is time-varying if one regards it as a family of deterministic systems, no 
matter whether the statistical description is invariant under time shift or not. This 
fact suggests a preliminary problem: starting from a family of dynamical systems, 
(i.e. a compound dynamical system) introduce a probability measure in such 
fashion that a dynamical stochastic system results that relates naturally to the 
family of deterministic systems. Once this is done, the first problem stated above 
can be posed for the stochastic system in the form: find conditions on the 
underlying family of systems and on the probability measure such that the 
trajectory of the stochastic system with respect to some pair of spaces X 0 and Y0 is 
generated by a strongly continuous semigroup. A solution to a problem of this 
kind is provided by the theorem of section 3. 

2. Preliminaries 

If U is a metric space and Y is a Banach space, the Banach space of all bounded 
continuous mappings from U into Y with norm I[ F II = supuc u I1F(u)ll is denoted 
°)-(U, Y). To avoid confusion subscripts are sometimes used with norms, as, for 
example 

[Ifll = IIFll~(v,r). 
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Any compound system S = (Y, f ,  X, U) has a natural representation S 1 = 
(Y, fl, ~ ,  U) defined as follows. Let ~b(x) = F where F is the mapping from U 
into Y given by F(u)  = f ( x ,  u). Then ~ = ~k(X) and f l (F,  u) = F(u). The map- 
ping ~b is called the natural mapping. In what follows we usually consider 
compound systems in terms of their natural representations. The symbol fl is 
consistently used as above, no matter what the spaces U, X and Y may be. The 
special case of interest here is that for which U and X are metric spaces, Y is a 
Banach space and f is continuous on X × U and bounded on U for each fixed x. 
Henceforth any compound system referred to will satisfy the conditions for this 
special case, either by assumption or by proof, as is appropriate. First we note 
that if S satisfies these conditions, so does S I. In fact, ~b(x) -- F E  65(U, Y) and we 
may regard % as a metric subspace of ~(U, Y). It follows readily that f~ is 
continuous on ~ × U, and it is of course bounded on U for each fixed F. It may 
also be noted that the map ~b: X ~  ~(U, Y) is continuous iff the mappings f ( - ,  u) 
are equicontinuous; a sufficient condition is that U be compact [5]. 

In the terminology used here a system is stochastic if the output quantities can 
be interpreted as random variables, i.e. if they are measurable functions on a 
probability space. For the class of stochastic systems to be considered in the next 
section the output space Z is an L2-space of strongly measurable Banach-space- 
valued functions on a probability space. In any stochastic system the output 
quantities, being random variables, cannot be "observed" or even approximately 
observed as can a deterministic quantity; so the interpretation of stochastic 
systems is obviously different from that of deterministic systems. However this 
fact, which means that in applications one is faced with problems of statistical 
inference, does not concern us here. 

System trajectories are studied in [6] and [7]. In the first mentioned reference 
time-truncation projection operators are used to determine the spaces U 0 and I10 
from U and Y; in the second the device called fitted families of normed linear 
spaces is used to do the same thing in a more general context. It is irrelevant for 
our purpose here what formalism is used to establish a trajectory. Indeed, it is 
sufficient to start with an abstract trajectory defined simply as an ordered family 
of mappings (Uo, Y0; Ft, t E R), where each F t is a mapping from U 0 into Y0- Some 
additional conditions are imposed on Uo, Y0 and the family (Ft} later. 

Remark 1. An abstract trajectory determines the system (Y, F, U):  where U = 
IItcnUt, Y = I I t E R Y  t, and F: U--, Yis defined b y y  t = Ft(ut) , u tE  Ut, F t = L_ tF tL  r 
However, this U and Y may well be " too large" to yield a useful interpretation of 
the system. If U and Y are only subsets of the spaces defined above, then one 
expects that a consistency condition must be imposed on the family of maps (Ft} 
in order for them to determine a mapping F: U-~ Y. For example, in the structure 
used in [7] involving fitted families of normed linear spaces, with the families of 
spaces (Ut} and {Yt} related to U and Y as specified there, the mappings ~ must 
satisfy the usually nontrivial condition: for each u E U the set 

N { y C Y : y E P t ( u ) }  
t E R  

must be nonempty. Recall that Ft(u) is well defined for all u E U  since u is a 
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representative of an equivalence class ut~Ut, and that Ft(u) is an equivalence 
class of elements of Y. 

Remark 2. As a sort of obverse to the previous remark, we note that if 
(U0, Yo; F~, tE  R) is a trajectory for (Y, F, U), it may not determine the system 
(Y, F, U), but rather a "smaller" system. A trajectory defined as in section 3 of [7] 
does determine (Y, F,U), but if Yo is redefined as a quotient space with a 
nontrivial kernel the resulting trajectory does not. 

In dealing with a compound system in the natural form (Y, fL, %, U) it is 
convenient and not very restrictive to assume that the set (metric space) 3C of 
mappings F is closed under translation; if F ~  3C, so does G = L_~,FL v for all 
v E R. Thus, even if we start with a single system (Y, F, U), it is converted to a 
compound system, and we deal with a family of trajectories. Under this assump- 
tion the set 3C determines a metric subspace 3co of ~(Uo, Yo) and each F t ~ 3Co, for 
all F E  3C, t E  R. It is thus appropriate to introduce families of abstract trajecto- 
ries of the form {(U o, Yo; Ft ~, tC R), F t ~  3co, a E  C} where C is an index set and 
3c0 = {Fo ~, a E C ) =  (Ft ~, a ~  d~} for all t. This family also forms a compound 
system (Yo, fl, 3co, Uo). 

3. Stochastic Trajectories 

Suppose there is given a family of trajectories C = ((U o, Yo; Ft ~, t ~  R+ ), F t ~  3co} 
restricted to R+,  where U o is a metric space, Yo is a real separable Banach space 
and %o = {Ft ~, a E  C}, t ~  R+, is a metric subspace of °Y(Uo, Yo). This family can 
represent the trajectories of a compound dynamical system. It is assumed the 
following condition is satisfied: 

(1) There exists a semigroup of transformations {~',, sER+)  such that 
Ft~_, = ~-sF~ ~ for all t,s>~O and all a. 

A stochastic trajectory, a "randomization" of C, is given by the following 
construction, described first heuristically. A probability measure /x with finite 
variance is imposed on 3C 0. Each input u E U 0 determines a mapping from 3c0 into 
Y0; i.e., corresponding to each input there is an "output"  in the form of a 
Y0-valued random variable on 3C 0. This is the situation for t fixed, say t = 0. Then 
as t increases and 5 maps 3co into itself the measure/x is transformed, so that the 
same input produces an output random variable with a different probability law. 
Actually, instead of dealing with transformed probability spaces, we use the 
transformations of random variables induced by the {'r~}, so that the output 
random variables are all defined on the same probability space. A trajectory 
(~t}t~o of mappings from inputs to stochastic outputs is thus generated. This 
construction is now made precise. 

To start with we consider only the compound system (Yo, fl, 3co, Uo) formed 
by C, without reference to trajectories per se. Let/~ be a probability measure on 
(the o-algebra of Borel sets of 3c0) which satisfies the condition: 

(2) f%0 II F II 2d/x(F) = k 2 < m. 
Let O be the mapping that carries U o into Yo-valued functions on 3co defined 

by O(u) = fl( ' ,  u). 
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Lemma 1. I f  ts satisfies condition (2), p has the properties: 
(i) p(u): 560 ~ Yo is continuous for each u and hence is Borel measurable. 

(ii) p(Uo)C L2(56o, ~3, IS, Yo) and is bounded. 
(iii) p: U o ~ L2(56o, q3, IS, Yo) is continuous. 

Proof (i) For any F, F '  E 560, 

11 [p(u)] (F)  - [p(u)](F')[[ Yo = [I f , (F,  u) -- f , (F ' ,  u)[[ Yo 

= [IF(u) - F'(u)llYo <- [ I F -  F'llq(u0,r0)- 

(ii) By (i), [O(U)](') is Borel measurable. Then 

f~  f% 2 k 2" [[[p(u)](F)ll~,odl.t(F ) <~ [Irll~(vo,ro)dis(r ) = 
o 0 

(iii) II[p(u)l(F)--[O(u')l(F)ll 2 0 = II F ( u ) -  F(u')l[ 2yo ~ 0 as u ' ~  u. Also 

I[[p(u)]( F)  - [ p ( u ' ) ] (  F)l[2o ~ 4IIFII 2 ~Y( uo, go), 

so the Lebesgue dominated convergence theorem applies to yield the assertion. [] 
We note that since Yo is separable, strong, weak and Borel measurability of a 

mapping from 560 to Yo are equivalent. Also, if U o is compact, °5(Uo, Y0) is 
separable, so that 560, as a metric subspace of ~(U o, Yo) is separable. It then 
follows that L2(56o, ~ ,  IS, Yo) is a separable L 2 space. 

By the above lemma (L2(56 0, @, IS, Yo), p, Uo) is a stochastic system with 
continuous and bounded P; it is called here an L2-randomization of the system 
(Yo, fp56o, Uo). We now want a compound randomization of (Yo, fl,56o, Uo) 
which keeps U o as input space and L2(56 0, @, #, I7o) as output space. One way to 
accomplish this, which fits the introductory description above, is as follows. 
Suppose {r,} is a parametrized set of transformations (it does not yet need to be a 
semigroup) on 560 such that for each s: 

(3) rs: 56 0 --, 560 is Borel measurable. 
(4) If E E  ~ and IS(E)=0, then IS{~'ZI(E)} =0.  

s u - g { r T ~ ( E ) } - M ( s ) < m ,  where the supremum is over all E ~ ,  (5) p 

IS(E) 0. 
Now define operators T~ on L2(56o, ~ ,  IS, ]70) by 

[T~z](F) = z('rs(F)), z ~ L2(%o, ~ ,  IS, Yo)- (1) 

Each T s is a continuous linear operator with linear operator norm ]Ts[ = [M(s)] 1/2 
(see [1], VIII 5.7). The parameter space of the stochastic compound system being 
constructed is taken to be ~ = (T~} regarded as a metric subspace of the Banach 
space of bounded linear operators on L2(56o, ~ ,  #, Yo)- Define g, a mapping from 



Randomized System Trajectories 299 

~- × U 0 to Yo-valued functions on ~o ,  by 

g(r~, u) = ~[p(u)] (2) 

so that [g(T~, u)](F)=[p(u)]('r~F). Clearly, g is a mapping into b2(~(~0, 6~,/1, Yo) 
and II g(T~, u)ll L= <~ k[T~[ = k[M(s)] 1/2. Furthermore, if T, T' E ~" and u, u' E U o, 
one has 

IIg(T,u) - g(T',u')llL2 <~ITI . l i p (u )  - p(u')ll/~2 + I T -  T' I - IIp(u ') l l /<.  

From these considerations and Lemma 1 the lemma immediately below follows 
easily. 

Lemma 2. Let S- - (Y0,  fl, g(~o, Up) be a compound system with U o a metric space, 
Yo a real separable Banach space, 0(~ o a metric subspace of ~(Uo, Yo) and fl: 
~)Co × Up ~ Yo given by f l (F,  u ) :  F(u). Let ix be a probability measure satisfying 
condition (2), and let (~'~} be a parametrized set of transformations on ~ o  such that 
conditions (3), (4), (5) are satisfied. With T~ and g as defined in Equations (1) and 
(2) and gJ as defined above 

= (L2(~o,~,~I,  Yo),g,~J,Uo). 

is a compound system with g continuous on gJ X U o and bounded on U o for each 
T E  ~S. I f  M( s ) < - M <  ~ for all s and U o is compact, then g is uniformly continuous. 

Remark 3. The system Y. has a natural representation 

z, = (L2(%o,~,~,, to), f , ,%, Up) 

where ~-0 = ~b(~ ) and fl is as previously defined. The dements of ~ are the 
mappings Tsop, and the natural mapping +: ~ ~(Uo, L2(%0, ~,/~, Yo) is con- 
tinuous. Put dps: = ToO. If now the parameter s E R + ,  i.e. s again represents 
"time," the mapping s ~ dp, is a stochastic trajectory (U o, L2(~o,  ~,/x,  Yo); ~ ,  
s E R + ) .  It is fair to call this trajectory a randomization of the family of 
trajectories G since a sample path is given by 

[~,(u)](Fo) =[T,(p(u)](eo) = p(u)(,,(ro)) 
= f,(Fs, u) = F,(u), s r= R+ ,  Fo r= %0" 

We note that establishing a stochastic trajectory in this fashion uses condi- 
tions (2), (3), (4), (5) but not (1). It remains to verify certain properties of this 
kind of stochastic trajectory. 

Lemma 3. Under conditions (1), . . . ,  (5): 
(i) {Tt}t~ o is a semigroup of bounded linear operators on L2(0C0, ~,/~, Yo)- 

(ii) ~t+s = TtePs- 
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Proof. (i) An easy verification; using the fact {~'s}s~>o is a semigroup, shows that 
{T~}t~> o is a semigroup. It has already been established that each T t is a bounded 
linear operator. 

(ii) This is immediate from (i) and the definition of ~t- [] 

Lemma 4. Let (~',},~o be a semigroup of transformations on %0 satisfying (3), (4), 
(5). Then, for any closed finite interval I on R+ there is a constant M > 0  such that 

/t(~-Zl(E)) ~ < Mt~(E) 

for all t ~ I and all Borel sets E in %0. 

Proof. The M(t)  defined in condition (5) is finite for all t >t0. We have 

~t(Tt-+Is(E)) ~(Ts-- I(E)) 
M ( t + s )  = sup 

.(.,;,.(e)) .(.:,(E)) 
~< sup • sup 

/t (~'~I~(E)) M ( s )  = sup 

where the suprema are over all Borel sets wi th /~(E)>0 .  Put /~  = TZI(E). Then 
the above inequality gives 

M(t+s) <- sup 

~< sup 
E 

. M ( s )  = M(t)M(s), 

since each /~ is a Borel set. Now let i f ( t ) :=  logM(t) .  Then q~(t)~>0 and is a 
subadditive function on R+. By a property of subadditive functions (see [2], 
Theorem 7.4.1) ~( t )  is bounded on any compact set. The assertion follows. [] 

One further condition is introduced. 
(6) Each trajectory of C is continuous; i.e. t ~ Ft ~ is a continuous mapping 

from R+ into %0 for each a. 

Lemma 5. I f  conditions (1) . . . . .  (6) are satisfied then t ~ d~ t is a continuous map- 
ping from R+ into ~(Uo, L2(%0, @,/x, Yo)). 
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Proof  We show that I I ~ + h - - ~ v l l e ~ 0  as h ~ 0 ,  where ]J-I[~denotes the norm 
in °Y(Uo, L2(%o, ~,/~, Yo)). Note first that 

II¢~+h - ¢ ~ 1 1 ~  - I I T ~ + h o p  - -  T ~ o p l l ~  

= s u p  II(Tv+,,,op--T.,op)(u)liL2 
u~_ U o 

= .~os°":' [f~o,,i~v+,,,,,,(u~,,l,~o~ 
- [ro(o(u))]( Fo)ll ~o a.(  ro)] '/~ 

= .~oSUp [£o Eo(u~l(%+~(~o~t 

--[p(U)] ('rv( Fo )) l[ 2o dp,( Fo)] 1/2 

= sup it[%+.(Fo)](u)[%(Fo)](u)H~J.(Fo) 
~CVot o 

= sup -- %(Fo)](u)l lZodl~(Fo) (3) 
u~ Uo 

For any Borel set E C ~o ,  

£" [ % +h(Vo)- %(ro)] (u)ti ~od. (ro) 

-< £it %+h(ro) - %(Fo), ~a.(Fo) 

~< 2fEll %+h(Fo) II .}d/~ (Fo) + 2LII %(Fo) II ~ dt~(Fo). (4) 

Consider 

f{Fo: II%(Fo)¢12>~a} I[%( FO)ll2 d#( fO) -~ f{F': llF'll2>~a) IIF'I[}yd(#'I'vl)( F')" 

For a fixed finite interval [t l, t 2 ], there is M > 0 such that/z(%-I(E)) ~< M/z(E) for 
all Borel sets E and all v ~  [tl, t2] (by Lemma 4). Hence the integral on the right 
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side of the equation above is dominated by 

M'f{ll F'II 2 ~ a)II F'II }dtt(F'), 

which approaches zero as a - ,  ~ .  Thus, the functions 11%(Fo)ll 2 are uniformly 
integrable for v ~ [t l, t2]. Consequently, by Inequality (4), the functions [[ %+h(Fo) 
_ %(Fo)l [ 2 are uniformly integrable for v ~ [tl, t2] and v + h ~ [q, t2]. Since 
condition (6) says that I[ %+h(Fo)-- %(F0)ll ~ --, 0 as h --+ 0, we have 

lim f I[%+h(F0)- %(Fo)l[~dlt(Fo) = O. 
h ~ O a %  o 

for all v >t 0 (h > 0 if v = 0). Then by Equation (3) and Inequality (4), 

h~0 

for all v ~ R +, where the limit is from the right if v = 0. [] 

Theorem. I f  conditions (1),...,(6) are satisfied, there exists a closed linear sub- 
space ~ of L2(~0, ~ ,  tz, Yo) such that the following are true. 

(i) Ts(0g) C 0]L, sE  R+. 
(ii) Let T~ restricted to glg be written T~ ~ .  (TFC)s>~O is a strongly continuous 

semigroup of bounded linear operators on 6?ILL. 
(iii) ~,+~ = TtO ~. 

Proof (i) The subspace ~ is defined as follows. Put o~: = 0(U0); ¢~: = 
tO tc~+Tt@; 9]L: = V ~  (closed linear span of ~ ) .  By Lemma 1 and the fact each 
T t is a bounded linear operator on L2(%0, ~,/~, Y0) it follows that ~ is a closed 
linear subspace. If g ~  ~ ,  g = T~o(u) for some s and u. Then Ttg = Tt+sp(u); so 
Tt~ C ~ .  It then follows from the linearity of T t that TrtV~ ) C V~.  Finally, 
since 

IlZtg - T,g'[I L2 ~ [ M ( t ) ]  ' /2" Ilg -- g'll r~, 

gE  V ~  implies Ttg6 V~. 
(ii) All that remains to be proved is that {TJC}~o is strongly continuous. 

Suppose gE  ~ ,  then g = T~(p(u)) for some s and u, and 

[[T~g - gilL2 = liTt+s(P(u)) -- T~(p(u))ilL2 -~ 0 

as t ~ 0 by Lemma 5 (stochastic trajectory continuity). This result extends to V6Z 
by virtue of the linearity of T r Finally, suppose g ~ V~. One has 

[[Ttg -- gilL2 ~ [[Ttg -- Ttg'[[L2 + [[Tzg'-- g'HL2 + Jig'-- gilL2 
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for any g ' E  V~.  Thus, 

IITtg - gilL2 <" [ M (  t ) ' /2 + l ] " [I g -- g'll t2 + IITtg'-- g'll L2 

~< [M1/2 +1]  " IIg - g'llt2 + I ITtg ' -  g'llt~ 

for t ~< constant. By choosing g'  so that 11 g - g'll L2 is sufficiently small and then 
taking t sufficiently small, the right side of this inequality can be made less than 
an arbitrary c > 0. 

(iii) This fact has already been noted. [] 

Remark 4. If a compound dynamical system satisfies the conditions of Proposi- 
tion 7 of [7] it has trajectories generated by a strongly continuous semigroup, 
which will then satisfy the conditions for the Theorem with a suitable probability 
measure #. 

4. Example 

The example chosen is simple, and covers what seems a small but reasonable class 
of system models. It is not quite as simple as it might be, however, because a 
couple of minor complications have been introduced in the specification of U 0 
and Yo to illustrate some of the flexibility possible in the system modeling. 

The space U 0 is a subset of an L2-space, not of L 2 ( - - ~ ,  0) (the L2-space of 
real-valued functions with respect to Lebesgue measure on ( -  0¢, 0)), but rather of 
an L2-space formed with respect to a measure that inhibits the "memory" .  Let ~: 
R --, R be any function that satisfies the conditions: if(t) = 0, t < 0; ~(0) = 1; ~ is 
monotone nonincreasing on [0, oo); ~( t )  ~ 0 as t --, oo, and f~ep( t )  dt = c, 0 < c < 
~ .  Let A 0 be the L2-space formed from equivalence classes of real-valued 
functions f for which 

Ilfll02: = f I f ( - t ) [ 2 e p ( t ) d t  < oo. (5) 
o 

Take U 0 to be a bounded subset of A 0 with II u II 0 ~ K < o¢, regarded as a metric 
subspace of A 0. 

The space Y0 is L 2 ( - b , 0 )  where b is a fixed positive constant. This choice 
implies that "observations" are not to be thought of as values of a real-valued 
output function at a point, but rather as segments of an output function. The 
norm in Yo is denoted II1"1110- 

The mappings Ft: U 0 ~ Y0, t ~ R, are defined by 

[F,(u)](o) = f f  h(t + o; v,, v )u(o-v,)u(o-v )dv,dv  (6) 

where - b < < - o  <~0, u E U o ,  and the kernel h of the integral operator is a real- 
valued function satisfying the conditions to follow. Let ~ =  sup(t: ~ ( t ) > 0 } ;  ~3 
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may be oo. Then it is required that 

h(s ;v l , v2 )  = 0 i fv  l >  g or v 2>15  (7) 

and 

f o I h ( t + o ; v , , v 2 ) l  2 
b'O "0 dP(b+v,)dP(bWv2) dvldv2dt < oo (8) 

for all t E R. 
Denote the integral on the left side of the Inequality (8) by I1 h t II ~. One can 

readily verify, using no more than the Schwarz and triangle inequalities and the 
monotonicity o f ,  that: 

IItF,(u)lllo ~< ]lhtll~,llull g <~ g211htll~, (9) 

_ 2 ~< IIh,ll~" I l u -  u'll2(llull2o+llu'll~) ill F , (u)  ~,( . ' ) l l l  o 

<~l 2g211ht[l~," [lu - u'll2 o, (10) 

and 

III F ; ( u ) -  Fs(u)lllo ~ I I h , -  hsl[~-Ilullg 

<~ K211h t -h , l l , .  (ll) 

The first two of these inequalities imply that each F t is indeed a mapping from U o 
to Yo and belongs to oY(Uo ' Y0). Furthermore, each F t is uniformly continuous. 

Thus (Uo, Yo; Ft, t ~  R) is a trajectory and C, the family of all translates of 
this trajectory, meets the preliminary conditions laid down in section 3. Condi- 
tions (1), (3) and (6) for Theorem 1 can be satisfied by suitably restricting h, and 
possibly U o. Consider the following very special case. Let 

h(s;  v , ,  v2) = w(s)g(v , ,  v2) (12) 

where, 

~ Ig(vl,v2)t 2 dvldv2ex51sts, (a) fo f0 
(b) fCb[ w( t+o)12do  < oo fo ra l l t .  

Clearly, Inequality (8) is satisfied, and hence (9), (10), and (11). Further suppose: 
(c) there exists u E U o such that 

foV jog(  V,, v~ )u( o - vl )u( o - v~ ) dv,dv~ ~ 0 
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for a.e. o~ [ - -  b,0], 

(d) f°l w ( t + o ) - w ( s + o ) [ 2 d o  v~ 0 w h e n s  v ~ t. 

It then follows easily that II El-F~ II o3(Uo Yo)>0 whenever t :~ s. Thus the map ~: 
R ~ ~(Uo, Yo) that carries t ~ F t is injective and ~(R)=  ~o .  

We can now define a group of transformations {~s, s ~ R }  (and hence a 
fort iori  a semigroup {~-s, sE  R+ }) on ~ o  by 

T s : :  ~ o L _ s o ~  - I  . (13) 

Thus, rr(Ft)=Ft+r. The mapping ~ is composed of maps indicated by the 
following chain: t --, w t ~ h t ~ Ft, where w t is the element of L 2 ( -  b,0) given by 
( w ( t  + o), -- b ~< o ~<0). The first of these is continuous because of the shift-con- 
tinuity of L2(--b,0); the second is continuous by the definition of I[" [[ ~ and the 
fact ht(o;  Vl, VZ)=Wt(O)'g(Vl, V2) , the third is continuous by Inequality (11). 
Thus ~ is a continuous mapping and the trajectory continuity condition (6) is 
satisfied. 

It remains to guarantee that T s is Borel measurable. This can be accomplished 
by requiring that ~0  be separable. For then, since ~ is a continuous injective map 
from a complete separable metric space (R) into a separable metric space (%0), 

1 is Borel measurable by a theorem of Kuratowski (see [3], p. 22), and "r s is a 
composition of a measurable mapping with continuous ones according to Equa- 
tion (13). The separability of ~o  can be achieved by requiring that U 0 be 
compact; for then °Y(U0, Yo) is separable since Y0 is separable. This is a further 
restriction, as U 0 has previously only been assumed bounded. An alternative is to 
require that the set of wt's be totally bounded in L2(--b,0), which also implies 
that ~0  is separable. 

Conditions (2), (4) and (5) for Theorem 1 involve the measure/~. For 1, a 
Borel probability measure on R, define 

~ ( E )  = p (~ - l (E ) ) ,  E E ~ .  (14) 

For such a t~ the second moment condition (2) becomes 

%ol[ F II 2d/~(F) = fRII ~d(t)II 2dr(t)  

R~ u~Uo 

This integral is dominated by, 

fRK II h t II t ) 
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Thus, a sufficient condition is that 

f~o~f?b I w(t %-o) ]2dodl,(t) < oo. (15) 

Note that this is satisfied for any ~ if fO_blW(t %-O)[ 2do is bounded. 
Suppose the measure p has a density p. If p(t)4=O a.e., condition (4) is 

satisfied. Then, 

fE(t-s)  dt 

Iz(E) fe.p(t)d t 

where/~ = U I ( E ) ,  E E  @. Clearly, if there is m(s) such that p ( t -  s)<<-m(s)p(t) 
for all t, M(s) exists and M(s)<-m(s). In this circumstance condition (5) is 
satisfied. A density p will have this behavior if, for example, it is continuous, not 
equal to zero at any t, differentiable with bounded derivative except possibly at a 
finite set of points, and monotonically decreasing to zero outside some finite 
interval at a rate not exceeding (t)-ne -at, a > O. 

In summary, the set of all translates of a trajectory (U0, Y0; Ft, t ~  R), with Uo 
and Y0 the L 2 spaces specified above and F t defined by Equations (6) and (12), 
can be randomized by introducing a probability measure 1, on R so that the 
conditions of Theorem 1 are satisfied. The resulting stochastic trajectory for t/>0 
is then generated by a strongly continuous semigroup of bounded linear opera- 
tors. 

Remark 5. We started with a deterministic trajectory so as to make the example 
fit the theorem. The same thing can be done starting with a dynamical system 
(U, F, Y), with U and Y chosen as the bounding spaces (see [7] or [8]) for  the 
fitted family of Banach spaces that yields the A o and Y0 used here. See [8], where 
a similar example is treated. Proposition 6 of [7] then guarantees the deterministic 
trajectory is continuous if U o is totally bounded and h satisfies only the Inequality 
(8). Of course that theorem is not needed in this example because of the special 
properties of h. 

In this example U 0 can be taken instead to be a bounded subset of L 2 ( -  oo, 0) 
and things go through in essentially the same way. One may then ask why U 0 was 
chosen to be a subset of the weighted L 2 space. The reason, perhaps not a very 
strong one, is that the A o used here belongs to a tapered fitted family [7] while 
L 2 ( - o o ,  0) does not. The trajectory theory is more satisfactory when a tapered 
fitted family is used for inputs. In particular if it is required that U o be compact 
the dynamical interpretation requires that U be a shift-invariant set of functions 
that determines a compact set in each A t. Such sets are so strongly constrained as 
to be uninteresting if A t m L2 ( -  oo, t), which is what the A t are when A o = 
L2(-- oo, 0). 
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R e m a r k  6. I t  should  be  clear  that  the example  can  be  ex tended  to inc lude  
n -power  in tegral  opera tors ,  n = 1,2 . . . . .  for which the kernels  are  of  the fo rm 

hO;Vl .... ,Vn)= wO)g(V,,...,v,), (16) 

wi th  only rela t ively tr ivial  compl ica t ions .  Also,  ra ther  s imple  changes  are  requi red  
to al low the kernels  h to be sums of  terms of  the general  fo rm of  Equa t ion  (12), of  
no t  necessar i ly  different  degree. F ina l ly ,  one  can let  the inputs  u and  the 
funct ions  g(v~ . . . . .  vn) be vec tor -va lued  and  use tensor  products .  Thus  a fa i r ly  
wide  class of  system models  involving po lynomic  in tegra l  ope ra to r s  falls in to  the  
scheme of this example .  I t  seems poss ible  tha t  known  resul ts  on  a p p r o x i m a t i o n  b y  
po lynomic  opera to rs  [4] and  [5] could  be  app l ied  to extend the range  of  the 
example ,  bu t  that  is not  cons idered  here. 
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