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1. Introduction

While it has long been recognized that the initial
atmospheric conditions upon which meteorological forecasts are
based are subject to considerable error, little if any explicit
use of this fact has been made. Operational forecasting con-
sists of applying deterministic hydrodynamic equations to a
single "best" initial condition and producing a single forecast
value for each parameter. While there are always ready admis-
sions that a "perfect" or errorless forecast is not possible,
no effort is made under ordinary circumstances to ascertain the
manner in which the errors in the initial conditions propagate
through the forecast procedure.

Recently, Gleeson (1966,1967, 1968) has indicated how we
can begin to study the influence of initial error on the error
in the prediction. He has examined a few simple prognostic
equations, assumed there were errors in the parameters and
initial conditions required for the forecast, and examined how
the uncertainty of the prediction varies with time.

One of the questions which has been entirely ignored by
the forecasters, and one which Gleeson, too, chose to neglect,
is whether or not one gets the "best" forecast by applying the
deterministic equations to the "best" values of the initial
conditions and relevant parameters. For the purpose of this
discussion we may define "best" as the mean of all possible
values consistent with the observations. As Gleeson (1968)
clearly points out, one cannot know a uniquely valid starting
point for each forecast. There is instead an ensemble of
possible starting points, but the identification of the one and
only one of these which represents the "true" atmosphere is not
possible. The deterministic forecast equations apply equally
to each member of the ensemble. The question we will pose is
whether applying such equationsto any single member is the
proper forecast procedure under realistic conditions.

Gleeson sought to examine how the spread of the points
that make up the ensemble changes with time. He points out,
for example, that the variance of any parameter increases or
decreases in time according to whether the correlation between



the current value of the parameter and its time derivative is
positive or negative. By examining several simple mathematical-
physical systems, Gleeson (1968) was able to show that a wide
variety of possibilities existed, and that therefore the more
complex meteorological problems would require considerable study
before the time behavior of errors introduced by uncertainties

in the initial conditions and parameters will be understood.

The significance of this is that it gets to the heart of the
problem of the predictability of the atmosphere. One is able

to generate useful predictions, even given perfect mathematical-
physical relationships, only to the extent that errors introduced
by uncertainties in initial conditions, parameters, and numerical
approximations remain within acceptable bounds.

In the present study I have re-examined the same four
simple examples used by Gleeson (1968). A method of greater
generality is used making it possible to evaluate critically
some of the assumptions which Gleeson found convenient. 1In
addition to studying the spread of points, however, I have
specifically examined the behavior of the mean of the ensemble,
as opposed the behavior of the individual member of the ensemble
whose location may happen to coincide with the mean. It turns
out that there are, in certain cases, distinct differences
between these two. This means that in general the "best" fore-
cast will not be obtained by applying deterministic equations
to the "best" initial conditions.

2. First example: constant rate of change.

The first example to be treated is represented by the
simple differential equation

dg _ . _ -

ar - C = constant (1)
which has the sclution

ga=0+ Ct (2)

Both Q and C are subject to uncertainty. It is not
unreasonable to expect the errors in the estimation of both
of these parameters to be Gaussian., We may follow Gleeson
in assuming that Q and C are normally distributed with means
{(unkncwn) of § and € and standard deviations qQ and o-



While Gleeson assumed Q and C were independent, let us assume
their joint distribution is bivariate normal with covariance

CLACHAE

The mean value of g at any time t may be evaluated by
taking the expected value of (2):

E(g) =g =E(Q + Ct) =Q + Ct

The variance of g is

var(q) = E(qg) - [E(q)]2

—E(0° + 20Ct + Cot°) - (0 + Ct)°
2
= var (Q) + t~ var(cC) + 2t cov (Q,C)

or

2 2
= + t + 2t
oq cQ oc poro

Taking p=0 gives the situation Glegson considered, and the

same result, i.e. that do /dt=2tc ~. 1In that case the

variance (or the standardqdeViatiSn) of g increases with time
at a rate governed solely by the uncertainty in C. In the

more general case, however, one can only place bounds on g
corresponding to -1l¢ p<l. These bounds are illustrated in
Figure 1. ©Note that for p«<0 and t¢ -po.o , the rate of change
of ¢ will be negative. Also, for p<O,Qc remains smaller
thanqu for t<—2poro. e

3. Nocturnal Cooling
Gleeson's second example concerns the equation

Y
T = T -At” (3)



which has on occasion been used to represent radiational cool-
ing at night. A is an empirical parameter and T, is the initial
temperature; both are subject to uncertainty. If one makes

the same assumptions about their joint distribution as in the
previous example, namely that they are bivariate normal with

parameters To, On + By Opr P then
— -_— — 1
E(T)=T=TO—At/2
= g 2 2 %
var (T) = oT + toA - 2t OT cAp
o o
Gleeson's result, namely that
2
o0, —
i = T _ 3T . _ 2
St = 2E[ (T - T) St at)] = 0,

is confirmed for the case p=0. This special case, plus the

2 . . .
bounds on UT in the more general case, are shown in Figure 2.

The same comments apply here as did in the first example.
The variance may decrease initially if the covariance between
the two parameters is of the proper sign. 1In this case, if
p>o, then GT is less than its initial value for t<(2poT/oA)
o

Also the equation applied to the initial mean value
gives the same results as the expected value of the ensemble.

The similarity of these two first cases lies in the
linearity of (2) and (3) as concerns the statistically variable
components. The next two cases will be non-linear and there-
fore one may expect different results. Note also, in these
first two cases, that the assumptions of bivariate normality
were excessively stringent. Any joint distributions with the
same first and second moments would have given identical
results.

4., Frictional Retardation.

Let us now examine the simplest type of friction, ex-
pressed by the differential equation



at Tk
with the solution
v o= vO exp (-kt) . (4)

Here v is a velocity and k is a coefficient of friction. The
two parameters subject to error, in this case, are v _, the

initial velocity, and k. For this example Gleeson ndted that
when t=0,

— .2
1 - dv dv _ -
2 @ T BV W (Gp - gl = - Elkvg vp) ]

which is certainly less than zero. He concluded that as time
passes the uncertainty of v would continue to decrease, and
at the same time the mean value of v would approach ever
closer to zero. In time,Gleeson concluded,a very precise
forecast of zero velocity is possible.

Let us now examine the problem more formally, assuming
here that k and v, are independently bivariate normal. Then

-kt kt

v = E(V) = E(v_e ) = E(v) E(e )

i

— -kt
=V, E(e )

6.2 =B - [E(v)]°

- B(v_ 2) . (e-2kt) _ T2

Since k is normal with meang k and variance Gk '
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-kt — 2
-k k - ;
E(e t) = f@ = exp[ - i—b—kﬁ-J dk
= eemn’o 25. 7
B k 'k
- 2 2
= exp (-kt + ¥t o, ) (5)
Therefore
- 2 2
- _ _ 1
Vv =v e kt eé“t % (6)
o
2 =2 o -2kt 2t°6.° — 2 -2kt t°g. °
o =(v_ 4+ 0 e e k -v e e 'k
v o v o
o (7)
By differentation, we find that
do e - 2 2 2 2
v -2kt - — 2 2. 2t ¢ — 2 t o
Framiali (—Qk[(vo + 0, )e k v, e k ]
o
2 2 2 2 2

Only at t=0 do we confirm Gleeson's result that Q_Uve = 2k0v 2.
The time rate of change of variance is negative gEitially, but
may change sign several times as t gets large.

Eq (6), which describes the behavior of the ensemble mean,
is plotted as the uppermost curve in Figure 3. The bottom
curve is the estimate of V obtained by applying (4) directly
to the initial mean conditions. For thgse plgEs parameter
values of ¥ =10 m/sec, o, = 1 m/sec, k = 10 sec 7, g =
3 x lO_5sec_l have been usgd. Not only is the ensemble mean
always greater than the value obtained detegministically,
but in this particular case, after about 10~ sec V increases



very rapidly toward infinity.

This peculiar behavior is a manifestation of a peculiar
condition that we imposed on the distribution of k. We assumed
it had a normal distribution, implying that for some members of
the ensemble k«¢O. On physical grounds k can never be negative.
In the example shown, only .04% of the members of the ensemble
would have k¢O, but in these few cases v increases exponentially
with time, and after a sufficient period they dominate the mean.

We conclude, then, that it is improper to use a normal
distribution to describe the uncertainty in k, since k must
always be positive. (Note that the same argument could be
applied to the distribution of A in the previous example. In
that case, however, only the first two moments of the distri-
bution of A were pertinent. In the present example all the
moments of k enter into the calculation of v.) Let us instead
choose a gamma distribution for k (again with E(k)=k and

var(k)=ok2). The functional form of the gamma distribution
is
1 1 -k
g(k) = ——— K" ™, ko0
r(o)p

s

—2 2
where a=k /ok and B=0

2
. /k. For k<0, g(k)=0.

Another possible form for the distribution of k, k>0, is the
log-normal distribution

h(k) = (2w)q%(sk) -1 exp[ -( 4nk —m)g/?sg] (8)

—4 0,2
k 2
where m=%/n (:5—*5_——) and s = fn (1 + _g )
K +oy k

to maintain the same first two moments of the distribution.
Figure 4 is a plot of the noﬁmal, gamma, and log-normal dis-
tributions for k =,1 and ¢, =0.1 (or, with a simple scale
change for k = 10~ and ck2=10_9).



For the present we choose the gamma distribution because
its moment generating function is known in closed form. Spec-
ifically

-kt

E(e ") = (1 + pt) *

Substituting (9) in (6) and (7) gives

2 —2 2
o, t -k /o
X k (10)

v=v [1+
@]

2 2 2 2

o
2 —2 2 k — 2 k
o, =V _+o ") [1+ ] O

o) k k

t —2?2/0 2
] k

(11)

Again, only at t=0 do we find dovg/dt=2kov 2. But we now

obtain a more reasonable behavior for v. © Egq. (l0) is
plotted as the middle curve in Figure 3. While the limit of
V as t gets large is now zero we still observe that the direct
application of the deterministic eqg. (4) .will always under-
estimate the ensemble mean.

Additional effects of the statistical interactions be-
tween the uncertainties in Vo and in k are shown in Figure
5. The uppermost curve, based on (7), is a plot of the
standard deviation of v when k is assumed to be normal. Since
this assumption has already been discredited, the curve is
shown for comparison only. The middle curve is based on (11);
it shows o, when k has a gamma distribution. (Parameters have
the same values as fﬁ{ Figure 3.) The bottom curve in Figure

5 is a plot of o, , the limiting case of both (7) and (11)
as o, approaches 8, i.e. if k is known with certainty to be
equal to X.

Note in particular the middle curve, i.e. for k having
a gamma distribution. The variance decreases for small t,
as suggested by Gleeson's result; but this decrease is very
small and is temporary. In the example shown, after ta



25,000 sec the standard deviation is as large as it was
originally. A maximum of o, is reached near 105 sec, and only
after this time does o, decrease toward zero.

It is possible to explain this behavior in terms of the
changes which must occur in the distribution of v, if g, is
sufficiently large. At time t = 0, the distribution of
v is normal and the initial decrease in variance is due to
the general shrinkage of all members of the ensemble toward
smaller v. However, as this proceeds, the cases of small k
gspecially if linked with a large v ) will lag behind, and soon
will be even further from the modal value of v than they were
initially; ensemble members with large k will emphasize the
left hand tail of the distribution. This will tend to increase
the variance. Finally, as t continues to increase the bulk of
the ensemble members are near v=0 having caught up with those
on the left hand tail, and are no longer decreasing, while the
ones on the right-hand tail of the distribution are cases of
small k and approach the origin, slowly but consistently.

Thus the variance eventually decreases toward zero. (Note that
this description fits the case of the normal distribution of k
until large t when the very few cases of k¢0 make their pres-
ence felt.)

To evaluate and test the ideas behind the sequence des-
cribed in the preceding paragraph, the following experiment
was carried out. Two sets of pairs of random numbers (1000
pairs in each set) were generated such that one member of
each pair was normal (v _: mean 10, standard eéror ) and one
was independently log-ngrmal(kﬂma—%zn(l.09x10- ), s =4n(1.09);
cf. eq (8)). Eg. (4) was applied separately to each pair of
values, i.e. to each member of the ensemble, and means and
standard deviations for the entire ensemble were calculated
for several values of t. These values are the points plotted
in Figures 3 and 5. 1In addition, it was possible to examine
the frequency distributions of v at different values of t.
Some of these are plotted in Figure 6.l Just as the gamma

The same end could have been accomplished by solving numer-
ically Gleeson's continuity equation for probability density.
If ¥ (k,v,t) is the time dependent joint probability density
of k and v, the continuity equation here takes the form

0 ¥/dt= k(¥Y+vadY/dv).



distribution was used earlier because it provided analytic
simplicity, the log-normal distribution was used in this ex-
periment because of computational simplicity. Comparison of
the results allows some added insight into the significance
of the shape of the distributions (Figure 4).

The points plotted in Figures 3 and 5 show that the be-
havior of the gamma and log-normal distributions are remark-
ably similar. This is emphasized by the tabulation of these
results in Table 1.

The distributions plotted in Figure 6 substantiate the
argument given earlier. At t=1600 sec the distribution of v
is still relatively normal but g, is just beginning to increase.
The cases on the tails of the distribution are still mostly
cases of small and large v., but the influence of the vari-
ability in k is beginning €0 be felt. At t=6400 sec. the
standard deviation is near its maximum, but the distribution
is still relatively symmetrical. The total range of values
of v, 6.00 m/sec at t=1600 sec is now 6.71 m/sec. Clearly
cases on both tails must be there primarily because of large
or small values of k.

At t=25600 sec. the distribution is very asymmetrical.
The values of v_ are of relatively little weight in determin-
ing where an individual case may lie., ©Note that the extreme
values of v, are in the approximate ratio 13/7, or near 2,
while at t=25600 sec the extreme values of v are .028
and 4.11, a ratio near 150. Thus for large t the distribu-
tion of k becomes increasingly important.

In the foregoing the assumption was made, for simplicity,
that k and v, were independent. One can relax that assumption
by selecting a particular form of dependence. It is relative-
ly simple to examine the case where the marginal distribution
of k is gamma, as previously, and the distribution of v , given
k, is normal with mean ak+b and variance s, + One then finds
that o

v = E(v) =b + ak
o o



= var (v = 8 + a var(k
o, (v) = s, (k)
o o
cov(k,v = a var (k) =
(k,v.) (k) = po, 0,
For a suitable comparison, we have calculated v and o_, for
various values of p, choosing in each case values for a, b,

and s, such that vy 10 m/sec and o, = 1 m/sec. as before.

The differences in E(v) from those valaes shown as the middle
curve in Figure 3. amount to variations of only about + 5% as
p varies between -1 and +1, for <105 sec. The lack of independ-
ence has a much more dramatic influence on o, as illustrated
in Figure 7. As one: could anticipate, a negative correla-
tion between v_ and k implies that large initial velocities
decrease slowl? while slower ones decrease rapidly, implying
an increasing standard deviation at small t. For large
positive correlation, the large initial values of Vo decrease
rapidly, catch up with the ones that are small initially

but decreasing slowly, and at this time a pronounced minimum
of the variance occurs.

The important lesson to be learned from the above dis-
cussion is that the statistical interaction between two
parameters can play a very significant role. 1In the present
case we find that although the velocity of every member of
the ensemble is known to decrease (with an average time con-
stant of about 3 hours), 3 hours later the mean velocity has
indeed decreased (by an amount we might tend, if not careful,
to overestimate) but the absolute error in our specification
of that smaller mean wind may be greater than the error in
the original values of v_. This result is clearly dependent
on our choice of distribBtions and parameters, but there is
the suggestion that if the distribution is reasonable then
the results will be reliable. Unreasonable distributions may
lead to wholly falacious results. The degree of dependence
among the various parameter can play a very significant role
in the variation of variance with time. Finally, since the
distributions of dependent variables generally will change,
the special case of Gleeson's (1966, 1968) continuity equa-
tion for pobability. developed on the assumption of normal-
ity, will have little general applicability. The more




general statement of that principal which Gleeson gives is
of course still valid.

5. Cyclical Changes.

The last example given by Gleeson is represented by
g =0Q + B cos(vt-B) (12)

where Q is a time-mean and B the amplitude of swome parameter
g. The frequency v, and the phase angle B, as well as Q and
B, are all subject to error. This type of expression has
particular significance in meteorology since it is so often
found convenient to express time series as sums of terms of
various amplitudes and phases. Gleeson makes the point that
the standard deviation of g will show a behavior that combines
cyclical increases and decreases with a superimposed gradual
increase. He states that the "true" value of g will be entire-
ly cyclical in its behavior, but he mistakenly identifies this
"true" value with g. He misses the point that the ensemble
mean (indeed @) will have a somewhat different behavior.

To begin, let us assume (with some trepidation now in
view of the preceding results) that the several parameters
have independent normal distributions with means Q, B, v, B,

and standard deviations GQ OB'ov GB. Then by using (5) plus

the identities
sinig &-1 i (ele-e—le)

cos 8 = 1Y% (e 16 + e—le)

where i = /T, we find that if x is normal with mean % and
standard deviation o,



-1
e %20

% |

E(sin x) = sin

2

4
E(cos x) = e %20 cos

% |

2 26" =
E(sin"x) = %(1 -e cos 2x)

2 25" —
E(cos x) = (1 +e 20 os 2x)
2
. -20 - .z
E(cos x sinx) = e cosx sinx
It then follows that
2 2 2
— — 1 —_ =
d = Q + Be é(cB tt % ) cos (vt-B ) (13)
2 2 2
2 —2 2 -2 ] - =
cq =GQ? + %(B" + O )y [1+e (GB tt % ) cos 2 (vt-B)]
2 2 2
-%52 e—(GB+t % )1 + cos 2(vt - B) ] (14)

Note in particular that the amplitude of the ensemble
mean decreases with time. In the limit, as t gets large, the
best estimate for g is Q. This behavior is entirely due to
the uncertainty in v, the frequency. The uncertainty of the
phase angle,p ,causes the amplitude of the mean of the ensemble
to be less than the mean amplitude (B) by a factor

2
VI
e ADB " but this effect does not change with time. 1In other
wordg, even at t=0, the average departure of g from its time
mean, q -0, is less than the average of the amplitudes.

The variance of the ensemble values of g is an involved
function whose specific behavior depends on the particular
parameters chosen. So long as ov>0, the variance will approach



QQ? + Y (EQ + oB?) as t>»x. If ov=0, the variance will be

cyclical for all time, with a mean value of

2
o

-2 2 - -
0Q2+1/2(B+5B) - UB e B

-2 2 2 2 2 o 2
and an amplitude % (B = + OB’) e %5 LB e B

The effect of uncertainty in v is thus to increases the time -
average uncertainty and to damp out the cyclical fluctuations
in o

We should note here that the assumptions of a normal
distribution for a phase angle is very artificial, since
angles are equivalent modulus 27. This is especially
problematic since the development of (12) and (13) requires
all the moments of the distribution of B be known. The same
is true of v. On the other hand, only the first two moments
of B and Q enter into the calcualtion of g and o . Thus we
should exercise the greatest care in specifying the distri-
butions of B and v. 1In the present instant no a priori
objection to specifying a normal distribution for v 1is
apparent. Phase angles such as B would seem to require spe-~
cial treatment.

As an alternative to the assumption of normality the
Von Mises distribution (Downs, 1964)
A
K cos (a-a) A
f(a) = 0 ga, ag 2m K30.
2T IO(K)

A
might be used for B. Here K and a are parameters of the dis-

tribution and I (K) is the Bessel function of order 0. K is
called the "invariance"; as K gets larger the observations

tend to cluster ever more strongly about the single modal point
a. Indeed, for large K, (o - &) remains small so that one may
write



A A
cos (a -a) =1 % (a-a)

and f(a)= 3 expl - %(a—a) ]

&
T I (K)
o

Since this is the functional form of the error function, the
Von Mises distribution approaches a normal distribution with
mean & and variance 1/K for large K. For K=0, f(a) is the
uniform distribution, 0ga<?T.

This distribution has the properties that

A
E{(cosa) = 6 cos a
A
E(sina) = &6 sin a
A
E(cosea) = ;i- + (1 -I%Q) cosga
= 26 . N o
E(sin a) = (1 - K) sin a + X
28 A N
E(sina<xs@=(L—E?ﬁ sina cosa
= K) /1 o
where 0 Il( )/ O(K)
If we write X = cos a, y = sin a, then & is the distance from

the origin to the point (E(x) E(y)).

Returning to the examination of (12), we will now assume

that B has the Von Mises distribution with parameters g and KB

while the other parameters are independently normal. Then if
6 = ‘ I ,
T) (Kg) /T (K,)



2,2

- - _ _ A
g=Q+ Bd e %Ov t cos (vt - B) (15)
— 2.2 - A
o] e o 2 + %(B2+ o 2)[l + e 20v t (L - gg) cos 2 (vt-B) ]
a Q B KB
- B2 62 e % t cos 2(vt—B) (16)

There is great similarity between these equatiayg Snd (13)
and (14). The 6 in (15) plays the role of e 2¥B“in (13),

while the factor (1 —26/KB) in (16) plays the role of

- 2
cﬁ in (12). For purposes of comparison we have chosen
to select the parame;ers for the two distributions such that
A — _1
B =B and &6 = e éOB A comparison of the values of the

pertinent parameters as given in Table ?. Figure 8 compares
the Von Mises and normal distributions under these conditions.

Except for small k there is little to distinguish one
distribution from the other. Note that for lagge K, 6 may

- N -l
1~ 2 v el

be approximated by 1 -(2K) =1 -1/20&‘ E‘ Similarly,
;, e—?O'

also for large K, 28/K=2/K, and 1 -26/K B.

Figures 9, 10, and 11 show plots based on (14), (15) and
(16) for several values of the appropriate parameters. In
the calculations for these figures the mean amplitude, B,
was taken as unity Consequently the the results are essen=
tially normalized with respect to B. 1In Figure 9, for example,
(@ - QY/B can never exceed 1.0. Only in the very special case
when KB=w (i.e. OB=O), and for t=0, can that value be achieved.

(For simplicity we have taken R=0. The effect of varying ¢
is to alter the rate at which the cyclical fluctuations in 'q
approach zero. The value of ¢g_ has no influence on g. When
the uncertainty in B is large ~(i.e. for small k_ ) the fluc-
tuations in J are reduced. B

The influences of the several parameters on the ensemble
standard deviation of q is more involved. It is easier to

. . 2 Y% = L
examine the quantity Z=(0q - og)é/B, the standard deviation
of the departure of g from its time-average value, normalized
to unit mean amplitude. The limit of this gquantity, at



TABLE 2

Comparison of parameters related to Von Mises
and normal distributions

K 8 ng % 1-26/K e'cgz
0.4 .1961 3.4582 1.8596 .0195 .0010
1.0 44064 1.6138 1.2704 .1136 .0397
2.0 .6978 .8484 ..8484 .3022 .2371
4.0 .8635 .2936 .5418 .5682 .5559
8.0 .9352 .1340 . .3661 .7650 .7649




t >0, is [¥% + % (o ]/2 This is also the absolute maximum

of . At t=0, for é%e special case K =w, 3=0¢ This influence
on uncertainty in the amplitude is shown in theé plots of Figures
10 and 11. One can also readily discern the influence of K_.in
Figure 10. For small K_ the initial value of ¥ is large, but
the cyclical variations”are reduced. Note also that the values
of 3 calculated on the basis of (16) and (14) are almost iden-
tical for Ksy4, but even for K =1,2 the differences between the
Von Mises and normal dlstrlbuélons is not very significant

(cf. Figure 8). It also appears, from the plots in Figure 11,
that smaller values of ¢ , while permitting the fluctuations

in ¥ to persist, do not Yetard substantially the growth of the
time-average standard deviation However the ratio of the
amplitude of the fluctuations of g to the time average stand-
ard deviation of g does remain considerably larger if o, is
small.

6. Conclusions

Uncertainties in the initial conditions and/or parameters
of time dependent processes manifest themselves in a variety
of manners. By examining only a few simple cases we have been
able to demonstrate that these effects must not be neglected.
We have also shown that care must be taken that assumptions
pertaining to the nature of the errors be reasonable in terms
of any physical constraints on the problem.

Any uncertainties at all in the parameters of a time
dependent problem may influence all the statistical properties
of the ensemble of cases which constitute the population of
possible "true" solutions. We have only examined the mean and
the variance of a few simple time dependent variables. The
history of the variance is clearly a complex phenomena since
the variance is always non-linear, even which the basic prog-
nostic equation is linear, and will thus be influenced by any
statistical interactions that may be present.

Our most significant conclusion concerns the behavior of
the ensemble mean. In general, the ensemble mean value of a
variable will follow a different course than that of any
single member of the ensemble. For this reason, it is clearly



not an optimum procedure to forecast the atmosphere by apply-
ing deterministics hydrodynamic equations to any single ini=
tial condition, no matter how well it fits the available, but
nevertheless finite and fallible, set of observations.

One cannot draw any conclusions, from the examples shown,
of the relative importance of various effects in the much more
complex hydrodynamic equations which describe the atmosphere.
Certainly, though, the effects we have described will be
present. One cannot help but note, for example, that in the
examples shown correlations among the various parameters
played a particular large role in determining eventual en-
semble variance. Doesn't this suggest that one should design
objective analysis schemes so as to introduce the right kinds
of interdependences among the initial conditions? We may not
want statistically independent or uncorrelated sets of initial
values.

This being the case, how should we forecast the weather?
To answer this question we will have to learn a great deal
more about how uncertain our meteorological parameters and
observations are, and how these uncertainties are propogated
through the differential equations and numerical procedures
of physical prediction,
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Legends for figures

Figure 1. Ensemble standard deviation of g for various values
of the coefficient of correlation between the initial
value (Q) and the constant rate of change (C).

Figure 2. Ensemble standard deviation of T for various values
of the coefficient of correlation between initial
temperature (To) and the cooling coefficient (A).

Figure 3. Expected value of u as a function of time. Curves
a, b, and ¢ are cases for which the friction co-
efficient, k, has a normal distribution, a gamma
distribution, and is known with certainty, respec-
tively. 1In egch case VO=10 and_gv=l. _Jor curves
a and b k=10 sec and o, =3x10 °° sec °° Plotted
points are based on samples of 1000, using a log-
normal distribution for k.

Figure 4. Normal, log-normal and gamma probability distribu-
tion functions for E(k)=1l, var(k)=0.1l, if the
abscissa 1is ig&erpreted ask Taking the absissa as
units of E§10 m the curves correspond to E(k)=10
var (k) =10

Figure 5. Standard deviation of ¢ as a function of time. The
curves are labeled as in Figure 3 and the points
are again based on samples of 1000 pairs with k
having a log-normal distribution.

Figure 6. Frequency distributions of v . The curve labeled
t=0 is the theoretical initial distribution. Other
curves are based on experimental sample of 1000
pairs of numbers for which v_ in normal with mean
10.0 and EEandéfd deviation T 0, ETd k is log-normal

with k=10 “sec and ok=3xlo_ssec

Figure 7. Standard deviation of u according to coefficient
of correlation between vO and k. The curve
labeled p=0 is identical to curve b in Figure 5.



Figure 8.

Figure 9.

Figure 10.

Figure 11.

Normal and Von Mises distributions for comparable
sets of parameters.

The ensemble mean of the cyclical variable. The
ordinate is (q-Q) for B=1l, and the abscissa is

VE. (See equation 15)

Y

2 2.72

Plots of the quantity Z=(o - 0. ) /B The
abscissa is vt. All curveg were~calculated for
0 =.1 and o_=.1l. For curves labeled a, b, ¢ and

g? K= 1, 2, 4, o». respectively. The subscripts

1 and 2 refer, respectively, to the use of eq (16)
and (14).

o Vo _

Plots of the gquantity 3= (o 2 ) /B. The abscissa
is Vt. The parameters used in %he calculations were
=.1, =.3, K=w; Db = =.1, K= =
a) C)'V O'B =00 ) OV =Q3, O’B 0; C) O' =Q3,
.3, K=1; 4d) o =.03, o_ = .3, K= 4. Again the

subscrlpts 1 and’2 refer to the use of eq (16) or
(14) respectively.
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