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DEPICTING STOCHASTIC DYNAMIC FORECASTS

by E.S. Epstein & R.J. Fleming

ERRATA

Page 4, line 3 from bottom: Read "y" for "x"

Page 17:

Page 21:

last line on page should conclude:
"_..the small ellipse labeled "¥|T".

The following sentences should immediately follow the
sentence ending on line 10.

"Any position for the wave is credible, and an am-
plitude very near zero is a distinct possibility.
Nevertheless, even here the temperature and stream-
function waves are so closely correlated that one
can be sure that the waves, if they have any siz-
able amplitude at all, will be very nearly in phase
and will still give rise to negligible heat flux.
In that sense, at least, they are not entirely un-
predictable.”
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This report was prepared for presentation at the
International Conference on Meteorology, Tel Aviv,
November 30 - December 4, 1970, sponsored by the
American Meteorological Soclety and the Israel
Meteorological Society.




In a recent study Epstein (i969) proposed a method of prediction that
recognizes the inevitability of uncertainty in initial conditions, =nd produces
forecasts that contain explicit statements of uncertainty in the predicted
state. The amount of information contained in a complete statement of the
uncertainty of a complicated field is extremely large. Although the numerical
representation of variances and covariances by & square symmetrical matrix is
straightforward, the information it contains is not readily comprehended. The
graphical representation of this informaticn is far more complex but can alsc
be much more meaningful. It is the purpcse of this paper to present a number
of forms of graphical results of stochastic predictions, both to demcnstrate
how information on uncertainly can be represented and also to illustrate the
value of specific information of uﬁéertainty.

For our illustrative purposes we will consider stochastic predictions of
a model in which the mean flow in an infinite channel 1s represented by a stream
function and the temperature field by departures from a mean value. These two
fields are generally represented graphically as in Figure 1. Boundary condi-
tions are that the flow is pericdic in the x-direction and there is no flow
across the walls at the northern and scuthern boundariesg. These are evident
in the figure.

The particular fields shown here are represented exactly by 28 parameters,
14 for the stream function and 1k for the temperatures. (There are two modes
in the y-direction and wave-numbers: 0, 1, 2, and 3 in the x-directicn., Two
parameters are regquired to represent each wave/mode combination, except for

wave O which requires but one term.) Indeed these fields are a particular



Figure 1. Stream function for the mean flow (lower chart) and for the shear
flow (upper chart). These two fields define the state of the two-level model.

The stream lines for the shear flow are equivalent to mean isotherms. Units
are nondimensional.




realization of a two-level quasi-geostrophic model which we have been using to
study various aspects of stochastic dynamic prediction and stochastic analysis.
The model includes crude forms of diabatic and frictional effects.

In a deterministic analysis or forecast, the state of the model atmosphere
would be represented by a vector of 28 terms. In stochastic procedures one
must deal not only with the 28 expected values—or means—of the parameters,
but also with their variances and covariances—a total of U43L terms in all. It
requires 28 terms to produce the maps in Figure 1. There is no single graph-
ical representation (in two or three dimensions) that could illustrate all the
information of the L3L terms. There are several representations, however,
that would be very useful and meaningful to the meteorologist. The illustra-
tions that follow will refer specifically to a stochastic dynamic prediction
that is to be verified against the map in Figure 1. We will be illustrating
the kinds of statements about the atmosphere that stochastic predictions allow.
In this particular case the prediction is based on simulated observations, con-
taining random errors, made 24 hours earlier at an array of 30 stations that
was also chosen at random. The standard errors of the simulated observations
were .003 in the units in which the stream function and temperature are given
in Figure 1. If we relate the error in the "observation" of the stream func-
tion to an error of 12m in the measurement of the height of a constant pressure
surface, then the total range of "height" on these maps would be about 800m.
This implies further that the "error" in the temperature observations is about
1°K and the range of temperatures on Figure 1 is about 50°K. In all figures
we use the original nondimensional units, but as very crude rules of thumb,

one might multiply the values of the stream functions by L4000 to get height
3



differences in meters, and multiply the nondimensional temperatures by 300 to

get temperature differences in degree Kelvin. The total dimensions of the

region shown in the figures is correspondingly approximately 6300 x 12600 km.
The predicted expected values of the stream function and temperature field

are shown in Figure 2. These are represented algebraically by

14

E[W(X:Y)] = 2 Bi Fi (X1y)
i=1
14

E[T(X)Y)] = X Bi+l’4Fi (x,y)
i=1

where the Bi are the (predicted) expected values of the parameters with the
convention that the first 14 terms represent the stream field and the second
set of 1L terms refer to the temperatures. The Fi are a set of functions that
satisfy our boundary conditions and are orthogonal over the region.

Since stochastic results include the variances and covariances of the Bi’

it is relatively easy to calculate the variances (or standard deviations) of

linear combinations of the Bi. Thus

14 14
nslien)] = B2 eo35) 7 () Fyln)

and similarly for the variance of the temperature field. Isopleths of the
standard deviations of x and T are shown in Figure 3.
Note that the maximum standard error of estimate is about equal to the

interval between contours on the mean charts and is several times the standard



Figure 2.
chart) and temperature ! upper chart) fields.

Stochastic dynamic prediction of the mean stream function ! lower

The dashed lines represent uncer-

tainty in the positions of the ridges and troughs and are explained later in

the text.



Figure 3. Fields of standard deviation of the forecast temperatures (upper
chart) and stream function (lower chart).



deviation of a single observation. One can expect that errors will usually be
less than one standard deviation, but occasionally errors as large as two or
three standard deviations may occur. To some degree the maximum uncertainty
seems to be where the gradients are largest, but this is not the entire picture
at all. The origin of the uncertainty lies in paucity of observations and the
uncertainty of the measurements. The patterns of uncertainty reflect to a
large degree the locations of the observations. The amount of uncertainty,
however, has grown considerably since the observations were made. Initially the
standard deviation was less than .003 almost everywhere, and necessarily at all
observation points, but the standard deviation of the prediction is almost
everywhere greater than .003.

Figure U4 gives the actual errors of the expected values, the differences
between the maps of Figures 1 and 2. These patterns depend explicitly on values
actually observed, so that the patterns do not particularly resemble those in
Figure 3. Still the magnitude of the differences are within the bounds expected
on the basis of the calculated standard deviations. Note that the patterns cf
error in the two fields are similar, reflecting the strong correlation between
fhe mean flow and shear flow that one would expect from the physical model.

This is observed in spite of the fact that the errors in the initial tempera-
ture and stream function observations were independent.

Tt can also be added that the errors in Figure 4 are generally smaller
than they would have been if we had made a deterministic rather than a stochastic
forecast based on the actual observations. Stochastic prediction tends tomini-

mize the root mean square error.
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Figrre L. Departures of the forecast expected values of the temperatures
(upper chart) and stream function (lower chart) from their true values. These
charts are differences between those of Figures 1 and 2.



Not only are there strong correlations between the mean and shear flows,
but within each field there will be strong correlations from place-to-place of
the stream function or of the temperature. Figure 5 shows this. It is the autce-
correlation of the Vy-field with the value of ¢ at an arbitrarlly chosen point.
Tne large values of the correlation coefficient that occur at considerable
distance from the chosen point are worth noting. They imply that an observa-
tion of ¥ at one point will give considerable information abcut the field else-
where, not so much because it is a directly relevant measure., but because it
would say which, of many possible states of the mcdel, are the most reasonable.

The wind field is one that is frequently of interest to the meteorolegist.

Especially he tends to be concerned with the meridicnal flow. It is simple to

derive the v-component of the wind from the stream function as

5 14 aFi
Blv(x,;y)] = E(5) = .Z B, =
i=1
1h 14 dF, &F,
and var (v) = 2 Y. cov (BiBj) jgf 7&5

These fields, again as predicted, are given in Figure 6. A ccnsistent scaling
of the nondimensional units would imply that .0l in these units corresponds to
.. . N o s a -1 - N L . , . /

a wind in the vicinity of 2 m sec . Note that the greatest uncertainty (a
standard deviation of about .07) does not correspend to a region of maximum
meridional wind, but occurs in the vicinity of a ridge where the v-componen®

of the wind i1s small. This implies that placement of that ridge, and the posi-

tions of the other ridges and troughs, are uncersain-—tubt to a measurable exteni.

‘w /2 5

, . . . . . 1
The dashed lines in Figure 2 are lines along which E(v)/lvar (v)] = + 1.
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Figure 6. The forecast expected meridional wind speed (upper chart) and
its standard deviation (lower chart).
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It is more likely than not that the ridge and trough lines will lie between the
pairs of dashed lines.

Winds are more readily represented by vectors than by their scalar compo-
nents. Figure 7 is a view of the forecast wind field. A wind vector of length
equal to the distance between grid points corresponds to a wind speed of about
75 m sec—l. The ellipses centered on the endpoints of the vectors toward which
the winds are blowing require some explanation.

Our stochastic procedures provide forecasts of first and second moments,
but not of the complete joint probability distribution. It is known, for
example, that this joint probability distribution will not in general be multi-
variate normal. Nevertheless, for purposes of illustration, it is useful to
represent the joint distribution as though it were multivariate normal with
the given first and second moments. It is a property of wmultivariate normal
distributions that the marginal distributions of linear combinations of the
parameters are also distributed multivariate normal. In particular, since u
and v are both such linear combinations, it is possible to treat the joint dis-
tribution of the wind components at each point as though they were bivariate
normal. This allows us to construct "credible" ellipses, such that there is a
specific joint probability of the true values of the wind components lying within
the ellipses. 1In Figure 7 each ellipse includes a 50% credible region. The
probability that the end-point of each vector lies within its ellipse is 50%.
Note that if we knew that the wind at one particular grid point lay outside
its ellipse, then we would have to revise our statements about the wind at all
other grid points, since they are all, in general, correlated to one another.

Figure 7 takes into consideration the correlation of the u and v wind components

12
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at each point, but not the interrelations among the winds at different points.

The general structure of the wind field is immediately apparent in Figure
7. It is also apparent that in some places the wind is much better known than
elsewhere. TFor example there are "southwest" winds in the "south-central”
section of our space domain and some "northwest" winds further to the "east"
that show very little uncertainty. On the other hand the winds in the vicinity
of the strong ridge near the "western" boundary show a great deal of uncertainty
in their meridional components, although not in their zonal components. This
is reflected in the uncertainty of the position of the ridge (cf. Figure 2a).
One notices that in general we seem to have more confidence in our forecasts of
the zonal component of the wind than the meridional component.

Figure 8 is similar to Figure 7, except that the vectors are thermal winds,
derived from the temperature field. We had already seen, from Figure 3, that
the uncertainty of the temperatures was less than that of the streamfunction,
and this is substantiated by our finding smaller ellipses of uncertainty in
Figure 8 than in Figure 7. But note that while the charts of Figure 3 deal
with the uncertainty of ¥ and T, the ellipses in Figures 7 and 8 refer to the
uncertainty in the gradients of these fields.

The use of credible ellipses also has application to the representation
of the forecast in phase space, which is the multidimensional space in which
the dependent variables of the model are represented along orthogonal axes.

f course it is generally feasible to draw pictures in only two dimensions at

a time. For example, in Figure 9, the axes are the parameters Bl and B, ., which

15

represent, in effect, the mean zonal wind and temperature gradients. The shape,
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size and orientation of the 50% ellipse tell us not only the limits within
which we expect these quantities to lie, but also the extent to which a larger
temperature gradient will be accompanied by a stronger zonal wind. If, for
example, we observe tomorrow a stronger than expected zonal wind, then we can

infer (quantitatively) a stronger than forecast mean zonal temperature gradient,

and vice versa.

We can carry this analysis one step further. The curve labeled "V" in
Figure 10 is the 50% ellipse for the parameter pair which are the coefficients
of the sine and cosine terms of the stream function for the longest wave in
the model. A vector from the origin to the center of that ellipse represents
the phase and amplitude of the "expected" wave. The curve labeled "T" ic the

50% ellipse for the corresponding temperature wave.

These two ellipses both represent marginal distributions of the particular
pairs of parameters. It is also possible to illustrate various conditional
distributions. Just as the sine and cosine components of the wave are corre-
lated, as indicated by the fact that the axes of the ellipse are skewed with
regard to the coordinate axes, so also is there information about the tempera-
ture wave contained in knowledge of the stream function wave, and vice versa.
For example, if the temperature wave were given by the point indicated by a
mark on the "T" ellipse, then the 50% ellipse indicating the conditional dis-

tribution of the corresponding stream function is the small ellipse labeled

17
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Figure 10. FEllipses representing the marginal and conditional Jjoint distribu-
tions of the forecast amplitudes of the stream function and temperature waves
of mode 1, wave no. 1. See text for explanation of symbols.
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The use of the multivariate normal distribution as a model for represent-
ing our knowledge about these parameters also implies homoscedasticity. That
is the variances (and covariances) of the conditional distributions are not
dependent on the values of the "given" parameters. As the assumed value of "T"
changes, the center of the "Y|T" ellipse will change, but its size, shape, and
orientation will not. Indeed if the indicated point on the "T"-ellipse were to
move around that curve, the center of the "Y|T" curve would trace out the ellipse
labeled "E(Y|T)". The curves labeled "T|¥" and "E(T|¥)" have entirely symmetric
interpretations.

Notice in Figure 10 that the ellipse "T|Y" is considerably smaller than
the "T" ellipse. This implies a large degree of correlation between the ¥-
and T-waves. The larger the ellipse "T|¥" becomes, the smaller the ellipse
"E(T|¥)" would become, until, in the limit, "E(T|¥)" would shrink to a point
in the center of the "T"-ellipse and the "T|¥"- and "T"-ellipses would coincide.
At the opposite extreme, when knowledge of  completely specifies T, "T|¥"
shrinks to a point on the "T"-ellipse, and "T" and "E(T|¥)" coincide.

In algebraic terms the ellipses are readily written in terms of their

mean value vectors
B
:// i a B Bi+lh
B \
\ 3 e

where i and j represent an appropriate pairing of indices, and variance-covariance

v nd T

matrices:
var ( B. CcOov B
( ) ( . )BJ-)

cov (Bi,Bj) var (Bi)

19



cov (Bi’Bi+lh> cov (Bi’Bj+lh)
Loy ~
cov (Bj’Bi+lM) cov <Bj’Bj+lh)
and . i var (Bi+lh) cov (Bi+lh’Bj+lh)
_—
cov (Bi+lh’Bj+lh) var (Bj+lh)
Then the "T" ellipse is given by
-1
—_ % —_
(T-T) ZZT (T-T) = C,
the "E(T|y)" ellipse is
*
% -1 -1
T-T) % AN T-T) = C
(2D 5, I, T, (0D
and the "T|¥" ellipse is
* * -1 1
- ro-x X L - = C.
(T-T) (Dp= 2 ) Zyp) " (L) = C

The constant, C, is -2 1n (1-p), where p is the probability that the appro-

priate vector will lie within the ellipse.

— -1 —
T, = T+ Zﬁ ZwT (wo-w)

is the expected value of T, given Y:YO.

Returning to Figure 10, we see that the conditional distributions provide
considerable information not contained in the marginal ellipses. For example,
it is apparent that the ¥-wave is leading (in the meteorological sense) the
T-wave by about 40°, and very likely by at least 30°, but no more than 50°.

There is an uncertainty of the position of either wave by as much as 60°, but

20



relatively little uncertainty in their relative positions. This is of courc=
directly related to the heat flux being accomplished by the wave.

As we examine the phase diagrams for some of the other waves, shown in
Figures 11-15, we see that the phase relations are generally known much better
than the positions of the waves. The most substantial eddy flux of heat is
brought about by wave 2,(Figure .1) mode 1, and is also in the expected "north-
west" sense.

In the case of wave 3, mode 1 (Figure 12), the uncertainty is so large
compared to the expected amplitude of the wave that it would be reasonable to
think of this wave as "unpredictable."

In making these predictions we have used a stochastic model that assumed
that the basic zonal heating, which is the ultimate source of the energy in the
model, is not known precisely, Its stendard derivation has been taken as 10%
of its expected value. We have also made a stochastic forecast using the same
simulated observations, but assuming no uncertainty in thevzonal heating. We
find that the major benefit of knowing this forcing term exactly is that the
mean zonal wind is more predictable, and knowledge of the phase difference
between the wave 2, mode 1 Y- and T-waves, where the greatest heat flux is being
accomplished, is particularly improved. Compare Figures 16 and1l7with Figures
9 and 11. It is an interesting sidelight concerning the model, and the sto-
chastic method, that even though the rate of generation of available potential
energy is what is particularly uncertain in the former case, it is largely in
the uncertainty of the kinetic energy that this uncertainty appears in the

forecast. The model not only converts zonal available potential energy to

21
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Figure 17. Forecast of wave no. 2, mode 1, in the case of known heating.
Compare with Figure 11.
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eddy APE, and on to eddy kinetic energy, but it also fully accommodates con-
versions of "uncertain" components of these categories of energy (Fleming,
1970).

There is almost no limit to the variety and complexity of the information
that stochastic predictions can make available to the meteorologist. We hope
that this introduction to some of the forms that the presentation of this infor-
mation can take will serve to demonstrate the value of stochastic information.
There is a great deal of significant information that can be effectively communi-
cated and comprehended. We hope to whet the appetiteé of meteorologists for
producing forecasts that contain such information. We must warn though, that
operational stochastic prediction is a very formidable task that will require
greatly improved computing methods and capabilities. Still we think of it as

the way of the future.
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