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ON AXTALLY SYMMETRICAL PLATES OF VARIABLE THICKNESS'

by F. Essenburg2

In the classical treatment of elastic isotropic plates of variable thick-
ness, an equation governing the deflection of the middle plane is obtained by
substituting the moment-curvature (i.e., the stress-strain or stress-displace-
ment) relations appropriate for plates of uniform thickness into the differ-
ential equations of equilibrium, treating the thickness as a function of the
middle plane coordinates. It should be noted that the classical formulation
of plates of variable thickness neglects the effects of‘both transverse shear
deformation and transverse normal stress and employs assumed forms for the
stresses which do not satisfy the requirements for the prescribed surface
tractions at the top and bottom surfaces of the plate. In this connection it
is pertinent to recall the improvement of the classical theory of bending of
plates of uniform thickness by E. Reissner (1,2)5 which accounts for the ef-
fects of both transverse shear deformation and transverse normal stress, and
which stipulates the satisfaction of three boundary conditions at each edge of
the plate.

In a recent paper (3) a system of suitable stress-strain relations (and
appropriate boundary conditions) was derived for elastic isotropic plates of
variable thickness, which includes the effects of both transverse shear defor-
mation and transverse normal stress as well as the effects of the thickness
variation. In this derivation, which was carried out by means of a variational
theorem due to E. Reissner (2), the assumed forms for the stresses were modi-
fied (from the forms appropriate for Reissner's theory of uniform plates) so
as to meet the requirements for the prescribed surface tractions at the top
and bottom surfaces of the plate. On application of these derived stress-
strain relations to the problem of torsion of plates of variable thickness,
exact agreement with the Saint-Venant torsion theory was obtained in two cases.
However, an examination of the significance of the inclusion of the additional
terms due to thickness variation in the derived stress-strain relations (as
compared with stress-strain relations of Reissner's theory of uniform plates)
indicated that from a practical point of view (particularly in cases where the
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by the Air Force Office of Scientific Research under Contract No. AF 18(603)-
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twisting moment is not present) the use of stress-strain relations appropriate
to the Reissner theory of uniform plates seems adequate for the improvement of
the classical treatment of plates of variable thickness. It should also be men-
tioned that for the axially symmetric case the stress-strain relations given in
(3) may be obtained as the limiting case of the results given by Naghdi (4) for
the axisymmetric shell of revolution.

In the present note axially symmetric plates of variable thickness are con-
sidered by employing the basic equations of the Reissner theory for uniform
plates, with the thickness treated as a function of the middle plane coordinates.
These equations (in polar cylindrical coordinates and under the assumptions of
axial symmetry) are:
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where D = Eh3/l2(1-v2) and prime denotes differentiation with respect to r.
In Equations [1] and [2], M, and Mg, respectively the radial and circum-
ferential bending moments, V, the radial shear stress resultant, p, the sur-
face load, B and w, respectively the radial rotation and deflection of the
middle plane, as well as h, the thickness of the plate are functions of the
radial coordinate, r, only; and E and v are Young's modulus and Poisson's
ratio respectively. The coordinate system is chosen so that the deflection is
positive when measured downward. While the theory given in (3) stipulates the
satisfaction of three boundary conditions at each edge of the plate, it will be
noted that one of these edge boundary conditions is automatically satisfied by
the vanishing of both the twisting moment and circumferential rotation of the
middle plane under the assumptions of axial symmetry. Thus the two edge bound-
ary conditions consistent with the above set of equations are (i) either M
specified or B specified, and (ii) either V specified or w specified.
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It should be noted that upon the neglect of transverse shear deformation, i.e.,
when p = -w', the homogeneous differential equation associated with Equation



[3] reduces to the corresponding equation of the classical theory. Furthermore,
as was observed by L. FOppl (5), the homogeneous part of this classical theory
‘equation is mathematically identical to the homogeneous part of the differential
equation governing the rotating disk of variable thickness. Thus the literature
is rich in complementary solutions of Equation [3] for various assumed forms for
the thickness. In this connection see (6,7,8) where other references may be
found. The particular integral of Equation [3] is readily obtained by any of
several well known methods. After substitution of the expression for B into
the third of Equations [2], a single integration gives the expression for w.
The bending moments (and hence the radial and circumferential components of
stress) are obtained by substituting the expression for B 1into the first two
of Equations [2].

The improvement over the classical theory provided by the present treatment
is demonstrated by the results of a simple example. Let us consider a plate of
outer radius a and inner radius b of which the thickness is given by h =
ho(r/a)™. Let the plate be rigidly clamped at its outer radius and at the in-
ner radius let it be clamped to a rigid circular shaft of radius b, which is
loaded with an axial force P, as shown in Fig. 1. The edge boundary condi-
tions then are
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We note that the expression for V (and hence the shearing stress) is identical
to that of the classical theory. The differential equation governing B is
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where Dy = Ehy3/12(1-v2). Since the expression for B, obtained by the solu-
tion of Equation [5] subject to appropriate boundary conditions, is identical
in form to the expression for -w' of the classical theory, it follows that
the expression for the radial displacement as well as the expressions for the
bending moments (and hence the radial and circumferential com onents of stress)
will be identical to the predictions of the classical theory. The expression
for the deflection of the middle surface, w, is given by?

4. While for this example the expressions for the stresses and radial displace-
ment are identical to the classical theory predictions, other examples can
be cited (involving different loading and boundary conditions) in which the
expressions for these quantities will differ slightly from the classical the-
ory predictions.

5. The solution [6] (on the following page) is not valid for v =1 m = 2/3
m = O in which cases the solution will contain logérithmic terms. '
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For the case where m =1 and v = 1/3 the ratio of w to wo (W, being the
deflection predicted by the classical theory) at r = b is.plotted versus ho/a
for values of n of 2, 3, and 10 in Fig. 1. The classical treatment of this
case is discussed in (7). It is clear from Fig. 1 that for small values of
ho/a and large values of n the predictions of the classical theory are re-
liable. 1In fact, the modification of the classical theory prediction for w

is the last term in Equation [6]. Thus as hy/a + O there is no improvement
over the classical treatment. However, it is also clear from Fig. 1 that for
large values of hp/a and small values of n the predictions f the classical
theory are substantially in error.
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Fig. 1. Comparison of Deflection with that Predicted

by the Classical Theory for Circular Plate
with Linearly Varying Thickness.
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