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ABSTRACT
LARGE-ANGLE ANTIPROTON-PROTON ELASTIC SCATTERING
by
David George Falconer

Chairman: Daniel Sinclair

An experimental and theoretical investigation of the
large-angle antiproton-proton cross section indicates that
substantial local structure exists both as a function of
beam momentum and four-momentum transfer, and that such
structure may be attributed, respectively, to the formation
of direct-channel boson resonances, and the exchange of
meson and nucleon states between the target and projectile.
The differential cross-section measurements were made using
data from the Argonne thirty-inch MURA chamber at the six
beam momenta (invariant masses) 1.63, (2298), 1.77 (2350),
1.83 (2368), 1.88 (2389), 1.95 (2412), and 2.20 GeV/c
(2500 MeV), and at momentum-transfers squared greater than
|[t] = 0.3 (GeV/c)?. Off the forward peak the cross section
is observed to drop to the familiar minimum at |[t|= 0.4,
rise to a secondary maximum at |t|= 0.7, and then form a
plateau beginning around |t| = 1.1, and extending well
into the backward hemisphere. At the very largest scatter-

ing angles a sharp, energy-dependent backward peak rises

xi



from the plateau backward of cos 6 = -0.9. Interpreted as
evidence for a direct-channel boson resonance, the enhance-
ment appears centered at 2345 MeV with a width of 140 MeV,
the values quoted by R. Abrams, et al. (1967) for one of

their total cross-section structures.

The observed cross sections have been treated analy-
tically by modifying several current theoretical models
for application to antiproton-proton elastic scatterings.
Starting with the Chou-Yang interaction picture it 1s shown
that a time-independent optical potential governs the inter-
action between target and projectile, and that for relativ-
istically compressed, gaussian-shaped particles the forward
differential cross section depends exponentially on t. In
an attempt to account for antishrinking and dip-bump struc-
ture, the difference between the P-P, and PBAR-P scattering
amplitudes is attributed to an annihilation potential aris-
ing from the exchange of a nucleon between the target and
projectile, The difference amplitude is then calculated
using the Feynman one-particle-exchange mechanism, with
absorption corrections deduced from the eikonal picture of
R. Glauber. The dip-bump sequence following the forward
diffraction peak is credited to interference between the

high-energy, and difference amplitudes.

x1i



The above processes have also been treated with Regge-
cut theory. In this context the forward peak is attributed
to the artifice of Pomeranchon exchange, its antishrinking
to the exchange of a nucleon-isobar trajectory, and the
dip-bump sequence to interference between the Pomeranchon
and difference amplitudes. The predicted cross section --
obtained again via the eikonal picture -- is then compared
with that produced by reggeizing the multiperipheral con-
tributions from double isobar exchange along the lines
suggested by R. Arnold, and conclusions drawn that the two

processes are not readily distinguished.
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1.0 INTRODUCTION

Before 1960 the antiproton-proton collision served
mainly as a tool for investigating the baryonic structure
of the nucleon. However, following Chew's (1962a) intro-
duction of the bootstrap hypothesis in 1962, the antiproton-
proton collision assumed a new importance based on the |
distinctly boson character of the PBAR-P system. In parti-
cular, the bootstrap hypothesis argued that such a system
could be viewed equally well as a massive boson structure,
consisting, say, of a collection of pions, or as an anti-
bound state of the nucleon and antinucleon. Thus inter-
preted, the antiprofon—proton system could be expected to
form boson resonances in the s-channel, exchange light
mesons in the t-channel, or dibaryon states in the u-channel.
It was therefore not surprising that detailed experimental
studies revealed substantially more local structure in the
PBAR-P cross section than could be anticipated with the

optical models used to analyze the low-energy data.

Unusual fluctuations in the differential cross section
were first noted at 1.61 BeV/c by G. Lynch, et al. (1963),
when this group observed a sharp diffraction peak followed
by a first minimum at |[t|=.U44 (GeV/c)? and a secondary

maximum at |t|=.74 (GeV/c)g. Later experiments confirmed



the apparent exponential nature of the forward peak in t,
and its tendency to widen (antishrink) with increasing beam
momentum (O. Czyzewski, et al. (1965)). Similarly, the
first minimum was observed to move toward larger four-
momentum transfers with increasing beam energy (W. Katz,

et al. (1967)), and seemingly in cadence with the forward
peak. More recently, a second minimum was reported by

A. Ashmore, et al. (1968) at |[t]|=1.8 (GeV/c)% very near

the momentum-transfer predicted by the simple gray-disc

optical model used by W. Katz, et al. (1967).

Local structure has also been observed in the total
cross section by R. Abrams, et al. (1967). This study,
carried out with counters, measured the PBAR-P and PBAR-D
total cross sections between 1.0 and 3.3 GeV/c with a
statistical accuracy of 0.1%. Both cross sections con-
tained enhancements on the order of several millibarns at
1.3 and 1.8 GeV/c, and were attributed to either the
threshold production of nucleon isobars, or the formation
of direct-channel boson resonances. Using the PBAR-D data
to separate the isospin states, these experimenters con-
cluded that isospin-one structures were produced at 2190 *5
MeV (width = 85), and 2345 +10 MeV (width = 140), and an

isospin-zero structure at 2380 110 MeV (width = 140),



N

Similar evidence for I=1, or 2 boson resonances with masses
of 2195 +15 MeV (width < 13), and 2382 #24 MeV (width < 30)
were reported by G. Chikovani, et al. (1966), although

the widths observed for these resonances, called the T

and U respectively, were much smaller than observed by

R. J. Abrams, et al. (1967). More recently, W. A. Cooper,
et al. (1968) have measured PBAR-P backward elastic cross
section between 1.2 and 1.6 GeV/c, and report a clearly
defined peak in the region 1.30 - 1.55 GeV/c. On the

other hand, V. Domingo, et al. (1967) found no evidence

for a backward peak at 2.7 GeV/c, thus suggesting that the
region between the two experiments might contain detectable

transition structure.

1.1 Theoretical Background

Theoretical descriptions of the antiproton-proton
differential cross section have been highly varied, partially
successful, and (with exceptions) essentially parametric.
Early treatments of the PBAR-P cross sections were attempted
with the relatively sophisticated optical models of Chew
and Ball (1958), and Koba and Tokeda (1958). Basically
phenomenological, these models incorporated a complex
potential (the imaginary part describing a highly absorb-

ing baryon core, and the real part a phase-shifting pion



cloud), and a Fraunhofer-type diffraction integral (evolved
from the Schroedinger equation, and Fermi's golden rule)

to describe the observed cross sections. More recently,
two-parameter gray-disc diffraction models have been fit

to the measured cross sections -- mostly by experimentalists
-- using the forward scattering amplitude to fix the ampli-
tude transmittance of the disc, and the first minimum its
radius. In fact, using this technique W. M. Katz, et al.
(1967) succeeded in predicting the position, though not the
magnitude, of the second minimum recently observed by A.

Ashmore, et al. (1968).

The optical model, though capable of accurate para-
meterizations of high-energy cross sections provided little
insight into the scattering process itself. 1In an effort
to establish a mechanism by which the scattering proceeds,
theoreticians hypothesized that (for peripheral collisions
at least) the scattering process is mediated by the exchange
of a pion, or other meson having the correct gquantum numbers.
Unfortunately, the unadorned one-particle-exchange model
failed to reproduce the experimental cross sections, and
K. Gottfried and J. D. Jackson (1964), and M. H. Ross and
G. L. Shaw (1964) found it necessary to modify these calcula-

tions with absorption corrections. Although these corrections



were soundly motivated, being equivalent in thought and
form to the absorptive cores of the early optical models,
the technique again obscured the underlying physical
mechanisms. Moreover, the model proved less than adequate
at large scattering angles, especially with regard to
explaining dips, and bumps in the differential cross sec-
tion. More sophisticated models, involving the exchange of
several particles, provided a parametric solution to the
difficulty, but tended to be ambiguous, since, for example,
a minimum could be attributed to a sharp edge on the absorp-
tive core, the vanishing of a particle exchange term, or

interference between several amplitudes.

To some extent the difficulties with the exchange
model were alleviated through the efforts of T. Regge
(1959, 1960), and the workers that followed him. Noting
that partial-wave analysis, which had proved so fruitful in
nuclear physics, led to an impossibly large number of par-
tial-waves at high energies, Regge -- following a technique
introduced for similar reasons by Nicholson (1910) -- con-
verted the usual partial-wave sum to an integral running
parallel to the imaginary axis in the complex angular-
momentum plane, plus a set of residues obtained as a result

of contour deformation. Further analysis indicated that



these residues looked much like Breit-Wigner forms, and

thus were associated with direct-channel resonance for-
mation. In the cross channel these poles actually dominated
the scattering amplitude, and one pole in particular, the
Pomeranchon, dominated all the others. At high-energies,
and small momentum transfers the Pomeranchon predicted that
the scattering amplitude in the cross channel should appear
exponential in t -- as it does for elastic collisions.
Moreover, the Regge theory appeared highly convergent, since,
in contrast to partial-wave analysis, the forward peak is
completely described by the lowest order term in the expan-

sion, namely, the Pomeranchon.

Given these clues by Regge, other theoreticilans began
investigating the relativistic Schroedinger equation,
determining among other things that g -plane poles in the
scattering amplitude correspond physically to the forma-
tion of a metastable state between the projectile and tar-
get. Interpreted as resonances, these poles could be
expected to assume Breit-Wigner forms in the energy, as
already observed by Regge. Further analyses indicated
that metastable states form whenever the real part of ¢
is integer, and that the mass squared of such states is

approximately linear in its spin. Following this lead



Chew and Frautschi (1961, 1962) plotted the known resonances
on a graph of spin-versus-mass-squared, and attempted to
identify particles falling on a straight line, and possess-
ing identical internal gquantum numbers (baryon number,
isospin, strangeness, intrinsic parity, etc.). Such tra-
jectories proved immediately useful both in classifying

0old resonances, and predicting new ones, especially in connec-
tion with nucleon-isobar resonances (V. Barger (1968)).

In fact, by extrapolating the trajectory into the unphysical
region (negative mass squared), and applying crossing
symmetry, the amplitude for the corresponding resonance
exchange process could be calculated. This technique

has also been used to explain the minimum observed in the
PBAR-P elastic cross section (S. Frautschi (1966); C. Chiu,

et al. (1967)).

Additional work with the Regge calculus indicated that
the basic Regge formalism contained no corrections for absorp-
tion, and that such corrections were necessary to match
theory with experiment. Extending the procedure used for
one-particle exchange, R. Arnold (1965) incorporated an
absorption correction via the eikonal picture of R. Glauber
(1959), while F. Henyey, et al. (1968a) suggested a double-

scattering mechanism wherein diffraction scattering is



followed (or led) by Regge-trajectory exchange. In either
prescription the Regge-pole amplitudes become Regge-cut
contributions owing to the trade-offs possible between
momentum transfer associated with absorption, and momentum
transfer due to trajectory exchange. In the simplest pro-
cesses where the strong-interaction conservation laws limit
the exchangeable trajectories, the Regge-cut formalism
applies readily, as shown for example by F. Henyey, et al.
(1968b). On the other hand, elastic antiproton-proton
scattering may in principle be mediated by the exchange of
any meson trajectory, so that the various Regge-cut contri-
butions become difficult to untangle. One moderately
successful treatment, suggested by R. Arnold (1967),
reggeizes the multiperipheral diagrams of Amati, Fubini,
Stanghellini (1962a, 1962b), and then envokes an eikonal
formalism to calculate the amplitude difference between

P-P and PBAR-P elastic scattering.

The absorption corrections used in the Regge-cut theory
may be derived from the Pomeranchon picture, as suggested
by R. Arnold (1967), or obtained from a simple optical
model as preferred by F. Henyey, et al. (1968). 1In either
procedure, the beam depletion arising from the production,

and/or annihilation processes becomes ever more severe



with decreasing impact parameter, as might be expected on
intuitive grounds. In the optical approach the beam deple-
tion obtains by looking for an absorbing potential that
reproduces the well-known gaussian behavior of the forward
peak. The Pomeranchon technique yields a similar form --
except for some shrinkage of the peak -- so that both methods
specify beam depletions that are approximately gaussian in
the impact parameter. As noted by many physicists, the
similarity of these results suggests that the Pomeranchon
is just a Regge-theory technique for describing diffraction
scattering, rather than an amplitude arising from the

exchange of a legitimate particle trajectory.

The above interpretation also raises the much deeper
question as to the roles played by the optical, and exchange
models at high energies. Actually, as reflected by the
success of the Regge-cut theory, a hybrid model appears
correct. At the highest energies elastic scattering
becomes purely diffractive, so that the forward amplitude
is described by an imaginary optical potential generated
by the various annihilation, and production mechanisms.

At somewhat lower energies the forward amplitude may be
credited in part to diffraction scattering, and in part to,
say, rho-trajectory exchange. The scattered field then

consists of three parts, namely, a diffracted wave, an
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exchange amplitude, and an absorption-correction term.
At still lower energies, other trajectories become impor-
tant, requiring further exchange amplitudes, and correction

terms.

As pointed out by Chou and Yang (1966), the imaginary
optical potential reflects the spatial structure of the
target and projectile, rather than the exchange nature
of the collision. At high energies the individual exchange
amplitudes all tend to zero, while the spatial structures
of the colliding bodies define the zones of annihilation
and production, and hence also the diffracted field. At
lower energies individual exchange amplitudes become impor-
tant. The Feynman picture obtains such exchange amplitudes
by assoclating plane waves with the incoming and outgoing
particles, and spherical waves with the exchanged ones;
consequently, the one-particle-exchange model takes no
account of the finite spatial extent of the target, pro-
jectile, or exchanged particle -- even if absorption correc-
tions are added. On the other hand, the Regge picture
ostensibly accounts for both the finite life-time, and
finite spatial extent of the particles making up the
exchanged trajectory. That the Regge-exchange formulas

also account for the structure of the colliding bodies
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remains less clear, although F. Henyey, et al. (1968a,
1968b) argue that this follows from their definition of the

exchange amplitude.

If the target consists of several particles, one may
expect substantial double scattering within the target
region. For a two-particle object like the deuteron the
first scatter occurs off the upstream nucleon, and the
second off the downstream one. The amplitude for this
process apparently interferes with that for single scatter-
ing, thereby forming a two-sloped forward peak, as well as
a dip-bump sequence near the cross-over point. Similar
structure appears with heavier nuclei 1like helium and car-
bon, except the multiple scattering amplitudes become
difficult to calculate. Thus, one generally uses a net
scattering potential that incorporates scattering to all
orders implicitly. The dip-bump sequence is then credited
to an abrupt edge on this optical potential, rather than an
interference mechanism, although the two interpretations
must appear equivalent on detailed analysis. On the other
hand, a hydrogen target consists of just one nucleon so
that double scattering is the sense described above repre-
sents a physical impossibility. Dip-bump structure, such

as that observed in PBAR-P and PI-P elastic scattering,



must then be attributed to a different interference
mechanism, for instance, that occuring between a diffracted

field, and a difference amplitude.

1.2 Experimental Background

Following the discovery of the antiproton by Chamber-
lain, Segre, Wiegand, and Ypsilantis (1955), further experi-
ments were undertaken to measure the antiproton's cross sec-
tion on bare nucleons, and complex nuclei.+ More recently,
in an effort to locate fine structure in the antiproton-
nucleon cross sections, R. Abrams, et al. (1967) measured
the PBAR-P and PBAR-D cross sections to a statistical
accuracy of 0.1%. Both cross sections showed statisti-
cally significant bumps at 1.3 and 1.8 GeV/c, the latter

falling in the range of the present experiment. Having

TThe antiproton-proton total cross section has been
measured at 190, 300, 500, 700 MeV by B. Cork, et al.
(1957), at U457 MeV by O. Chamberlain, et al. (1957), at
133; 197, 265, 333 MeV by C. Coombes, et al. (1958), at
several energies between 534 and 1068 MeV by T. Elioff,
et al. (1959, 1962), at 75-137.5, 137.5-200 MeV by L.
Agnew, et al. (1959), at 1.0, 1.25, 2.0 BeV by R. Armenteros,
et al. (1960), at several momenta between 3 and 10 GeV/c
by G. Von Dardel, et al. (1960), at several momenta between
4 and 20 BeV/c by S. Linderbaum, et al. (1961), at 45, 90,
145, 245, MeV by B. Cork, et al. (1962), at several momenta
between 0.575 and 5.35 GeV/c by U. Amaldi, et al. (1964),
at 3.3 and 3.7 BeV/c by T. Ferbel, et al. (1965), at several
momenta between 6 and 22 GeV/c by W. Galbraith, et al. (1965),
at 5.7 GeV/c by K. Bockmann, et al. (1966), and at several
momenta between 1.0 and 3.0 GeV/c by R. Abrams, et al. (1967).
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measured both the PBAR-P, and PBAR-D cross sections, the
collaboration was able to unscramble the I=0, and I=1 isospin
states, and thereby observed three new structures in the
total cross sections. Two of these structures, at center-
of-mass energies 2190 *5, and 2345 #10 MeV were found in

the isospin-one state, and the other, at 2380 *10, in the
isospin-zero state. As discussed by R. Abrams, et al.,

these structures can be interpreted either as reflections

of nucleon-isobar thresholds, or as evidence for new high-
mass boson resonances. The parameters of these antinucleon-

nucleon structures are given in Table 1.2-1 below.

Early measurements of the antiproton-proton differen-
tial cross section were restricted to low, and intermediate
energies owing to limitations imposed by the Bevatron. The
first differential cross-section studies were carried out
at energies between 45 MeV and 2 BeV using both counters
and bubble chambers, and later between 5-60 MeV using
nuclear emulsions.+ The differential cross sections observed

in all these experiments resembled the first quarter cycle

1~Low—energy cross-section studies have been made at 197,
265, 333 MeV with counters by C. Coombes, et al. (1958), at
75-200 MeV with a propane bubble chamber by L. Agnew et al.
(1960), at 1.0, 1.25, 2.0 BeV with counters by R. Armenteros
et al. (1960), at 1.61 BeV/c with the 72-inch hydrogen cham-
ber by N. Xuong et al. (1961), at 45, 90, 145, 245 MeV with
a 15-inch hydrogen chamber by B. Cork et al. (1962), at 534,
700, 816, 948, 1068 MeV by T. Elioff et al. (1962), and at
energies between 5-60 MeV by A. Hossian, et al. (1965).
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TABLE 1.2-1

Nucleon-Antinucleon Structure#

ISOSPIN PLAB MASS WIDTH (2J+1)K
1 1.32 GeV/c 219045 MeV 85 MeV
1 1.76 234510 140
0 1.86 2380+10 140

# From R. J. Abrams, et al. (1967).
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of a cosine wave in the center-of-mass scattering angle,
thus making parameterization with any one of several opti-
cal models quite feasible, e.g., the black sphere, the gray
disc, or the gaussian cloud. More sophisticated models,
such as those promoted by Chew and Ball (1958), and Koba
and Takeda (1958), incorporated complex interaction poten-
tials with highly absorbing baryonic cores, and phase-
shifting pion clouds to simultaneously account for both

elastic and inelastic cross sections.

Later in an effort to make precision measurements on
the large-angle antiproton-proton differential cross sec-
tions, G. Lynch, et al. (1963) rescanned the 1.61 BeV/c
Berkeley exposure originally analyzed by N. Xuong, et al.
Their log-linear plot of the PBAR-P differential cross sec-
tion gave the first clear indication that the forward dif-
fraction peak is approximately exponential in the four-
momentum transfer squared t. Moreover, in the same plot
there appeared a non-statistical first minimum at |t|= .45
(GeV/c)% and a secondary maximum at |t] = .75 (GeV/c)2. A
result left unquoted in several subsequent studies.+ After

the Cern and Brookhaven proton synchrotrons became operational

TB. Barish, et al. (1966); V. Domingo, et al. (1967);
T. Kitagaki, et al. (1968); S. Frautschi (1966).
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additional measurements of the PBAR-P differential cross
section were made at higher energies.T These eXxperiments
confirmed the exponential dependence of the forward peak

in t, and also indicated that the peak tended to widen with
increasing beam energy —-- a result opposite that for P-P
scattering, and in general conflict with single-pole Regge
theory. The rate of antishrinking with s, the center-of-
mass energy squared, and the slope of the diffraction peak
at infinite beam energy were estimated by 0. Czyzewski,

et al. (1965) by simultaneously fitting the P-P and PBAR-P
data available at the time to the convenient form: slope(s)
= A + B/sa, where A, the slope at infinite energy, was
presumed equal in P-P and PBAR-P scattering. According to
the fit A = 10.6 #0.22 (GeV/c)~°, indicating a mean inter-
action radius of 1.28 F, and a = .65 *.14, suggesting that
the diffraction peak antishrinks approximately inversely

with the center-of-mass energy.

TThe high-energy differential cross section has been
measured at 3.0 and 3.6 GeV/c by B. Escoubes, et al. (1963),
at 7.2, 8.9, 10.0, 12.0 GeV/c by K. Foley, et al. (1963),
at 3.28 GeV/c by T. Ferbel, et al. (1965), at 4.0 GeV/c by
O. Czyzewski, et al. (1965), at 11.8 and 15.9 GeV/c by K.
Foley, et al. (1965), at 5.7 GeV/c by K. Bockmann, et al.
(1966), at 1.0, 1.5, 2.0, 2.5 GeV/c by B. Barish, et al.
(1966), at 1.18 GeV/c by L. Dobrzynski et al. (1966), at
2.7 GeV/c by V. Domingo, et al. (1967), at 3.66 GeV/c by
W. Katz, et al. (1967), at 5.9 GeV/c by A. Ashmore et al.
(1968), and at 6.9 GeV/c by T. Kitagaki, et al. (1968).
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The first-minimum secondary-maximum sequence, first
noted at 1.61 BeV/c by G. Lynch, et al. (1963), also
appeared in later experiments at both higher and lower
energies.+ According to these studies the first minimum
bottoms out in the range 0.4 < |t]| < 0.6 (GeV/c)2, while the
secondary maximum peaks in the range 0.7 < |t| < 0.9 (GeV/c)g,
both points moving toward larger Itl values with increas-
ing beam momentum. Although hindered by meager statistics,
W. Katz, et al. (1967) attempted to parameterize this motion
by making a crude fit with the linear form: t(minimum) =
A + Bp¥*, where p¥ denotes the center-of-mass beam momentum,
and obtained (without specifying errors) the values A = 0.3
(GeV/c)Z, and B = 0.2 (GeV/c). In the same paper, these
authors also noted the suggestion of a second minimum at
|t| = 1.8 —- a conjecture later verified by A. Ashmore,
et al. (1968). As pointed out by W. Katz, et al. (1967)
the position of various maxima, and minima (but not their
absolute magnitude) are predicted by with a simple back-

disc diffraction model with an interaction radius of 1.3 F.

TThe first-minimum secondary-maximum sequence has been
noted explicitly at 1.61 GeV/c by G. Lynch, et al. (1968),
at 1.0, 1.5, 2.0, 2.5 GeV/c by B. Barish, et al. (1966), at
1.18 GeV/c by L. Dobrzynski, et al. (1966), at 2.7 GeV/c by
V. Domingo, et al. (1967), at 3.66 GeV/c by W. Katz, et al.
(1967), at 5.85 GeV/c by A. Ashmore, et al. (1968), and at
6.9 GeV/c by T. Kitagaki, et al. (1968).
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More recently, W. Cooper, et al. (1968) have measured
the backward elastic cross between 1.2 and 1.6 GeV/c in an
effort to ascertain the nature of the bump in the PBAR-P
total cross section at 1.3 GeV/c reported by R. Abrams,
et al. (1967). By combining the data from all momentum
sets these experimenters were able to observe a clearly
defined backward peak in the range -8.0 > cos 6 > -1.0.

If this enhancement were energy independent, it could be
attributed to a u-channel dibaryon exchange, while if it
were localized around a particular beam momentum, it could
be interpreted as a direct-channel boson resonance, or a
nucleon-isobar threshold. By combining éll data in the
range -8.0 > cos 6 > -1.0 at each momentum set, W. Cooper,
et al. (1968) determined that the peak fell roughly between
1.3 and 1.55 GeV/c; however, analysis of the zero, two,
four, and six prong events was unable to determine the

boson, or threshold character of the enhancement.

Despite the low production cross sections for anti-
protons, several crude measurements of the PBAR-P polariza-
tion cross section have been carried out by looking for
antiprotons showing two successive elastic scatters, and
then using the second collision as an analyzer of the first.

An early measurement of this kind was made by Button and
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Maglic (1962) with the 1.61 BeV/c Berkeley exposure, a
study that also demonstrated that the magnetic moment of
the antiproton was (very probably) negative, as required

by the TCP theorem. Their analysis indicated that for an
average center-of-mass scattering angle of 25 degrees the
asymmetry parameter was +25 #10%. In another experiment
with data at 3.0 and 3.6 GeV/c, B. Escoubes, et al. (1963)
measured an asymmetry parameter of +21 +13% at an average
CM angle of 14 degrees, and a more recent study by L.
Dobrzynski, et al. (1966) led to an asymmetry parameter of
-13 #6.5% at an average CM scattering angle of 28 degrees.
These results apparently neither support nor contradict

the con,jectur'e+ that the polarization should execute "anom-
alous dispersion" in a region of "high-absorbtion" like the
first minimum, as is observed, for example, in pion-nucleon

scattering.

1-For a discussion, and illustration of this point, see

S. Frautschi (1966).



2.0 RESONANCE AMPLITUDES

Resonances formed through the temporary binding
of the target and projectile reveal themselves as enhance-
ments in the differential and total cross sections.
Viewed from the center-of-momentum, the resonance phenom-
enon occurs when the target and projectile approach one
another, bind temporarily into a system with well-defined
quantum numbers--including mass and width--and break
apart again to become free particles. Classically, such
a binding is an impossibility. Quantum mechanically,
however, the particles have a finite probability for
burrowing through the angular momentum barrier, orbiting
temporarily about one another, and then tunneling back
out to become free particles once again. The amplitudes
for these processes may be inferred by studying the
nature of the barrier penetration, and applying the known

conservation laws to the scattered amplitude.

2.1 Energy Spectrum of the Resonance

Upon penetrating the angular momentum barrier,
the reduced-mass particle will shuttle back and forth
(in classical fashion) between the origin and the inner
wall of the barrier, until on some pass it repenetrates

‘the barrier, and thus destroys the resonant state.

20
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Clearly, if one starts out with N(0) such states at t=0,

then the number on decaying between t and t+dt is just
1
dN = - T N(t) dt,

where 1 is some proportionality constant. Integrating
the expression obtains in the usual way the explicit

formula
N(t) = N(0) exp(-t/T) (t > 0)
so that 1 really represents the life-time of the state.

According to the above, the temporal portion of
the state's (normalized) probability amplitude looks

like
A(t) = exp(-i2wvot - t/27) /YT (£ > 0)

where EO = hwo = ZﬁMvo denotes the nominal energy of the
state. As usual, owing to the finite life-time of the
resonance, the measured energies will take on a spectrum
of values obtained by Fourier analyzing A(t) into its

several frequency components:

[}

{ A(t) exp(+i2wvt) dt

g(v)

(i/ VT ) /121 (v=v ) + i/27]

The state's energy spectrum must then be the absolute
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square of this expression

1A(v) |2 r/2m
|a(E) |2 = -
21§ (E-E_)2 + (I/2)2

This is just a (normalized) Breit-Wigner form, with
' = K/t, T being the full-width at half-maximum of the

energy spectrum.

2.2 Quantum Numbers of the Resonance

Resonances always form in states of definite
spin J, parity P, isospin I, and--where applicable--
definite G-parity, and C-eigenvalue. Moreover, owing
to the conservative nature of the strong interaction,
any boson resonance necessarily has the same quantum num-
bers as the partial-waves that formed it, and the partial-

waves it decays into. In other words,

J (INITIAL) = J(RESONANCE) = J(FINAL)
P (INITIAL) = P (RESONANCE) = P (FINAL)
T (INITIAL) = T (RESONANCE) = I (FINAL)
G(INITIAL) = G(RESONANCE) = G (FINAL)
C(INITIAL) = C(RESONANCE) = C(FINAL)

The last two relations are useful only if the inter-
mediate state has a well-defined G-parity, and

C-eigenvalue.
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The system parity associated with the incident

Lth partial wave follows from the usual definition

P (SYSTEM)

P (P) P(PBAR) P (ORBITAL)

(+1) (-1) (-1) ¥

Its C-eigenvalue, on the other hand, obtains from the
generalized Pauli principle, and the necessity for Fermi-

Dirac statistics among fermions:
E(ORBITAL) E(SPIN) C = -1

where the E operators exchange the denoted coordinates.

Thus,

c = (-1)L*S

Combined with the parity result obtained above, this

implies that

CP = (_l)S+1
Thus, since S = 0,1, it is also true that
S(INITIAL) = S(RESONANCE) = S(FINAL),

as CP is also conserved by the strona interaction.

The allowed values for L, on the other hand,

follow from the conservation of total angular momentum
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In other words, if S=0, then L=J, while if S=1, then
L = J-1, J, J+1. The quantum numbers associated with
these states are listed, respectively, in Tables 2.2-1,

2,3. Note that the set of states

[ 4

¥ c o e

cannot be attained by the PBAR-P system, and curiously
enough no boson resonances with these guantum numbers
have been established. This observation lends further
credence to the bootstrap picture wherein all boson
resonances are viewed as quasi-bound states of the PBAR-P

system.

The PBAR-P system has no specific G-parity. Its
isospin amplitude can nevertheless be decomposed into
eigenstates of G and I, as shown in the Appendix. For

these amplitudes

G = (-1) L+S+T

where L+S+I specifies the even and odd G-parity states.
Hence, if the PBAR-P system communicates with a resonance
of definite G-parity, then for that portion of the ampli-
tude

L(INITIAL) = L(FINAL), L(FINAL)Z*2
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as S, I, and G are all conserved. The same result, of

course, obtains from parity conservation.

2.3 Isospin Spectrum of Resonance
The isospin portion of the incident amplitude
consists of a part contributed by the antiproton, and

part contributed by the proton
|P,PBAR> = |I1,IZ1;I2,IZ2>

where I1 = I2 = 1/2, 1zl =A+1/2, 122 = -1/2.

It is convenient to decompose this vector into its
singlet (I=0), and triplet (I=1) components, as these,
rather than the individual states, characterize an
s-channel resonance. The decomposition is effected in

the usual way by applying the identity

1 =2 |I,IZ2><1,1IZ|
I

To the right-hand side of the above expression

|11,121;12,122> = ¢ |I,12><I,I%|I1,I21;I2,1I22>,
I

where, of course, IZ = IZ21 + IZ22 = 0. The Clebsch-Gordon

coefficients

<1,1Z|11,1%1;12,122> = <I1,0|1/2,+1/2;1/2,-1/2>
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are given explicitly in Table C.1-2 of the Appendix.

The PBAR-P system can also be decomposed into
eigenstates |I,IZ;G> of isospin and G-parity, using the

results presented in Table C.3-2 of the Appendix.

|P,PBAR> = 1/2|1,0;+> + 1/2|1,0;->

+ 1/2|0,0;+> + 1/2]0,0;->

Thus if the resonance has both a definite isospin and
G-parity, only one-fourth the incident intensity will
communicate with it. Similarly, when the resonance
decays, it will emit one fourth its intensity into each

of the four isospin states
|P,PBAR>, |PBAR,P>, |N,NBAR>, |NBAR,N>

The first two vectors cannot be distinguished experi-
mentally when in their final-state configuration, so
that the decaying resonance will contribute one-half its
outgoing intensity to the observed antiproton-proton
distributions. Consequently, at most one-eighth the
incident PBAR-P intensity may communicate elastically

with a resonance of definite isospin and G-parity.

2.4 Resonance Cross Sections

As shown by Blatt and Weiskopf (1952), the
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enhancement expected in the elastic cross section due
to the formation and decay of a resonance of spin J,

and elasticity K is given by the formula:
2 2 .. 2
o (resonance) = (n/4k") (2J + 1)K® sin“$

This formula assumes no interference between the reso-
nance and background amplitudes, and that the inter-
mediate state possesses a definite isospin and G-parity.
The quantity & represents the phase shift associated
with the resonance, and depends on the width PO, and mass

Mo of resonance according to

2
(To/2)

(M-M,)2 + (T,/2)2

sinZé =

at resonance M = M so that sin26 = 1, while if M-M, =

Fo/2, sinzd = 1/2. Thus, PO specifies the full-width at

OI

half-maximum for the resonance.

At resonance the enhancement in the total cross
section depends linearly on the spin J, and quadratically
on its elasticity K. For the energy range covered by the
present experiment, the wavenumber k runs from 3.4 to 4.2
inverse fermis, so that the leading factor in o (resonance)

takes the nominal value

'n/4k2 ~ 600 microbarns
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This cross section is also the enhancement expected

from a spinless resonance with unit elasticity, definite
isospin, and definite G-parity. (We still assume no
interference between the resonance,; and those background
amplitudes having the same J,P,C eigenvalues.) More
generally, Figure 2.4-1 shows the cross-section enhance-
ment expected for various J and K values, with

1

k = 3.73 F “--the nominal wavenumber for the present

experiment.

2.5 Angular Spectrum of Resonance

As discussed by Blatt and Weiskopf (1952), the
angular distribution associated with the formation and
decay of a singlet-state resonance of spin J, and

elasticity K has the form:
do/dn = (n/4k?) (23 + 1)k%||J,0>|°

where |J,0> denotes a normalized spherical harmonic. In
other words, in the absence of interference the decay
angular distribution follows the square of a zero-order
Jth—degree Legendre polynomial, as sketched in the

Figure 2.5-1. According to these curves the backward
cross section for the resonance becomes ever more sharply
peaked with increasing J. One measure of this sharpness

obtains from the nearness of the minimum to the backward
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Backward Resonance Cross-Section
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Figure 2.4-1. Resonance Cross-Section Enhancement.
Backward hemisphere cross sections shown (from right

to left) for J = 0,1,2,4,6,8. These curves assume no
interference between the resonance and those background
amplitudes having the same J, P, C eigenvalues.



50

scattering coordinate cos 6 = -1.0. For reference these

numbers are given in column one of Table 2.5-1.

Scattering via the triplet states leads to more
complicated formulas for the decay angular distribution
of the resonance. For S=1, and L=J=L', the differential

cross section looks 1like

do/dQ = (m/4k%) (20+1)K2

- ¢ ||J,L2'><3,L2';1,52|3,32;3,1><3,32;3,1|3,0;1,82>|2,
spins

where the Clebsch-Gordon coefficients are defined in
Blatt and Weiskopf (1952). As shown in Figure 2.5-2,
these curves look much like those for the singlet state,
except that the minimum nearest the backward direction
does not reach zero. These minima, however, still
measure the relative sharpness of the backward peak, and

thus are listed in column two of Table 2.5-1.

The remaining triplet states all involve changes
in the orbital angular momentum of the system: L=Jtl,
L'=J+1l. As inferred above the angular momentum barrier
may be expected to inhibit transitions from the lower to
the higher angular momentum states, so that, for example,
the process taking the initial orbital state L=J+1 to the
final orbital state L'=J-1 likely dominates the

reverse case. Under this assumption the decay angular
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TABLE 2.5-1

Differential Cross-Section Minima #

S=0 S=1 S=1

L=J L=J L=Jd+1

L'=J L'=J L'=J-1

J=1 0.0 0.0 NONE
J=2 -0.58 -0.66 -0.46
J=3 -0.77 -0.82 -0.76
J=4 -0.86 -0.89 -0.86
J=5 -0.91 -0.92 -0.91
J=6 -0.93 “0.93 -0.93

# Quoted values refer to cos
"minima".

03

see text

for definition of
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distribution to be associated with the resonance takes

the form:

dosan = (r/4x>)k2 | I (21+1) /2 L' p(p-nr-2)
spins L, L'

-|L',Lz'><L',Lz';1,sz'|J,Jz;L',1><J,Jz'L,1|L,0;1,sz>!2

where D(L-L'-2) denotes a Kronecker delta. The curves
associated with this angular distribution are shown in
Figure 2.5-3, and indicate that the oscillatory structure
noted heretofore appears smoothed owing to the super-
position of waves having different relative periods.

As a measure of the sharpness of the backward peaks, the
half-power points for these curves have been listed in

column three of Table 2.5-1.
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3.0 THE OPTICAL MODELS

Originall% introduced by nuclear physicists, the opti-
cal model recognizes the mechanistic, and mathematical
similarity between (say) proton scattering by massive
nuclei, and optical scattering in a photographic emulsion.
The mathematical correspondance (except for phase-space
factors) i1s in fact perfect, the first Born approximation
and the Fraunhofer diffraction integral being formally
identical. More importantly, however, both processes are
inherently statistical, the proton worming its way through
the atomic nucleus, and interacting with any one of several
nucleons, much as light quanta pass through photographic
film, and scatter from the silver gains inbedded in the
emulsion. Fortunately, with both phenomena the downstream
applitude may be calculated without detailed knowledge of the
size or position of the individual nucleons, or silver grains.
In particular, the scattered optical amplitude depends only
on the shape, and opacity of the developed image, the sil-
ver grains playing no essential roll except at large scatter-

ing ang;les.Jr (See Figure 3.0-1.) Similarly, the nuclear

tUnless the wavelength of the incident radiation drops
fo dimensions comparable to the grain size, the total cross
section will remain constant, and differential cross section
depend only on the momentum transfer to the photographic
emulsion.

36
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Figure 3.0-1. Optical Scattering. The above diffract-
ion pattern, when viewed in the large, resembles that
expected from a circular disc or ring, while in fact it
was produced by illuminating an opaque screen contain-
ing 96 pinholes located uniformly on the circumference
of a circle. If the holes were placed randomly on the
circle, the downstream amplitudes from each would be
wildly out of phase with the others, thus smoothing the
fine structure of the pattern. (See L. Cutrona (1965)
for details of the experimental arrangement.)
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physicist can argue on the basis of his experimental findings
that the downstream proton amplitude depends primarily on

the diameter, and density of the atomic nucleus, and not on
the positions of the individual nucleons. (The rather
obvious similarity between circularly symmetric diffraction
fields, and proton-nucleus cross sections lends further
credence to the analogy.) Taken together, these factors
motivated the introduction, and successful application of
the optical model in nuclear physics. (R. Eisberg, p. 576
(1962))

More recently, the optical model, and its various
derivatives have gained favor among high-energy physicists,
mainly because they lead to accurate fits (and predictions)
involving few adjustable parameters. On the other hand,
motivation for their use at high energies remains less
clear, since the statistical picture invoked by the nuclear
physicist holds only for complex nuclei. Nevertheless, high-
energy arguments, based on the finite spatial extent of
the target and projectile, have recently been put forth by
both experimentalists, and theoreticians. These treatments,
though varying in detail, picture the elastic collision as
a reflection of inelastic processes occuring at impact
parameters comparable to the dimensions of the target and

projectile. In other words, the interaction potential is
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held to have a large imaginary part with a spatial structure
describing the zone of inelastic collisions. The coherent-
droplet model of Byers and Yang (1964a, 1967b), for example,
imagines the target and projectile passing through one
another, with strong absorption and phase shifting occuring
along the way. Another picture, proposed by A. D. Krisch
(1966) (See, also, A. D. Krisch, and J. P. Krisch (1967).)
envisions an interaction center -- also called a particle
source function -- located midway between the target and
projectile ,which scatters the incident wave into both the
elastic, and inelastic channels. The latter model, in fact,
has led to a surprisingly accurate parameterization of the
P-P elastic cross section over wide ranges of both s and t

(A. D. Krisch (1967)).

3.1 Chou-Yang Interaction Picture

Unlike atomic physics, where, for example, the first
Bohr orbit is three to five orders of magnitude larger than
the classical radius of the electron, or the measured
diameter of the nucleon, strong-interaction physics occurs
at ranges comparable to the dimensions of the target, and
projectile. From a classical polint of view one would
expect the physical structure of the particles to play an

intimate roll in the collision, much as the hard surface
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of a billiard ball introduces constraint equations in
Lagrangian mechanics. On the other hand, at the nuclear
scale 1t might be argued that the physical structure, and
interaction potential are equivocal concepts -- the poten-
tial necessarily assuming the more fundamental role. The
latter picture is acceptable, in fact preferable, except
that when the constraints imposed by the physical structure
are violated, the projectile may be destroyed, a real-life
possibility not covered by ordinary potentials, or classical
constraint equations. In addition, the nuclear constraints
have a typically statistical character, leading in one
collision to elastic behavior, and in another to inelastic

processes.,

Fortunately, the difficulties of inelastic collisions,
and statistical-type constraints are well resolved by intro-
ducing a complex potential.+ The real portion of the poten-
tial acts in the usual way, advancing or retarding the phase
of the various partial waves, and thereby bending the classi-
cal trajectories of the particles. The imaginary part, on
the other hand, accounts for inelastic processes, attenuating
the lowest order partial waves, and introducing diffraction

structure in the elastic cross section. Moreover, as noted

TSee, for example, S. Fernbach, et al. (1949).
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above, the imaginary part of the potential reflects to some
degree the structure of the target, and projectile. Taking
a cue from the classical picture, Chou and Yang (1968) have
conjectured that the potential for collision depends on the
degree to which the target and projectile are overlapped.
If P(X) describes the physical density of the projectile,
and T(X) the density of the target, then the integrated
overlap is given by the correlation integral (See Figure

3.1-1.)
V(X) « P(2%) % T(2x) = f P(2%x - x') T(x') dx'

Note that the interaction potential V(i) depends only on
the center-to-center separation of the particles, and not
explicitly on the time. In the Born approximation the
elastic scattering amplitude is proportional to the Fourier
transform of the potential V(X) with respect to the three-

->
momentum transfer A. In other words,
A-,.2 A > A > 2
do/dn =|V(a)|° « |P(a/2)T(a/2)]°,
where the circumflex denotes Fouriler transformation.+

The forward (diffraction) peak, which is generally
regarded as a reflection in the elastic channel of the

strong absorbtion occuring into the inelastic channels,

AN

PN
+We have used the convolution theorem A*%*B = AB.
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Figure 3.1-1. Chow-Yang Collision Geometry. For equal
mass particles the origin of the coordinate system is

at the center-of-mass in the center-of-momentum
coordinate system.
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provides a practical application of the above relations.
At high energies the forward peak depends exponentially on
the three-momentum transfer squared: exp(—2R02A2), with Ro2

on the order of 5 (GeV/c)—Z. In other words,

2A2

|P(8/2)T(8/2)|2 « exp(-2r_2s?)

Assuming the target and projectile have similar distribu-

tions, and neglecting possible phase factors obtains
P(A/2) = T(A/2) = eXp(-RO AT/2)

or taking the inverse transform

2

P(2r) = T(2r) « exp(—r2/2RO )

where r 1s the radial coordinate of either particle. Accord-
ing to the present interpretation, therefore, the rms radius

of the target and projectile is
ZMCRO = 2(.,197)Y5 = .88 F,

a figure not far from the .7 F measured by E. Chambers, and

R. Hofstadter (1956) in an electron-proton scattering experi-

ment.+

TThe present interpretation also provides the convolu-
tion description of two-body scattering requested by C.
Akerlof, et al. (1966).
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3.2 Relativistic Schrodinger Equation
The Klein-Gordon equation provides a relativistically
correct description of a spinless particle moving in the

vicinity of a scaler potential V(;,t):

[(iK3/8t - V)2 = c2(-1AV)° - (mc2)%] ¥(%,t) = 0

The equation obtains from first principles by making operator

substitutions in the relativistic energy-momentum relation:
(E-V)° - ¢°p® = (me2)? = 0

In collision problems W(E,t) specifies the probability
amplitude for locating the particle at X and t when subject
to an interaction potential V(%,t) arising from the presence
of a target, or the exchange of one or more virtual guanta
between the target and projectile. The former view leads,
for example, to the optical, and eikonal pictures for high-
energy scattering, while the latter, due to Feynman (1948),

forms the basis for the one-particle-exchange model.

It is usually argued that the potential V depends only
on the vector drawn between the two particles, and not
explicitly on the time. In this case, the spatial and

temporal portions of the wave-function separate, and it is
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possible to write
¥(X,t) = W(X) exp(-iwt)

where E = Hw is the total relativistic energy of the projec-
tile. Substitution then leads to the time-independent

Klein-Gordon equation
[(E-V)2 + c“§*T° - (mc®)?] ¥(X) = 0

Far from the potential

2 2.2 2 2 2 .2 .2
- (me")" = ¢

E p =c¢ K k,

so that we obtain the familiar Schroedinger form:

2

[V + k° - U(X)] v(X) = 0

where we have introduced an effective potential U =

(2EV - V2)/M202. Theorists prefer this form of the relativ-
istic wave equation owing to its basic simplicity, and formal
similarity with the classical Schroedinger equation. (Note,
however, that k denotes the relativistic wavenumber for the
incident projectile, and U depends explicitly on its total

energy E.)

Before proceding with specific models, it is convenient
to write the solution to the relativistic Schroedinger

equation as an integral appropriate for the treatment of
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scattering problems. Downstream of the potential the proba-
bility amplitude necessarily consists of two parts, namely,
the unperturbed incident wave exp(ikz), and a spherical

wave eminating from the target area. In other words, in

the asymptotic 1limit of laboratory dimensions, the down-

stream amplitude is

V(%) = v (x) + ¥ (x)

exp(ikz) + f(k, cos 0) exp(ikr)/r

Note that f(k, cos 6) modulates the outgoing wave with
respect to both scattering angle 6, and wavenumber k. To
calculate f(k, cos 6) we sum the Huygen spherical wavelets
scattered by each element of the potential, a procedure
justified by the formal similarity between the relativistic
Schroedinger equation, and the static electromagnetic wave
equations. The amplitude of the scattered wavelets depends,
of course, on the product of the illuminating amplitude,

and the strength of the scattering potential. Thus, by
adding up contributions from all parts of the potential,

we obtain the following integral for the scattered amplitude:
V(X)) = = SY(X") UGX") [exp(ik|X-X'|)/b4n|X-%"|] a%"

Introducing the notation wave(;) for the Huygen spherical



b7

wavelet:
wave(¥) = - exp(ik]fl)/lefl = - exp(ikr)/bar

and defining ¥ as the convolution operation leads to the

compact form
ws(i) = [v(X) U(X)] * wave(X)
. . . ' L. t
which is just Huygen's principle.

In the far-field approximation the convolution integral
for the scattered amplitude simplifies to an ordinary
Fourier transformation. In particular, with little error

v -> -> > .
we can replace |x - x'| by |x|] = r in the denominator of

wave (X), and by r - x-x'/|X| in the exponent:
wave (X-x') = - exp(ikr - ik-X')/lrr

where k = k(%/]%]). Substitution then yields the scattered

amplitude in the far-field approximation:

ws(§) = wave (X) fw(%') U(x') exp(—iK~§') ax'.

l-'I‘he same procedure can be applied to the time-dependent
wave equation, except that the mathematics are more compli-
cated. See, for example, R. P. Feynman, p. 84 (1962), or
Chapter 5 below.
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Consequently, we can make the following identification:
f(k, cos 8) = (~1/4m) SY(X') U(X') exp(-ik-X') dx',
where, of course,

do/de = |f(k, cos e)|2.

3.3 Optical Model Without Spin

Although details vary among authors, most optical
models are equivalent to using a far-field Born approxima-
tion to calculate the amplitude scattered by an empirical and/
or derived potential U. In general, U may depend both on
the spatial coordinate ;, and the projectile energy E; how-
ever, even without energy dependence in U, optical models
make accurate predictions for the differential cross section
over suprisingly wide energy ranges. The Born approximation
itself follows from the assumption that even in the immediate
vicinity of the potential the total amplitude either 1)
differs little from the incident one exp(ikz), or 2) differs
by a calculable amount to be included explicitly in U(X).

In either case the integral for f(k, cos 0) simplifies to

f(k, cos 8) = (=1/Um) Sexp(ikz') U(X') exp(-ik-x') dx'

(=1/b4m) fU(X') exp(ik-X') dx!

In other words, the scattering amplitude is just the Fourier
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transform of the (perhaps modified) potential U(;) with

respect to the three-momentum transfer K.

For spherically symmetric potentials, U = U(r), and it

is possible to perform the angular integrations immediately

2

f(k, cos B) = - {m U(r') sinc(Ar') r'< dr!

where sinc(x) = sin(x)/x. Similarly, if the potential is

cylindrically symmetric U = U(p,z), and we obtain the form

f(k, cos ) = - % L {w U(p',z") Jo(kp' sin 0)

explik(l-cos 6)z'] p'dp'dz’
where JO denotes the zero-order Bessel function.

To illustrate the use of these formulas, we consider
four examples, each demonstrating a physical or mathematical
aspect of the optical model. To remain consistant with the

literature we hypothesize forms for U(%), rather than V(x).

GAUSSIAN CLOUD: According to the electron-proton scatter-
ing studies of E. Chambers, and R. Hofstadter (1956), the
nucleon looks approximately gaussian in the radial coordi-
nate, with an rms radius of .72 .05 F. A similar result
can be inferred from the shape of the forward diffraction

peak in P-P elastic scattering, as discussed in Section 3.1.
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Thus, we are motivated to consider an imaginary gaussian

potential of the form:

2

_ . 2
U(r) = - 1UO exp(-r /llRO )

According to the above, the scattered amplitude is
+ - 3 2,2
f(k, cos 6) = + iU, (bm)2 R exp(-RO AT)

squaring this result for the cross section obtains

do/dQ = UO2 (UWRO6) exp(—2Ro2A2)

Thus, the differential cross section for this model is
exponential in A2. In P-P scattering RO tends to increase
with projectile momentum, while in PBAR-P it tends to

decrease, facts clearly not covered by the present form.

YUKAWA POTENTIAL. According to Yukawa theory, the strong
force is mediated by pion exchange, and thus should be

characterized by an exponentially damped coulomb potential

of the form:
U(r) = - Uo(Ro/r) exp(—r/RO)

where RO is the Compton wavelength of the pion, H/mc. The

scattering amplitude follows immediately

£k, cos 8) = UR_/[4° + (1/R_)]
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Thus, although this potential also predicts a forward peak,
its slope is much steeper than observed experimentally.

To show this, we convert the cross section to an exponential

in (small) AZ:

do/dQ 2 RO6/[1 + (R02A2)2]2

]
(e
O

2 6 2,2
U~ R, exp(—2RO AT)

R

But for pions

2R_° = 100 (GeV/c)™*
However, the measured value is more like 10 (GeV/c)_2,
indicating a sharp discrepency between theory and experi-

ment.

MILKY COIN. The first-minimum secondary-maximum sequence
observed in PBAR-P reactions suggests that a target poten-
tial with sharper edges might more accurately parameterize
the differential cross section. With this in mind, we
consider a coin-shaped potential, oriented coaxially with
the beam, and characterized by a complex index of refraction
n. As the incident wave passes through the region of the
potential, it will experience both amplitude attenuation,

and phase shifting. In fact, after penetrating the volume
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a distance §, the incident wave exp(ikz) will have been

deformed to
exp[ikz + ik(n-1)s]

The potential U responsible for this deformation obtains

as a solution to

[v2 + k% n°Jy = [V2 + k° - Uy

In other words, inside the coin U = (l—n2)k2, and outside
U = 0. It is necessary, however, to account for the defor-
mation of the incident wave; thus, we instead use an effec-

tive potential of the form
't o= (1-n°)k° exp[ik(n-1)(D+z)]

where 2D 1is the thickness of the coin. Although a general
solution is straight forward, it is more interesting to
consider the problem where n = 1 + ie,e small. Then,

(l—n2) ~ - 2ie, and the scattered amplitude is:

. . - 6
f(k,cos 6 ) = 1eDRK® 2 Jl(kR sin 8) Slﬁégfi Cos)D)D)
KR sin © s

where R denotes the radius of the coin. For very thin, but
highly absorbent coins, D tends to zero, while the product

€D becomes the amplitude absorbtance per unit area, say, A;
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do/d4dqQ = A2quu 2 Jl(kR sin 06)
kR sin ©

a formula often quoted in the literature. Although strictly
speaking the optical theorem fails for Born approximated
amplitudes, many authors use it to eliminate the parameter

A° by writing
2 .. @2 .
do/dQ = (kot/uﬂ) jinc” (kR sin g)

where jinc(x) = 2J,(x)/x.

SQUASHED GAUSSIAN. In the center-of-momentum system, both the
target and projectile appear relativistically contracted

along theilr directions of motions. If the nucleon looks
gaussian in its rest frame, with an rms radius R, then in

the CM it will take the form:
2 2 z
exp(-x_/2R" - y2/2R2 - Y222/2R2)

where the kinematical factor y refers to the CM velocity of
the particle. Convolving two such nucleons according to the
Chou-Yang Prescription leads to the following potential

U = - iU, exp[—x2/4R2- y2/LlR2 - Y222/4R2]

= - iUO exp[—pz/MR2 - Y222/4R2]
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The scattered amplitude follows readily from the cylindri-

cally symmetric transform:

1
f(k, cos 6) = 2

N -

iU, (2R%) (4mR%/y?)
exp[—Rzkgsin26] exp[-R2k2(l—cos 6)2/Y2]

2 2

Recalling A = 2k° (l-cos 6), and defining A, = k sin 6 as

t
the transverse component of three-momentum transfer, obtains

the simplified form

do/dQ = UO2 (MNR2/Y2) exp[—2R2(B2A§ + A2/Y2)]

For small scattering angles

32A€ + A%/4° = k%% = - ¢

and for large scattering angles

B2A§ ¥ A%/4% = 4Kk y° - u(28°-1)

Using three such cores the squashed-guassian theory accurately
fits the neutron-proton scattering data of M. Kreisler, et al.
(1966) over all CM scattering angles, and over a wide range

of beam energies. The model also presumably describes the

P-P cross section, except that these particles are indis-

tinguishable. (See Figure 35.7-1.)
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Figure 5.3-1. Squashed-Gaussian Fit to N-P Elastic.
The solid line indicates a tri-core fit to the data of
Kreisler, et al. (1966). The radii of the cores were
taken from Krisch (1967), and the curve normalized with
the optical theorem. The dashed curve is a single-core
forward-angle fit.
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Early antiproton-proton experiments suggested that
the PBAR-P interaction potential consists of a small, dense
baryon core surrounded by a diffuse meson cloud. At very
low energies (kR <<2m, R = 1 F) the PBAR-P annihilation
cross section grows rapidly with decreasing beam momentum,

and dominates both the elastic and production cross sections:

(B. Cork, et al. (1962)). The dominance of o, over o
suggests annihilation off a gray, rather than a black core,
at least in a simple optical picture. However, as noted by
Feshbach and Weisskopf (1949) the low-energy annihilation
cross section associated with a black sphere appears larger
than that expected from geometrical optics owing to the wave-

mechanical nature of the projectile. In particular,

o, =T (a + 1/k)2

where k denotes the CM wave number of the projectile, and a
the radius of the baryon core. At very low energies the
second term in the parentheses over-rides the first, and

the annihilation cross section varies inversely as the square
of the projectile velocity -- a result analogous to the one
obtained in track-ionization studies for bubble chambers.

Accordingly, the elastic diffraction peak generated by the
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annihilation channels should shrink rapidly with decreas-
ing beam momentum owing to a corresponding expansion of the
scattering region, an effect also observed experimentally

by A. Hossian, et al. (1965).

At medium-low energies (kR < 2m) the elastic and
annihilation cross sections have about the same magnitude,
both dominating the production cross section (B. Cork, et

al. (1962)):

These relations indicate that while the PBAR-P reaction is
still dominated by annihilation processes, the effective
radius for them is now closer to that of the black sphere
since Og = Og- The marked expansion of the forward peak

from the narrow widths measured at very low energies also

supports this conclusion.

At medium-high energies (kR > 27m), on the other hand,
the elastic, annihilation, and production cross sections all

have about the same magnitude (K. Bockmann, et al. (1966)):

These ratios suggest that the various production processes,

which heretofore have contributed little to the total cross
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section, now match those of annihilation. In addition,
since the elastic cross section lies substantially below
the inelastic one, and 1f the baryon core is still pre-
sumed black, the production processes must be initiated

in a relatively transparent scattering region, namely, the

diffuse meson cloud.

At the very highest energies (kR >> 2m) the PBAR-P
total cross section appears to approach that for P-P scatter-

ing (C. Czyzewski, et al. (1965)):
o (pp) = o (pp) >> o_(pp)

The small elastic cross section indicates again that produc-
tion occurs off a fairly transparent medium, a result also
found for P-P scattering. In addition, the width of the
forward diffraction peak appears to antishrink toward that
characterizing P-P scattering with increasing beam momentum.
These results suggest ﬁhat the meson cloud dominates the high-
energy behavior, and that the-P—P and PBAR-P processes have

"the same forward scattering amplitude for kR >> 2.



4,0 THE EIKONAL PICTURE

In an effort to bridge the (large) gap between the
W.K.B. method and the Born approximation, R. J. Glauber
(1955) introduced a calculational technique, first noted
by Moliere, which effectively combines the two methods
for obtaining the downstream amplitude. The Born approxi-
mation, it will be recalled, obtains the scattered ampli-
tude by Fourier transforming the interaction potential,
while the W.K.B. method approximates the wave-function
via a stationary-phase integral. In contrast, the Glauber
technique specifies the downstream wave-function with a
hybrid formula that can be interpreted either as a Fourier
transform or as a stationary-phase integral, thus giving
the Born approximation, and W.K.B. method as appropriate
limiting cases. Moreover, the technique produces a for-
ward scattering amplitude that satisfies the optical
theorem, a feature not characteristic of the Born approxi-

mation.

4,1 The Glauber Picture

Glauber's derivation of the eikonal theory, though
rigorous, incorporates more mathematics than appropriate
for the present study. Another technique -- a generali-

zation of Huygen's principle -- leads to the same results,

59
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but without a Green's function analysis, and with substan-
tially improved physical insight. In making the Born approx-
imation it will be recalled that the total (scattered plus
unscattered) amplitude ¥y was replaced by the incident one

by = exp(ikz), on the argument that only a small portion

of wi scatters, and the resulting error should be small.

At high-energies, and in the immediate vicinity of the poten-
tial, however, the incident amplitude is modified drama-
tically, its phase and magnitude deviating materially from
the form exp(ikz). A similar problem arises in optics when

a planewave is incident on a highly absorbing, and/or
refracting medium, e.g., an industrial-grade diamond. Here,
as in strong-interactions, the real local amplitude deviates
materially from the incident one at points within the scatter-
ing structure. Unfortunately, this is precisely the region
where major contributions are made to the Born-approximation

integral.

In an effort to keep the Born approximation intact,
Glauber decided to modify the incident wave-function to
account for distortion, and/or depletion caused by the tar-
get potential U(i). Physically speaking, the modification
amounted to assigning a complex refractive index n to the
medium, and then calculating the accumulated phase shift,

and total attenuation suffered by the incident wave before
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reaching the scattering point ;. The refractive index
generated by the potential U is determined by solving the

defining identity for n:

2 2.2

[VE + k' n"Jy = [V2 + k2

- Ul

Thus, within the diffraction region the refractive index

varies according to

U = k2 (1-n°%) = 2k° (1-n)

Consequently, as the incident wave moves through the inter-
action potential, it will be depleted, and distorted,

finally looking like

explikz + ik {Z (n(x,y,z"') -1) dz']

o0}

= exp [ikz -

mr*

{2 U(x,y,z') dz']

Using this approximation for the incident wave, instead of
the unmodified form exp(ikz), leads to the improved Born

approximation

3 1
f(k,cos 6) = - %? J exp(ikz') expl- %E {i U(x',y',z")dz"]

U(X') exp(- ik-X') dx'

a formula originally obtained by Glauber using a Green's

function method.
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To simplify the above integral, and also improve the
approximation, Glauber switched from the usual center-
of-momentum coordinate system (projectile incident along
z-axis) to the more symmetric brick-wall coordinate system
(projectile incident at polar angle -6/2), as illustrated
in Figure 4.1-1. Under this rotation, the exponential fac-

tor exp(ikz' - ik-X') gées over to

exp[-ikp' 2 sin % cos(g - £')]

where cylindrical coordinates have been used for §', and
spherical ones for k. With this change one also obtains,

remarkably enough, a perfect differential in z':

£(k 8) = - 7= sUk') expl- 3= s2' U(p',9',2") dz"]
,COS = - I7 S X expL- K Lo o', s Z Z
. .0 >
exp [ikp' 2 sin 5 cos (¢=-0')] ax!
Where, being a correction factor itself, the form of the
exponentiated integral remains unchanged by the coordinate
rotation. Carrying out the z'-integration yields

f(k,cos 8) = =X /7 {1 - expl- = /2% u(pr,07,2') az' ]}

oo}

exp[-ikp' 2 sin % cos (¢-=9¢")] p'dp'dd!’

The exponentiated integral is just the complex phase shift



D>

(B)

6/2 8/2

Figure 4.1-1. Breit's Brick-Wall Coordinate System.
(A) Conventional System, (B) Breit's System.
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suffered by the incident wave on its trip through the region

of the potential:
= l +oo 1 t \l |
X(p,¢) = —gi_f:m U(p',¢',z') dz

The integral X(p,9) is called the optical eikonal function,

or "eikonal" for short.

For potentials considered cylindrically symmetric in

the brick-wall system, the eikonal approximation becomes

f(k,cos 06) = ik {w {1 - explix(p)]} Jo(kp' 2 sin %)p'dp'

In the limit of small phase shifts X(p'), the exponential

may be expanded to obtain (A = 2k sin(6/2))

f(k,cos 8) = - % {‘” U(p',z"') J_(Ap') p'dp'dz’

which is just the first Born approximation when computed in
the brick-wall frame. In high-energy problems, however, the
potential is generally dominated by a large imaginary term

- iUO, owing to absorbtion into the inelastic channels, so
that such an approximation may not be wvalid. In these cases
it is fruitful to divide the potential U into two parts,
namely, - iUO, and a smaller piece §U, representing, for
example, the real part of the potential. One can then

expand the exponential in U obtaining
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f(k,cos 6) = ik {w {1 - (1 + 18x) exp(ix )} J (Bp") p'de’

where the eikonals xo(p), and 8x(p) correspond to the poten-
tials - iUO, and 8U, respectively. Consequently, the scat-

tered amplitude can also be written in two parts:

[ee]

ik f {1 - exp ix_.} J _(Ap') p'dp'
0 (e} (@]

1]

fo(k, cos 6)

6f(k, cos 9) k {wéx exp ixo JO(Ap') p'dp'
where fO(A) represents the dominant portion of the amplitude,
i.e., the diffraction peak, and 8§f(A) a small perturbation

term.

The formula for §f looks like a distorted-wave born
approximation in the potential §U(x), and proves valuable,
for example, in the analysis of pion-nucleon charge-exchange
scattering (R. C. Arnold (1965)). To show this let f(k,cos 6)
denote the total (elastic plus charge-exchange) pion-nucleon
scattering amplitude, fo(k,cos ) the elastic protion of the
amplitude, and §f(k,cos 6) the (smaller) charge-exchange
amplitude. All experiments indicate that the elastic ampli-

tude is exponential in A2:

. 2.2
fo(k,cos g) = 1Ao exp(—RO A7)

so that upon Fourier-Bessel inversion (b = p)
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{ 1 - exp ixo(b)} = (Ao/2kR02) exp(—bz/uRoz)

Similarly, it may be argued (albeit aposteriorily) that the
charge-exchange amplitude should, in the first approxi-

mation, also be exponential in A2:

2 2)

§f(k,cos 6) = A exp(-Rl A

1

so that upon inversion

Sx(b) = (Al/szlz) exp(—bz/uRlz)

Thus, by including the distortion of the incident wave one

obtains
_ 2,2 2,2
§f(k,cos 6) = A1 exp(—Rl A7) - A, exp(—R2 A7)
where
_ 2 2
A2 = A1A0/2k(Rl + RO )
2 _ 2_ 2 2 2
R2 = Rl RO /(Rl + Ro )

Experimentally, ng > R22, and Al > A2 > 0, so that the first
term dominates at small A2, while the opposite is true at
higher A2. The cross-over point according to R. C. Arnold

(1965), could explain the minimum observed at It[ = 0.5

(GeV/c)2 in the charge-exchange cross section.
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4,2 Coﬁerent—Droplet Model

Conceptually similar to the eikonal picture, the coherent
droplet model of Byers and Yang (1966) is founded in partial-
wave analysis, rather than the Born approximation. As in
the eikonal picture, charge-exchange scattering is regarded
as part-and-parcel of the elastic scattering amplitude,
although the droplet model includes in addition a spin-flip
charge-exchange amplitude. The spin-flip amplitude, con-
trary to one's initial expectation, has a magnitude compar-
able to that of the non-flip amplitude, even though it would
appear that both flipping the spin vector, and exchanging
particle charge would amount to a higher order, and hence
smaller amplitude process. As pointed out by Byers and
Yang, the apparent equal footing for the flip, and nonflip
processes "is indicative of the great difficulty in trans-
ferring large momenta, but relative ease, to varying degrees,
in coherently transferring quantum numbers: charge, spin,
strangeness, nucleon number, etc." This feature, although
an ad hoc concept in the droplet model, results in a natural
way when a spin-flip potential is added to Arnold's eikonal

picture.

In the coherent-droplet model, the scattered amplitude
obtains by first making partial-wave analyses of the upstream,

and downstream solutions to the relativistic Schroedinger
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equation. The difference between these sums is then iden-
tified as the scattered amplitude, providing there are no
incoming spherical wave components. The procedure leads

in the usual way to the non-flip amplitude

A(k,cos 6) = %E

(22+41) A, P, (cos 6)]|T>
. [ )

o)

™8

Here |T> specifies the spin-state of the target, and Al the
quantity (1—exp(ia£)), where a2/2 denotes the (complex) non-
flip phase shift for the 2th partial wave. If during col-
lision the projectile flips the spin vector of the target,
the incident amplitude exp(ikz)|T> will be modified by the

usual spin-orbit interaction operator, and the incident

amplitude will take the distorted form:

(iG-n) E@ exp (ikz) | T>

In thils case the scattered amplitude is still just the
difference between the upstream, and downstream solutions.

Hence, the spin-flip amplitude 1is

[ee]
- = (i o 1
B(k,cos 6) = (io-n) 56 on zio (22+1) B, P, (cos 8)|T>
= (io-+n) i ; (22+1) B Pl( 9)|T>
= (io-n) 3p g Py (cos 8)]

2

O
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Here B, denotes the quantity (1—exp(iBZ)), where B,/2 1is
the spin-flip phase shift, and Pi(cos ) an associated
Legendre polynomial of unit order, and degree %&. The above
forms for A(k,cos 6), and B(k,cos 6), though accurate,
prove inconvenient in an optical-type analysis. Thus,

Byers and Yang replaced the awkward sums over & with inte-

grals over the impact parameter b. Using the defining

relations
A = 2k sin g
akb = A/E(ERD) = H(a+ 3)
k db = d2

and noting the approximations

= ‘ 1 cq By 2
Pz(cos ) = Jo((£+ 2) 2 sin 2) JO(Ab)

1

- Pi(cos 8) = (1+ 3) T (L + %) 2 sin g) = kb J(4b)

leads immediately to the formulas

A(k,cos 8) = ik|T> {w A(p) J_(4b) b db
O

2 2

B(k,cos 0) = ik (ig.n)|T> gm B(b) J{(8b) b db
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Since the amplitudes A(k,cos 0), and B(k,cos 6) are ortho-
gonal by virtue of the orthogonality of |T> and (ig-E)IT>,

we can suppress these factors, and write instead

A(k,cos 8) = ik S {1 - exp ia(b)} J,(Ab) bdb

0

1k {m {1 - exp 1B(b)} J,(Ab) b2 db

B(k,cos 6)

provided these amplitudes are always added incoherently.

With the scattered amplitudes written as above, the
quantities a(b), and Bg(b) identify immediately as the
eikonals for the non-flip, and spin-flip portions of the
potential. Thus, following Arnold's technique,+ we break
a(b), and B(b) into their elastic, and charge-exchange por-

tion of the exponentiated eikonals:

SA(k,cos 6) = k {w sa(b) exp ia_(b) J_(4b) b db

k° /% §8(b) exp iB8 (b) J.(Ab) b2 db
0 0 1

§B(k,cos 6)

Like Arnold, Byers and Yang interpret ao(b), and Bo(b) as
the depletors of the incident wave, and as such should be

equal with

1MAS discussed in the sequel, Arnold picked his form

for a(b) by presuming the charge-exchange porcess is mediated
by rho-exchange.
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{1 - exp iao(b)} = {1 - exp iBO(b)} = (AO/BKROZ)

. exp(—bz/uﬁog)

where the right-hand side is the Fourier-Bessel transform of

the experimentally observed distribution iAO exp(—R02A2).

Similarly, the factors Sa(b), and §B(b) were interpreted
as the charge-exchange amplitude per unit area at the impact
parameter b. This amplitude, in turn, was concluded to be
proportional to the charge-exchange amplitude per unit
volume integrated over a fixed impact-parameter line running
parallel to the z-axis. By definition these integrals are

Just ao(b), and Bo(b), so that

Sa(b) « iao(b)

88(b) = 18, (D)

where ao(b) = Bo(b) is given above. Actually, to obtain a
good fit to the pion-nucleon charge-exchange data (A. V.
Stirling (1965)), Byers and Yang had to insert an ad hoc

factor b in the second relation:

§8(b) = ib B (D)
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on the other hand, Arnold took
Sa(b) = (A;/2kR °) exp(-b°/4R °)

so that the two treatments used slightly different para-

meterizations.



5.0 PARTICLE EXCHANGE, AND ABSORPTION

The outstanding success of the one-particle-exchange
picture in quantum electrodynamics led Feynman (1961b),
and other'sT to use the same picture for strong interactions,
with the mediating photon replaced by Yukawa's finite-mass
plon. Unfortunately, even after proper formulation of the
interaction Lagrangians, and phase-space factors, the
adopted theory failed to match with the experimental cross
sections. In forward nucleon-nucleon scattering, for example,
where one-pion exchange was expected to dominate the ampli-
tude, the observed forward peak appeared much wider than the
theoretically predicted one. To alleviate this difficulty,
and also account for the large inelastic cross sections at
high-energies, theoreticians introduced absorption factors
into the one-particle-exchange picture via Glauber's eikonal
model. With these factors included, and spin properly
accounted for, the predicted elastic, and inelastic cross

sections fell into line with the experimental data.

TThe one-particle-exchange picture has been discussed

by R. P. Feynman (1949a, 1949b), Chew and Low (1959), S. D.
Drell (1960, 1961), Salzman and Salzman (1960, 1961), A. S.
Goldhaber (1964), Gottfried and Jackson (1964), and J. D.
Jackson (1965a, 1965b).
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5.1 One-Particle Exchange

According to Feynman (1961b) collisions on the atomic
and nuclear scale are mediated by the exchange of virtual
quanta between the target, and projectile. Lacking an
exact classical analog, the exchange mechanism may never-
theless be visualized by considering a center-of-momentum
collision with an impact parameter b too large for ordinary
surface-contact collision. If, prior to passing by one
another, the projectile ejects a lighter particle toward
the target, and the target in turn captures it, the motion
of both target and projectile will be altered, thus signal-
ling the occurance of a collision. Such collisions will
appear elastic providing the mass, and energy of the target,
and projectile remain the same before and after collision.
In other words, the exchange particle must carry no net
energy between the target, and projectile, so that while
traversing the space between the colliding bodies the

particle's energy must equal zero: E2 = p2 + m2 = 0. But

p2 > 0 for any physical process, so that the exchange

appears kinematically disallowed.

In the atomic and nuclear domain, however, one may
expect the constraints of classical mechanics to appear
violated within the bounds set by the uncertainty principle.

In particular, the energy of the exchanged particle may
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deviate by as much as AE from its classical value, pro-
viding it does so for a time no longer than At, where

AE - At > M. In other words, if the exchange (ejection plus
capture) occurs within a time At, the energy-momentum rela-

tion may still be satisfied according to

AE2 = p2 + m2

The characteristic collision time must then be on the order

of
At = K/AE = H/mc® = 10723 sec

and the characteristic interaction length something like
AL = cAt = Me/me® = 10713 om

where the numerical values refer to exchanged pions.

Unlike the optical and eikonal models described above,
exchange scattering requires a time-dependent formalism to
properly account for the time-lag between ejection by the
projectile, and capture by the target. The incident ampli-
tude is easily made time-dependent by affixing a factor

exp(-iwt) to the static amplitude:
wi(x,t) = exp(ikz - iwt)

If this amplitude illuminates the static unit potential 6(%),
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it will scatter a Huygen's wavelet of the form
- exp(ikr - iwt)/4mr

since exp(ikz - iwt) §(x) = 6(;) exp(-iwt). More generally,
if wi(;’t) illuminates a momentary, and unit potential

6(;) §(t), the product satisfies

exp(ikz - iwt) 6(X) 6(t) = 8(X) &(t)

= 6(§) fexp(-iwt) dw/2m

and hence the scattered field will contain equal portions

of all frequency components:

wave(g,t) = - [[exp(ikr - iwt)/U4mr] dw/27

where w2 = k2 + m2 during integration.+ This function

specifies the field scattered by the momentary, and unit
potential 8 (%) §(t), and thus defines the time-dependent
Huygen spherical wavelet. Consequently, for time-dependent

potentials U(?,t) the Huygen principle becomes:
ws(},t) = [wi(i,t) U(X,t)] * wave(X,t)

where *¥denotes four-convolution with respect to the variables

_>
X and t.

THere and in the sequel we set ¥ = ¢ = 1.
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In the center-of-momentum system the projectile, and

target enter the interaction region as plane waves:

> > . B NN
exp(lkl-x - 1wlt) = exp(—lklex)

1

exp(iE X - iw,t) exp(—i%

n,
2 2 )" %)

2

Here %l denotes the incident four-momentum of the projec-

tile, and kZ that for the target. At some space-time point

}1 = (§l,tl) the projectile may emit a particle of mass m,

and then recoil as shown in Figure 5.1-1A. Since the direc-
tion cosines of the ejected particle are random, the emitted

wave will appear to radiate from ;l as a time-dependent

Huygen spherical wavelet, producing a field at ;2 of the

form

> > v Y
wave(x2 - X ,t2 - tl) = wave(x, - X

1 2 )

1

as illustrated in Figure 5.1-1B. In an elastic collision,
the energy and mass of the projectile remain constant dur-

ing collision, so that the field scattered to the point §3

w = W

must look like (k3 = kq, 3

1)

->

3 -> -> . >
exp[lk3 Ix3 - xli - 1w3(t3 - tl)]/un |x3 - xl[

- . s LNV I
exp(1k3r3 1w3t3 + 1k3 xl)/ Ty
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m }?f?y/ B
W=7

m

AN
Jriie

ey

4

Figure 5.1-1. One-Particle-Exchange Scattering.
(A) classical picture, (B) wave-mechanical picture.
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where we have made the usual far-field approximation. Simi-
larly, on capturing the exchange particle, the recoiling

target will give rise to an amplitude of the form:
exp(ikuru - iwqtu + i%u.§2)/4ﬂr“

where, of course, ku = k2, wy = W,

The probability amplitude for having all five processes =--

projectile incident with momentum & target incident with

19
§2, particle exchange between %l and %2, projectile scattered
to §3, and target recoil to ;M -— must, according to the

usual rules of quantum mechanics, be proportional to the
product of the individual amplitudes:
FEAVERY . . . n
[exp(—lkl-xl) exp(1k3r3 - iw.t. + ik.+x.)/47r

n
-wave(x2 - l)-

[exp(—i%2'¥2) exp(ikurl_l - iwutu + ikq-kz)/ﬂﬂru

The "usual rule" invoked here really derives from Huygen's
principle, or the first Born approximation. For if one
interprets the first two lines of the expression as a
scattering potential U(§2,t2), then the last one states
that the amplitude observed at XM owing to scattering at

§2 is just the product of the incident target amplitude,
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the potential U, and a far-field Huygen wavelet. If tl > t2,

v

Y
the exchanged particle must instead travel from Xy to Xq5

and the last two lines become the potential that scatters

the projectile at ;l to the observation point X Thus ,

3
according to this view, the above expression is valid for

all tl and t2.

Since the Huygen spherical wavelet damps out exponen-
tially for space-like four-distances, exchange may in prin-

4"
ciple occur between any two space-time coordinates Xy and

n
1 and x2 can-—

not be experimentally determined, so that it is necessary to

n . . n
Xy For a given event, however, the points x
average over the ejection coordinate, and sum over the cap-

ture coordinate to obtain the observed amplitude. Letting

C = (Al A2/Hnr3uﬂru) exp(ik3r3 - iw3t3) eXP(iquq - iwutu)

and delaying momentarily the averaging, leads to the follow-

ing matrix element between the initial, and final states

v

Y n, n a
M=2C JSSf exp[l(k3 - kl)-xl] wave(x2 - X

1)
exp[i(%u Y )~§2] a%, d%

2 1 2

The integrals evaluate readily with the following momentum-

space representation for the Huygen wavelet:
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wave (X) = f [exp(—ia-k)/(a2 - mg)] da

Substitution lead immediately to

= e ek, - Ry o+ k- R/ik) - k)2 - e

The four-dimensional delta function -- which becomes a
Kronecker delta on averaging -- insures that energy and
momentum are conserved, while the term in the denominator
indicates that the amplitude depends on the four-momentum
transfer squared t. Thus, according to the above, the
differential cross section associated with one particle

exchange is of the form
do/dt = 1/|t-m°|?
where for simplicity we have omitted all flux and phase-

space factors.

5.2 s,t,u Channel Scattering

In addition to the one-particle-exchange mechanisms
considered above, the scattering may also proceed through
the formation of a metastable bound state, or the exchange
of some particle with quantum numbers that effectively con-
vert the target into the projectile, and the projectile
into the target. 1In antiproton-proton scattering the metas-

table state has the quantum numbers appropriate for a high-



mass boson resonance, and the ldentity-converting exchange
particle the character of a dibaryon state. These colli-
sion mechanisms, together with the one analyzed above, are
illustrated schematically in Figure 5.2-1. Called, respec-
tively , S—channel t-channel, and u-channel processes,
these mechanisms are, of course, indistinguishable experi-
mentally, so that each contributes to the observed cross
section. The nature of the contribution follows from the

amplitudes for each:

M(s) « 1/(s - m°)
M(t) « 1/(t - m°)

M(u) « 1/(u - m°)

These formulas follow immediately from the t-channel ampli-
tude derived above, and diagrams of Figure 5.2-1. The

kinematical quantities s,t,u are defined in the usual way

s = (K. + %)% = b(k° + m9)
1 2
2
t = (k - X ) = - 2k2(1 - cos 0)
1 2
2
u = (%1 - %4) = - 2k2(1 + cos 0)

where the right hand formulas hold only in the center-of-
mementum for equal mass particles of three-momentum k, and

scattering angle 6.



2 3

Figure 5.2-1. s-, t-, u-Channel Scattering. For
PBAR-P scattering (A) 1s an s-channel process mediated
by heavy meson formation, (B) a t-channel process med-
iated by light meson exchange, and (C) a u-channel pro-
cess mediated by heavy dibaryon exchange.
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5.3 Absorption Corrections

As noted in the discussion of the optical model, the
amplitude 1/(t - m2), whioh‘is just the Fourier transform
of the Yukawa potential, fails to describe the forward
nucleon-nucleon cross section when m is taken as the pion
mass. To account for the descrepency Gottfried and Jackson
(1964), and Ross and Shaw (1964) argued that the cross sec-
tion is dominated by absorption into the inelastic channels,
rather than simple one-particle exchange. To account for the
absorption, Glauber's eikonal picture was invoked, and the

scattered amplitude written as
£(a) = ik £°° {1 - exp ix(p)} J_(ab) b db

a formula derived earlier. Gottfried and Jackson then
imagined that the eikonal X consists of two parts, namely,
a large imaginary term xo(b) describing the absorption by
the inelastic channels, and a smaller real term 6X(Db)
corresponding to particle exchange. By expanding the
exponential in 66X, and keeping only the largest term, the

above scattering integral becomes
fO(A) = ik { {1 - exp ixo(b)} JO(Ab) b db

Thus, to first order the exchange mechanism makes no contri-
bution to the scattering amplitude. According to all the
experimental data, the forward nucleon-nucleon cross sec-

fion is gaussian in the three-momentum transfer so that as
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before
£ (D) = ikh_ exp(—RogAZ)
Inverting the Fourier-Bessel transform above then leads to
{1 - exp ix (b)} = (A /2R 2 exp(—b2/4R 2)
o 0 o o
which, of course, defines the eikonal xo(b).

The same formalism may be applied to inelastic pro-

cesses such as
™ > pP

In this case f(A) describes both the usual elastic ampli-
tude, and a pseudo-elastic amplitude associated with the
above process, while x(b) represents the eikonal generated
by the elastic, pseudo-elastic, and inelastic portion of
the potential U. Thus, X(b) may be divided into three
parts, namely, a large imaginary term Xo describing the
absorption by inelastic channels other then rho-p, a small
real part §x arising from the various elastic scattering
processes, and another small real part §x' corresponding
to the one-pion-exchange mechanism mediating the above
reaction. By expanding the resulting exponentials in &Y
and 6x', and looking for the pseudo-elastic terms, one

obtains the following amplitude for the rho-p final state:
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§f' = k {w 8x' (b) exp ix (b) J_(4b) b db

The Yukawa potential presumably describes the pion exchange,

so that the associated (covariant) eikonal looks like:

Sx! (+UO/2k) { [exp(-mr)/mr] dz

b2 + 22, and UO is a constant. Integrating the

1

where r2

expression, and making a large impact-parameter approximation

(mb >> 1) leads to

§x! (+Uo/km) Ko(mb)

R

(+UO/2km) exp(—mgbg/u)

where KO denotes the zero-order modified Bessel function of
the second kind. Similarly, according to the elastic-scatter-

ing results:

2

exp ixo(b) =1 - (A/2R02) exp (- b2/2RO )

Consequently, &x' suppresses the high-b contributions to

§f', while Xa Suppresses the lcw-b ones.



6.0 REGGE THEORY

At high energies many partial waves are required
for an accurate description of a forward diffraction
peak. In an effort to find a more convergent representa-
tion for the scattering amplitude, T. Regge (1959, 1960)
converted the usual partial-wave expansion to a contour
integral, deformed the path of integration, and then
showed that the resulting residues--called Regge poles--
looked much like Breit—Wigner resonance forms. The same
technique was earlier applied by A. Sommerfeld (1949)
to ascertain the tendency of radio waves to propagate
beyond the earth's horizon, a process not unlike the
tunneling of a projectile through the angular momentum

barrier. Subsequent studies-I~

of the positive energy
solutions to the Schroedinger equation indicated that
should a projectile tunnel through an angular momentum
barrier, and form a metastable state, a corresponding
Regge pole should appear in the scattering amplitude.
However, the numerical results of these analyses proved
disappointing, presumably because both the true force

field, and relativistic nature of the problem were little

understood. Consequently, a more empirical approach to

+See, for example, T. Regge (1959, 1960),
M. Froissart (1961l), G. Chew, and S. Frautschi (1961,
1962), Chew et al. (1962), S. Frautschi et al. (1962).

87



88

the Regge concept evolved, and the residues postulated

directly from the experimental observation of resonances.

6.1 Regge-Pole Theory

It is well known that with or without absorp-
tion, and regardless of the underlying dynamical mech-
anism, the field scattered by a spinless interaction may

always be written as a sum of partial waves:

f(k,cos 8) =

Il 8

F(k,2) Pz(cos 0)

=0

where do/dQ = |f|2. To improve the convergence, T. Regge

(1959, 1960) decided to analytically continue the co-

efficients F(k,%2) into the complex 2-plane by replacing

the partial-wave sum with a Sommerfeld-Watson transform:
1 mF (k,a) Pa(_ cos 0)

f(k,cos 6) = - J da
2711 c sin To

where the integration contour surrounds (in the clockwise
direction) the poles created along the real o-axis by the
zeros in sin ma. The validity of the transformation
follows from the Cauchy residue theorem, and the behavior
of the integrand when o approaches an integer value n,

that is, a = n + §, with § small:
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mF(k,a) exp(-ima) Py (cos 0) TF (k,n) (-1) " P, (cos 6)

~

cos mn sin 76 (-1) 276

Thus, the poles in the integrand reproduce the partial-

wave analysis term-by-term.

Following Sommerfeld, Regge then deformed the
integration contour around the real a-axis, and formed a
new straight-line path running parallel to, and one-half
unit to the left of the imaginary f%-axis, as shown in
Figure 6.1-1. 1In addition, for a wide range of Yukawa-
type potentials Regge demonstrated that the only singular-
ities to be expected while deforming the contour were the
upper-half plane poles in F(k,a)--now known as Regge
poles. Thus, according to Cauchy's theorem, the amplitude
also has the form:

1 F(k,o) Pa(—cos )

f(k,cos 6) = - — / da
2mi sin To

+ Z Bj Paj(—cos 8) /sin Moy
J

where aj(k) denotes the complex-plane location of the jth

pole, and Bj(k) the residue associated with F(k,aj). The

above formula, called the Regge representation of the

scattered amplitude, is valid for all cos 6, namely, also

for the unphysical region cos 6 > 1.
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Im ¢

Re ¢

Figure 6.1-1. Regge Contours. Regge deformed the
conventional Sommerfeld-Watson contour (C) past the
poles ays Qos to a new location defined by
L= =1/2.
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The physical contribution made by the jth pole
is seen by expanding the jth term in the Regge sum into

a series of partial waves:

fj(E,cos ) =

I ™8

F.(E,%) Py(cos 6)
) J

o
where k has been replaced by the total CM energy E to
simplify the physical interpretation. The coefficients
Fj(E,l) obtain in the usual way:

_ (22+1) *1 8 Py(-2)

2 21 sin 7a Pelz) az

Fj(E,R)

(22+41) 8
T(a=2) (a+2+1)

where we have dropped the subscripts j on the right-hand
side for simplicity. To interpret Fj(E,R) we suppose for
some special energy E, that the Regge pole aj(E) approaches
the integer %; then, we may expand aj(E) about (E—EO) to

obtain
aj(E) ~ 2 + a(E - EO) + ib
where, of course,

a = Re [Baj(Eo)/aE 1, b = Im a(Ey)

Substitution of this linearized form into the formula for

Fj(E,Q) vields for the 2th term of the partial-wave

expansion:
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R (E) Pz(cos )

Fj(E,Q) Pg(cos 0) = -
Ta (E-Ey+ib/a)

This is recognized as the well-known Breit-Wigner formula

for a resonant amplitude of mass Eqs spin 2, and width T,

r/2 = b/a.

The above suggests that we may associate Regge
poles with the formation of resonant states in the ampli-
tude. Should, moreover, aj(E) approach several differ-
ent integers %;, %5, ... at several different energies
Eis Epy .. the same Regge pole will generate resonance
structure at different projectile energies, and in
different angular-momentum states. In fact, the path
aj(E) generated in the complex f2-plane by varying the CM
energy E--with the resonance points o4(E1), 0y(E2), ...
clearly demarked--is called a Regge trajectory. That
more than one resonance should appear on a Regge trajec-
tory appears reasonable if one considers a radial poten-
tial U(r) that generates a well-defined angular momentum
barrier, such as a square-well potential of radius R
and depth U, . In this case the radial portion of the
relativistic Schroedinger equation,

1 4 1 4 2 (2+1)

[— — (= —) +k2 - ——— - U ]y(x) =0
r2 dr r2 dr r2
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allows one to speak of an effective potential 'U' con-
sisting of the square-well, and a centrifugal term:
2(2+1)
'U' = U(r) + ———
r

as sketched in Figure 6.1-2. Viewed as a one-dimensional
problem, the projectile on encountering the angular
momentum barrier will either be reflected back from it,
or burrow through to the valley formed between the origin
and the radius r = R. While in this region the projectile
will shuttle back and forth on the valley slopes until
it penetrates the barrier to escape once again as a free
particle. Should such temporary bending occur at a
specific energy Eo’ then resonance like structure would
be expected in the gth partial wave in the scattered
amplitude. Similarly, the system may also evidence
structure for other values of the angular momentum Zl,

29, ... at the energies E1, Ep, ...

As noted by Frautschi, et al. (1962), the poten-
tial binding the resonating particles generally depends
on the orbital parity of the state. The exchange forces
giving rise to such potentials tend to raise or lower the
energy of the observed resonances as % is even or odd.

Viewed as a perturbation, such exchange forces lead to an
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—>C

Figure 6.1-2. Angular-Momentum Barrier. The effective
potential 'U' consists of a square-well part, andga
centrifugal term. Projectiles with 2(2+1)/R2 >k“ > O
may penetrate the cusp of the angular-momentum barrier,
and enter the valley to the left of r = R. The dotted

line indicates the shape of the square-well.
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interaction potential containing two parts:

>

> L >
U(x) = Ugy(x) + (-1) U (%)

where Uo(ﬁ) specifies the dominant portion of the poten-

tial, Ue(§) denotes the exchange-force part, and (—l)2
describes the direction of the mass splitting. For

similar reasons,; the resonance masses predicted by the
Regge residues are expected to be lower or higher as 2
is even or odd. 1In fact, it is customary to note this
possibility explicitly by separating the even and odd

parts in the residue:

B Pa(-cos 0)/sin ma = B/Z[Pa(—cos 8) + Pa(+cos 8)]1/sin

+ B/2[P (-cos 6) - Pa(+cos 0)1/sin

The two terms are then considered separate trajectories
and given a separate quantum number, called the "signa-

ture," to distinguish them. Using the identity:
Pa(z) = exp(ima) Pa(—z)

The even and odd trajectories take the useful form:

I

Even B/2[1 + exp(ima)] Pa(—cos 8) /sin ma

odd

B/2[1 - exp(ima)] Pa(—cos 8) /sin pa

In the direct or resonance forming channel, the

mo

mo

’
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Regge trajectory serves both as a classification device
for studied particles, and a predictive technique for
the masses and spins of the unobserved énes. In practice,
only the real part of o (E)--the spin of the resonance--
can be measured directly, so that one normally uses a
Chew-Frautschi (1962) plot of spin versus mass-squared
as a classification device. Such plots then link
particles with the same internal guantum numbers (baryon
number, strangeness, isospin, intrinsic parity, etc.),
but with different signatures and spins. Joined with
SU(3) symmetry, which classifies particles having equal
spins, but different isospin and strangeness, the two
schemes allow one to step among resonance states having
different signature, spin, isospin, and strangeness.
According to R. Arnold (1965), in a bootstrap picture
where meson resonances are viewed as (physical or un-
physical) bound states of the antinucleon-nucleon system,
one expects little in the way of exchange splitting as
this would necessarily entail the exchange of a rela-
tively massive dibaryon state. On the other hand,

V. Barger (1968) observes that exchange splitting for
pion-nucleon resonances tends to be large--about 250 MeV
--ostensibly because in a bootstrap picture the rela-
tively light excited-nucleon states mediate the exchange

process.
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When applied to the reaction in the crossed, or
particle exchange channel, Regge theory serves as a
method for examining the asymptotic behavior of the for-
ward differential cross section. The amplitude gener-
ated in the crossed channel by a Regge trajectory in
the direct channel obtains, basically, by writing the
residue as a function of the invariants s and t, and
then exchanging them in the resulting expression. For
elastic scattering in the direct channel

2t

-cos(s,t) = — - 1
4m® - s

2

so that at high (2s >> 4m® - t) energies in the crossed

channel this argument becomes
2s
-cos (t,s) = S
4m~ - t
The Legendre polynomials which appear both in the resi-
dues and the background integral, grow geometrically for

large arguments z:

(20) !
Py(z) v — 2
2% a! al
where the gamma function TI'(x) = (x-1)! defines the

factorial for non-integer values of x. Thus, for large s
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in the cross channel, the background integral falls off
as s"l/z, and the amplitude is dominated by the trajec-
tory having the largest Re a. Dropping the signature
factor, we write this residue as (so = 4m2)

/’EB (ZOL)! S o

t
) = A(t) (s/5) % (®)

sin mo 2%ala! 4m2 -t

(The square root of t appears because crossing symmetry
applies only to the covariant portion of the direct
channel amplitude, namely, Vs f(s,t) which on crossing
becomes vt f(t,s).) The differential cross section

associated with this amplitude is then

do/dQ

(1/5) |a(t) (s/s,) (8|2
or equivalently

do/dt = (n/p%) do/dQ = (4n/s) do/dQ

am|a(t) |2 expl{l2a(t)-2] In(s/s )]

2) 2

since s = 4(p2 + m = 4p“ at high energies.

The high-energy proton-proton scattering data
indicates that 1) at t=0 do/dt tends to a constant, 2)
the diffraction peak is exponential in t, and shrinks
with increasing s, 3) the forward scattering amplitude

is mostly imaginary, 4) the total cross section tends
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to a constant with large s. According to the above
formula for do/dt, the differential cross section will

appear constant at t = 0 if
a(0) = 1.0

Exponentiality in t obtains if to first order
al(t) = 1 + 10t

and (decreasing) shrinkage results directly from the
1n(s/so) in the exponent. The forward cross section
will appear mostly imaginary if the signature of the
leading trajectory is even, since 1) according to

R. Arnold (1966) a(t) and B(t) are real for negative t,

and 2) for any even signature trajectory near t=0:
[1 + exp(ima)]l/sin ma = i/2
Moreover, according to the optical theorem

47 [A(0) (s/50) (0 /kue

]

Ut(s)

]

4ma(0) (s/s ) (071

so that the total cross section tends to a constant with
increasing s if a(0) = 1, a requirement consistent with,

but independent of the one obtained above.

Known as the Pomeranchan, or vacuum trajectory,
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the pole is also credited with mediating pion-nucleon
collisions, and thus assigned zero baryon number, zero
strangeness, zero isospin. (The well-established
£0(1250) with JFIC = 0%2% 1likely represents the exchange-
degenerate J=2 entry on this trajectory. (R. Arnold

[1965])

6.2 Application of Regge-Pole Theory
At non-asymptotic energies other direct channel
residues may contribute to the cross channel amplitude.

In fact, the charge-exchange collision

" p » m°n

forbids Pomeranchon exchange altogether, and thus must
be mediated by some other trajectory. The allowed
exchange particles clearly must have non-zero isospin,
and positive G-parity, and in coupling to the pi-pi

system conserve parity
P(r 1°) = (-1)J

In addition, Bose statistics, as imposed through the
generalized Pauli principle, restrict the exchange

particle to negative signatures:

signature = (-1)J = (-1)I
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since no mesons with I > 1 are currently known. Taken
together the last two conditions imply that the exchange
trajectory must have JF = 17,37... the only established
mesons satisfying all these restrictions are the

- + -
0(760;17,17), and p(1620;3,1%).

The amplitude mediating the pion-nucleon charge-
exchange process contains, of course, both non-flip and
spin-flip parts. The Regge residue associated with the
spin-flip processes obtains in the usual way by applying
a Sommerfeld-Watson transform to the partial-wave anal-

ysis of the direct-channel spin-flip amplitude:
1
Y (s) Py(-cos 6)

where, like B(s), y(s) is the residue associated with
the pole. For large z the first order Legendre poly-
nomial grows as

1 -i(2a)! o

P (z) v —— z0-1

@ 2001 a!
Thus, in the cross channel the spin-flip Regge amplitude
takes the form:

-ivt vy (2a)! o 2s -
)a Yoo B on(t)(S/so)o‘(t)_1

sin ma 2Qqg! ! 4m2—t
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The latter form is also valid for collisions between

particles of unequal mass.

Several measurements of the pion-nucleon charge-
exchange cross section exist in the range 6-18 GeV/c.
At each energy the differential cross section appears
to first rise from its |t|=0 value to an absolute maxi-
mum in the general vicinity of |t|=.05 (GeV/c)*2, and
then drop exponentially until |t|=0.5 (GeV/c)*2,
where a distinct dip-bump sequence commences. (See
Figure 6.2-la.) A linear best-fit by Hohler et al.
(1966a) to the exponential portion of the forward peak
indicates that a(t) = .57 + .91t. Extrapolated back
into the direct channel (s>0), this trajectory passes
close to the p(760) pole as shown in Figure 6.2-1b,
thus reaffirming the earlier conclusion that the charge-
exchange process is mediated by rho-exchange. The
peculiar dip in the cross section near t=0 is usually
credited to a spin-flip amplitude vanishing in the forward
direction. Moreover, the spin-flip amplitude in the
cross channel vanishes when a(t) vanishes, namely at
|t|=0.6 (GeV/c)+2, thus generating a dip-bump sequence

in the differential cross section, and presumably also



103

)

In S (5 ~ron)

Figure 6.2-1.
Scattering.

the cross channel (t < 0) regions, and

- | (o t
Al%ce<
I+ /x p meson
7 position
’,4’
égﬁf
§>§§
S _
é 1 o) t

poql._

Linear extrapolation
to p meson

Rho-Trajectory and Charge-Exchange
shows a Chew-Frautchi plot of the
p(760) trajectory in both the direct channel (t > 0), and

Here (b)

(a) a sketch of the

pion-nucleon charge-exchange data, as taken from R.N.
Phillips (1966).



104

a one-cycle oscillation in the polarization, as observed
in elastic pion-nucleon scattering (S. Suwa, et al.

[1965, 1966]).

In P-P and PBAR-P elastic scattering, any or all
of the leading trajectories may contribute to the
scattering amplitude, thus making these processes
difficult to analyze quantitatively, although some quali-
tative remarks are possible. Experimentally, the PBAR-P
forward peak antishrinks with increasing s, in direct
contrast to the P-P scatteriné results, and the predic-
tions of Pomeranchon exchange. 1In addition, the PBAR-P
cross section contains a pronounced dip-bump sequence
around [t|=0.5 (GeV/c)*?, while the P-P cross section
appears quiet in this region, but shows some dipping at
|t]=3.0 (Gev/c)? (C. Akerlof, et al. [1967]), and sub-
stantial polarization activity around |t|=0.3 (GeV/c)+2
(P. Grannis, et al. [1966]). With respect to PBAR-P
data, it is tempting to interpret the dié—bump structure
at |t]=0.6 (GeV/c)*2 as the vanishing of a spin-flip
amplitude associated with the rho-trajectory. If this
interpretation is correct, then according to Frautschi
(1966) one expects 1) the dip-bump sequence (being associ-
ated with a secondary trajectory) to go away with increas-

ing s, as it does, for example, in pion-nucleon scattering



(C. Coffin, et al. [1966]), and 2) the polarization
should fluctuate substantially in the general vicinity
of the minimum, also as in pion-nucleon scattering

(. Suwa, et al. [1965, 1966]). However, as noted by

W. M. Katz, et al. (1967), the ratio of the differential
cross section at the secondary maximum to that at the
first minimum remains fairly constant in s, a result
also confirmed at higher energies by T. Kitagaki, et al.
(1968) , and A. Ashmore, et al. (1968). Similarly,
recent polarization measurements by C. Daum, et al.
(1968) show no regular oscillatory structure in the

region of the first minimum.

In an effort to explain the antishrinking ob-
served in the PBAR-P forward peak, Frautschi (1966)
has also argued that secondary trajectories of opposite
signature, and C-eigenvalue tend to cancel in P-P scat-
tering, and add in PBAR-P. For definiteness in discuss-
ing this argument we suppose both scattering processes
ére dominated by a purely imaginary, signatureless
Pomeranchon trajectory, but are also modified by the
exchange of the p(760) trajectory with its negative sig-
nature, and negative C-eigenvalue, and by the exchange

of the A2(1300) trajectory with its positive signature
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and positive C-eigenvalue. The amplitudes for the
PBAR-P, and P-P exchange processes are not independent,
but linked by crossing symmetry, and crossing symmetry
plus charge-conjugation, respectively, to the direct-
channel PBAR-P amplitude, as shown in Figure 6.2-2.
According to rough plots by Arnold (1965) in the direct
channel (s>0), and by Frautschi (1966) in the cfoss
channel (s<0), the trajectories for the p and A, both
have a(t) = 1/2 + art, while for the Pomeranchon o (t) =
1+ alt. In the direct channel the reality of B (t),

the presence of two identical interaction vertices, and
the optical theorem combine to guarantee that all three
amplitudes have a positive imaginary part at t=0. Thus,

the (covariant) scattering amplitude in the cross channel

near t=0 assumes the basic form:

1A(P) (s/s5) *+ 1/2[1 - exp(in/2)] Alp) (s/s,) L/

+ 17211 + exp(in/2)] A(A,) (s/s5) /2

where the plus (minus) sign refers to P-P (PBAR-P)
elastic scattering, and A(P) >> A(p) = A(AZ) > 0. Even
for A(p) = A(Az), the p and A, amplitudes fail to cancel
as they are 90 degrees out of phase. However, their
(much larger) cross terms with the Pomeranchon amplitude
are seen to cancel for P-P, and add for PBAR-P, as

asserted by Frautschi.
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Figure 6.2-2. C(Crossing Symmetry and Charge Conjugation.
Crossing symmetry sends (A) to (B), and (D) to (E).
Charge conjugation applied to the mediating meson sends
(B) to (C), and multiplies the amplitude by the C-eigen-
value of the meson. Charge-conjugation applied to the
P-PBAR final state of (E) sends it to the PBAR-P state
of (F), and multiplies the amplitude by the C-eigenvalue
of the mediating meson, since ¢ is conserved at strong-
decay vertices.
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6.3 Regge-Cut Theory

As noted above, by exchanging a p-trajectory
between the projectile and target one is able to fit
both the small forward dip, and pronounced first minimum
in pion-nucleon charge-exchange scattering. However, in
an earlier calculation it was found that the p-production
process mp - pn could be treated with a one-pion ex-
change model only if substantial absorption were applied
to the incident, and scattered waves. These results
then raise the question as to whether absorption correc-
tions are part-and-parcel of the Regge-pole theory, or
should be added to the various Regge-exchange amplitudes
by methods similar to those used to embellish the one-
particle-exchange model. Actually, as clarified by
Arnold (1965) either position is tenable, depending on
whether one treats absorption as an ad hoc phenomenon
in all channels, or regards all channels as connected
(by unitarity) to the elastic one, and hence subject to
the same absorption as described by the Pomeranchon

+

trajectory. 1In either case, recent papers' make it clear

that unadorned Regge-exchange amplitudes, like their

+See, for example, R. Arnold (1965, 1967),
G. Cohen-Tannoudji, et al. (19267), E. J. Squires (1968),
J.N.J. White (1968), F. Henney, et al. (1968a, 1968b).




109

one-particle-exchange counter-parts, require correc-
tions for absorption losses. In this connection, one
then regards the absorption as reflecting the physical
structure:of the colliding bodies, and the basic Regge
amplitude A(t)(s/so)a(t) as describing the reoccurrence,

and metastable nature of the exchanged resonances.

Absorption may be incorporated into a Regge-
exchange model by either extending--as we do here--the
eikonal picture presented earlier, or invoking the
covariant S-matrix formulas of N. Sopkovich (1962).

The eikonal treatment proceeds from Arnold's conjecture
(1965) "that at energies above a few BeV, the effective
optical potential is to be given by (the Fourier-Bessel
transform) of the leading Regge poles." This argument
follows in a natural way from the eikonal approximation

for the elastic scattering amplitude:

©o

fo(s,A) = ik { [1 - exp ixo(b)] Jo(Ab) b db

R

k { Xo(b) JO(Ab) b db

According to Arnold's conjecture, then, the eikonal
Xp (4) to be associated with the Pomeranchon amplitude
AP(A)(s/sO)aP(t) is specified by inverting the above

transform:
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ap (A)

kM xp(b) = J7 Ap(d) (s/sg) Jo (Ab) b db

where M makes both sides covariant. It is also possible
to specify the forward elastic pion-nucleon scattering
amplitude phenomenologically. 1In this case one notes
that the forward amplitude is mostly imaginary, decreases
exponentially with t, and evidences little, if any,

shrinkage:

ikM[1 - exp ixo(b)]

© 2,2
{ :LkMAo exp(—RoA ) Jo(Ab) A dA

. 2 2 2
(1kMAO/2Ro) exp (-b /4RO)
as already noted in Section 4.1 above.

Similarly, according to Arnold's conjecture, the
eikonal Xp for the charge-exchange process is just the

Fourier-Bessel transform of the p-trajectory amplitude:
KM X, (b) = S A (1) (s/s)% 8 3 (ab) b db
p 0 P o (o)

As discussed earlier, AO(A) varies little with A, and

ap(A) appears linear in A2:

A, (8)

Il

constant = /so Al

2 2
oay(8) = 1/2 = RyA
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Substitution in the integral formula for X, then yields

KM xp(b) = % MA} exp[-Rf 4% In(s/s.)] J,(sb) & db

Il

[MA, /2R 1n(s/s_)] expl-b2/4R? In(s/s_)]

The absorption-corrected Regge-exchange amplitude for
charge-exchange scattering then follows from the usual

eikonal perturbation formula:
fp(s,A) =k { xp(b) exp ixg (b) Jo(Ab) b db

= A, exp[-R? 42 1In(s/s)]

- A2 exp[-Rg A2]

where

A, = AOAl/z[Rg + Ri In(s/s) ]

RgRi ln(s/so)/[Rg + R]2_ In(s/s,)]

Ry

so that the second term vanishes at high energies.
According to R. Arnold (1965) the dip observed at
|t]|=0.6 (GeV/c)? in charge-exchange scattering arises

from destructive interference between these two terms.

The first term in the expression for fp(s,A) is
just the Regge-pole amplitude associated with p-exchange.

The second term is more subtle, but may be viewed as
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arising from a Regge-cut, rather than a Regge pole. To

show this we consider the identity+

2 . > > 2
A, exp(—RzAz) = 27 { Ay exp[—Rg(A—A') ]
2% 2 >
° Ay exp[-RyA In(s/sg)] da!

Looking at just the covariant portion of the expression,

and defining a weighting function:
w(k) = a, exp(-R2A%)
leads to the recognizable form:
> ->
> > !
(s/5,)1/2n, exp(-RZA2) = 21 J W(A-4') A (s/s.)% (&) an

where A, and o, are defined above. Written in this form
the amplitude appears generated by Regge cut, i.e., a
superposition, or continuum of Regge poles, each weighted
according to W(Z). As pointed out by F. Henyey, et al.
(1968A) such Regge cuts may be interpreted as a double
scattering mechanism, where the absorption represents

one scatter, and the Regge-trajectory exchange the other.

+The expression is generally valid:

I A(b) B(b) Jo(sb) b db = 27A(R) » B(D),

where the circumflex denotes Fourier-Bessel
transformation, and the asterisk two-dimension con-
volution.
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It is also possible to rework Frautschi's
(1962) arguments in a Regge-cut picture. In this case
the dip observed at |t| = 0.5 in PBAR-P elastic scatter-
ing is credited to destructive interference between the
Pomeranchon and Regge-cut amplitudes, while its anti-
shrinking results because secondary trajectories of
opposite signature, and C-eigenvalue cancel in P-P,
but add in PBAR-P scattering. That the Regge-cut ampli-
tude looks like a double scattering mechanism follows
from the double-exchange diagram of Figure 6.3-1. The
first exchange, denoted with D, represents momentum
transferred through ordinary diffraction scattering, and

thus gives rise to an amplitude
2,2
A, exp (-RJAT)

The second exchange, denoted with an R, represents, for
example, the exchange of a p-trajectory, and thus con-

tributes an amplitude
A (s/sy) o, ()

The amplitude for both processes obtains by averaging

over allmomentum transfer combinations; that is,

_r272 o, (3)
ZﬂAO exp ( ROA ) * Ap(s/so) P

= (s/s.) /2 A, exp(-R24?)



114

N,

)
—p—

D R

AN

Y

T

Figure 6.3-1. Regge-Cut Diagram. The first exchange,
denoted by D, represents momentum transfered by dif--
fraction scattering, and the second., denoted by R,

shows momentum transferred through Regge—trajectory
exchange.
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Since this is just the Regge-cut amplitude written con-
volution notation, the double-scattering concept is seen
to be equivalent to the eikonal picture used hereto-

fore.

6.4 Application of Regge-Cut Theory

As noted earlier the one-nucleon-exchange
picture fails to describe the forward PBAR-P elastic
cross section. Similar difficulties arise when the
exchanged nucleon is replaced by a nucleon-isobar
trajectory. On the other hand, one moderately successful
picture originally suggested by R. Arnold (1967), but
modified here, credits the difference between P-P and
PBAR-P scattering to double baryon exchange. The double
baryon exchange is in turn derived by approximating the
multiperipheral diagram of Figure 6.4-1A with the
simpler diagram of Figure 6.4-1B. An amplitude for the
latter process obtains by averaging momentum transfered
through the first exchange, and momentum transfered by
the second. Assuming the exchange of a nucleon-isobar

trajectory then leads to the convolution integral
s I
21 [ Ay (s/sg) “L(A7A) Al (s/s ) @1 (") ant

The trajectory aj(t) is presumably the same one that

mediates backward pion-nucleon elastic scattering, and
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Figure 6.4-1. Baryonic Multiperipheral Diagram. (A)
The vertical legs of the diagram indicate nucleon-isobar
trajectories, and the horizontal rungs meson trajector-
ies. (B) Here the various rungs have been grouped into
two meson-trajectory fireballs.
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as such has the linear form:

2,2
0o = .15, RZ = RZ = 5.0 (Gev/c) 2

That is, the slope of the pion-nucleon backward peak

resembles that for forward P-P scattering.

The eikonal to be associated with double baryon

exchange obtains through Fourier-Bessel transformation:
x(k,b) = i(1/km0) % a2 (s/5.) %% exp(-b2/282) /(282)°

where the extra factor (1/kM) is the intermediate phase-
space factor quoted by Arnold (1967). At low energies
the amplitude corresponding to this eikonal may be ex-

pected to dominate the usual high-energy one:

£, 0k 8) = i(ko /4m) exp(-r222)
In particular, the amplitude will look like

f(k,A) = ik {m {1 - exp ix(k,b)} J (ba) b db
where x(k,b) is given above.

The exponent in the braces, which defines the
radius of the interaction, and hence the slope of the

forward peak, drops to l/e of its maximum value when
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(l/kM)zAi (s/so)2“o = (2R§)2exp(+ b2/2R2)

At low energies, or small k the left-hand side is large,
so that a relatively large value of b is needed to sat-

isfy the inequality

2 2
b~ >> 2Rg

while at higher energies the opposite is true:

2 2
b" << 2Rj

This indicates that where the formula for f(k,A) holds
the PBAR-P cross section will evidence material anti-
shrinking. In addition, when the factor enclosed by

the braces vanishes, the incident amplitude will be
striking an opaque scattering structure, and o(elastic)/
o(total) = 1/2, as observed experimentally around

1 GeV/c.

At higher energies the term in braces can be

expanded to first order in the eikonal

£(k,0) = ik(1/km) °a2 (s/5 )% exp(-R%4%/2) /2(2R])

The forward peak defined by this formula is twice as
wide as the high-energy one,; so that the form appears
inconsistent with experiment. However, Arnold (1967)

argues that before this expansion is valid, the high-
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energy amplitude quoted above becomes operational, and

dominates the forward scattering amplitude.

The low-energy amplitude may also be credited

to absorption from nucleon-isobar exchange:
. do 2 2 2
x(ksb) = (i/kM) Ay (s/s)*© exp(-b“/4R])/(2R?)

and antishrinking appears as before. At higher energies
where the exponent in the braces can be expanded to first

order in this eikonal, the amplitude looks like
f(k,8) = iA; (s/s )% exp(-R2a2) /M
! 1 o P o

Here the width of the forward peak approximates that
expected at high-energies, so that a smooth transition
between low and high energy behavior obtains. Although
nucleon-isobar exchange, being the lower order process,
seems more attractive than the double baryon exchange
suggested by Arnold (1967), the two mechanisms remain
indistinguishable with present experimental and theoreti-

cal knowledge.



7.0 NATURE OF THE EXPERIMENT

The present experiment was conceived largely as
an exploratory search for non-strange boson resonances.
Consequently, large-angle scattering was considered of
special interest, since the low background present at
these scattering angles make it particularly sensitive
area for detecting direct-channel resonances. In fact,
assuming no interference develops with the background,
the enhancement expected in the elastic cross section
due to the formation and decay a resonance of spin J,

and elasticity K is given by
_ 2 2
o (resonance) = (7/4k“) (273 + 1)K

(This formula, which is derived in Chapter 2, presumes

an intermediate state of definite isospin , and thus dif-
fers by one-fourth from the formula usually quoted.)

The heights of the two structures observed, for example,
by R. J. Abrams, et al. (1967) in their PBAR-P, and
PBAR-D total cross-sections suggest values of 1.2 and

0.8 for (2J+1)K for their 2345 and 2380 MeV enhancements,
respectively. Taking (2J+1)K = 1.0 as a nominal value,
and using the above formula indicates that the (minimum)
expected enhancement from these structures decreases from

.120 mb at J=2 to .046 mb at J=6. These figures are

120
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comparable to the elastic cross section in the backward
direction (about 10 microbarns/steradian), and suggest
that (even without constructive interference) such re-
sonances might be detectable as backward peaks. At the
time of the experiment the (speculative) U-meson of

G. Chikovani, et al. (1966) was considered worth search-
ing for, especially since, in principle, all its gquantum
numbers could be determined via a PBAR-P experiment

(G. Kane [1967]). As a resuit the momentum range was
adjusted to detect this particularly narrow (width <

30 MeV), but massive (2382 + 24 MeV) boson structure.

7.1 Argonne Seven-Degree Beam

The general layout of the Argonne seven-degree
beam, as it evolved up to the time of the present experi-
ment, is shown schematically in Ficure 7.1-1. The
antiprotons were obtained by directing a portion of the
ZGS spill onto a copper target attached to a movable
platform located inside the ring of the accelerator. The
target was fifteen mills high, and one-quarter inch wide,
with magnets and separators allowing a vertical full-
aperture of two milliradians, and a horizontal full-
aperture of twenty milliradians. Particles emitted from
this target were collimated by the quadrupole pair Q1 and

Q2 whenever they were emitted at the desired momentum
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Figure 7.1-1.

Argonne Seven-Degree Beam
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into the acceptance solid angle defined by the colli-
mator Cl. (Off momentum rays remained uncollimated,
eventually either leaving the beam line, or striking

one of the system elements.) The two bending magnets

Bl and B2--the electromagnetic equivalent of the optical
prism--served both to direct the beam into the desired
area of the building, and fan the particle trajectories
in the horizontal direction so that the momentum bite
could be controlled by the horizontal collimator C2.

On leaving the bending magnets the beam entered the first
separator SEPl, where a set of crossed electric and
magnetic fields imparted a vertical velocity to any
particle not satisfying cE=vB. (The separator thus acted
as a mass selector, since the collimated rays all had
approximately equal momentum.) The quadrupoles Q3 and
Q4 following the separator then focussed the beam in the
horizontal direction at the momentum collimator C2, and
in the vertical direction at the first mass slit MS1.
Particles not having the desired momentum were thus
stopped by the collimator C2, and those not having the
antiproton mass absorbed in the upper and lower faces of

the mass slit MS1.

The second stage of the transport system, be-

ginning at the downstream side of the first mass slit MS1,
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served to bring the particles to the bubble-chamber
entry port, as well as perform additional mass separa-
tion on the beam. This stage being essentially a mirror
image of the first, recollimated the beam in the verti-
cal direction with the quadrupole pair Q7 and 08, and
refocused it (just forward of sextupole SX3) in the
horizontal direction with the quadrupole Q6. The beam
next passed through the second separator, and then into
the field of the bending magnets Bl and B2, where the
particle trajectories were turned toward the bubble-
chamber entry port. Finally, quadrupoles Q9 and Q10
focused the beam (in both the horizontal and vertical
direction) to the point normally occupied by mass

. slit MSZ. (Mass slit MS2 was removed for the present
run in order to obtain a maximum antiproton beam inten-
sity.) After passing through the double focal point at
MS2, the beam again diverged until reaching quadrupole
Qll, whereupon it was abruptly rotated about its longi-
tudinal axis owing to a similar rotation of Ql1 from the
usual quadrupole position. Quadrupole Q12, which was
positioned slightly off-axis but not rotated azimuthally
like Ql1, completed the particle motion by rotating the
beam another 45 degrees, and pitching it vertically to
offset the action of the fringe field of the bubble-

chamber. The net action of Ql1 and Q12 was thus to bring
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the beam to a double focus in the vicinity of the beam-
entry port, with its longest dimension rotated into a
vertical position, thereby causing the particles to

enter the chamber as a sheet perpendicular to the optical

axes of the cameras.

The bubble chamber following the last guadrupole
was a thirty-inch hydrogen-filled device, designed and
built by the Midwestern Universities Research Associa-
tion. Its expansion, and recompression cycles were con-
trolled automatically using timing signals sent out from
the ZGS control room during the preparation, and accel-
eration of each batch of protons. Prior to beam entry,
the hydrogen was brought into a sensitive, or super-
heated condition by a rapid drop in chamber pressure.
Hydrogen molecules lying along the trajectory of the
antiproton (or one of its reaction products) were then
ionized through low-enerqgy collisions with these parti-
cles, and bubbles formed in the fluid from the resulting
thermal motions of the ions. After these bubbles had
grown to dimensions sufficient for good photography
(about 35 microns), the light rings at the far end of
the chamber were flashed, and four stereoscopic pictures
taken of the bubble-chamber tracks. Approximately mid-

way between the time of beam entry, and film exposure
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the chamber decompression cycle was terminated, and the
recompression cycle begun to prepare the chamber for

the next batch of antiprotons.+

The remaining (undescribed) elements of the beam-
transport system, namely, the octupoles, sextupoles,
and backup mass slits, served mainly to refine the
operation of the system by allowing larger momentum
bites, and acceptance of solid angles at the target. In
particular, the sextupoles SX1, SX2, SX3 corrected for
the chromatic aberration associated with those particles
having momenta slightly off the nominal. Similarly, the
octupoles OCT1l, OCT2, OCT3, OCT4, all located between a
pair of focusing quadrupoles, corrected for the octupole
moments not eliminated in the design of the quadrupoles.
Finally, the backup mass slits BS1l and BS2 provided a
backstop for those particles not completely stopped by
the first mass slit, or whose trajectories may have

carried them over these slits.

7.2 Large-Angle Scan
As the forward diffraction peak was considered
well studied, the large-angle scan rules were designed

to measure the antiproton-proton elastic differential

+Actually, the MURA chamber was double-pulsed
during most of the exposure.
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cross section backward of |t| = 0.6 (GeV/c)? with neg-
ligible scan-rule bias, and in the range 0.3 < |t] <
0.6 (GeV/c)2 with some correctable bias, while heavily
suppressing events in the forward peak. After the film
arrived in Ann Arbor, studies were made to determine
methods for separating the large-angle events from the
copiously produced forward scatters, and the topology-
simulating inelastic collisions. 1In this connection,
suggested scan rules were formulated analytically, and
then applied to a set of computer simulated events to
determine their effectiveness in suppressing forward
scatters, and inelastic contaminants--both as a func-
tion of vertex location, and aximuthal position about
the beam. Promising rules were then applied to several
hundred real events whose elasticity, and four-momentum
transfer were already known from direct measurement,
and fitting. The surviving rules were then weighted
according to their effectiveness in deleting forward
scatters and inelastic events, their ease of application
at the scanning screen, their susceptibility to misin-
terpretation by scanners, and their overlap with other

rules, and a final set of rules decided upon,

As a result of these studies the scanners were

asked to look for all two-prong events produced in the
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fiducial volume by a legitimate beam track, and which

satisfied the following six criteria:

1. "The positive track leaves the chamber." (This
rule, derived from range-energy formulas, eliminated

the great majority of forward elastic scatters.)

2. "The positive and negative tracks start out from
opposite sides of the beam track in all four views."
(This rule, obtained from transverse-momentum conserva-

tion, was designed to suppress events with an inelastic

topology.)
3. "The angle between the positive, and negative track
is less than 95 degrees in all four views." (This rule

was designed to eliminate events with an inelastic to-
pology, and was based on the kinematical fact that the
angle between the outgoing tracks must be less than 90
degrees for equal-mass particles--the extra 5 degrees
arising from the projective geometry of the camera

lenses.)

4. "The negative track falls in the Nth negative-track
bin on the fan template, and the positive track falls
in the first, second, third,..., or Nth positive-track
bin in View 2 or View 4." (This rule was designed to

suppress forward scatters, and insured that the angles
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between the beam, and the outgoing tracks were con-
sistent with large-angle scattering; the fan-template,
shown in Figure 7.2-1, enforced this criterion as a
function of azimuthal position about the beam by means

of the corresponding bin requirement.)

5. "The positive-track curvature is less than or equal
to that of the curvature template (39 cm) in View 2 or
View 4." (This rule, which required that the proton
have a minimum momentum after collision, was also

designed to eliminate forward scatters.)

6. "The vertex-zone bubble-density of any outgoing

track that curves more than the line on the curvature
template in View 2 and View 4 exceeds that of the beam
track in its lightest view." (This rule, also designed
to suppress inelastic contamination, made use of the

fact that below a certain projected curvature the bubble-
density of protons and antiprotons must exceed that of
the beam, a statement not necessarily true for pion

events.)

After selection of a final set of scan rules,
additional scanners were assigned to the experiment, and
the scanning effort brought up to the desired level.

To expedite the bookkeeping task, the scanners were



130

81|

Figure 7.2-1.

The Fan Template
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asked to fill out one computer data card for each event
found on the film; these cards contained such informa-
tion as the roll and frame number of the event, the
general location of the event vertex, and the approxi-
mate bubble density of the outgoing tracks. The cards
were then run through a commercial device that read the
pencil marks photoelectrically, and punched a set of
(binary-coded-decimal) holes in the card containing

the pencilled information. The punched cards were then
processed with a Michigan computer program called scant
which compared the results reported by the first and
second scanners, and prepared (among other things) a
list of those events not found by both scanners, or found
by both scanners, but given different vertex locations.
This list, called a disagreement sheet, was then given
to one of the more experienced scanners who went £o the
scanning machine to resolve the disagreements on an
individual basis. The mark-sense cards obtained from
the disagreement scan were then combined with those from
the two regular scans, and the whole reprocessed with
the program SCAN. On this pass the program calculated
the scanning efficiency for each scanner, as well as his

"extraneity," or tendency to pick up events failing one

Trhe program SCAN was designed and written by
M. Church.
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or more of the scan rules. The program then listed
the events found by each scanner, those they disagreed

upon, and finally those that were to be measured.

7.3 Square-Hit Scan

During the course of the large-angle scan it
became apparent that the scanners were picking up the
very backward scatters at a markedly lower efficiency
than, say, those in the vicinity of |t| = 1.0 (GeV/c)2.
A study of this problem indicated that the efficiency
drop could be associated with an abrupt change in the
event topology. In particular, the efficiency remained
high so long as the outgoing antiproton exited the
chamber, but dropped rapidly when it annihilated any-
where in the fiducial volume. Moreover, it was
concluded following a study of the problem that the
rarity of the backward scatters (about one per 400
frames as compared with 40 per 400 frames for the large-
angle scatters) was responsible for the unavoidably low

scanning efficiency.

Since the square-hit events T represented the

ta square-hit event was defined as one in which
the outgoing antiproton annihilated in the chamber.
Similarly, a large-angle event was taken as one passing
the large-angle scan rules, but whose outgoing antiproton
exited the chamber.
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most interesting part of the study from the standpoint
of detecting direct-channel resonances, it was decided
to rescan the film for just these events using a new
set of scan rules. These rules differed from the large-
angle ones in that the last three rules were replaced
by the requirements that the antiproton annihilate in
the chamber, and that the positive track move away from
the interaction vertex with at a kinematically allowed
angle. 1In particular, the square-hit scanners were
asked to look for all two-prong events produced in the

fiducial volume, and satisfying the following criteria:

1. "The positive particle exited the chamber."

2. "The angle between the positive, and negative track

is less than 95 degrees in View 2 or View 4."

3. "The positive, and negative tracks start out from

opposite sides of the beam track in all four views."

4. "The positive track makes an angle of less than 15

degrees with the beam track in all four views."

5. "The negative track is very dark (continuous), and
annihilates into two, four, or six pions before leaving

the chamber."”

As in the large-angle scan, the square-hit
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scanners were instructed to double scan’ the film, and
make out one data card per event. The disagreement
scans were carried out by physicists, as the number of
events was comparatively small (about 500), and good
feedback was desired between scanner and physicist.
Events of an ambiguous or dubious nature were always
recorded under the premise that it would be easier to
measure and fit than to correct for scanning biases.
Finally, scanner attentiveness was maintained by a
financial reward in proportion to the difficulty of the

event.

7.4 Event Measurement

Event measurement was begun on a full-scale
basis soon after the scanning operation became routine.
The measuring personnel were obtained (primarily) by
retraining the better scanners in the use of the rear-
screen measuring machine currently in use at the Uni-
versity of Michigan.§ After retraining, the measurers

were given a list of about 40 events (one roll), and

+Actually, owing to a commitment to the 1968
Vienna Conference, it was possible to double scan only
80% of the film.

§since processing the present film, J. Chapman
has brought two computer-linked image-plane digitizers
into operation.
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instructed to proceed siowly at first, increasing their
speed as dexterity permitted. The measured coordinates,
and control information--recorded by the measurers on
punched data cards--were given to an "expeditor" who
transferred the data to magnetic tape, and then mailed
the tapes to New York University for further proceésing.
Events failing the checking program CAST were remeasured
and sent back to New York for reprocessing. Those events
not passing the remeasure were deemed unmeasurable, and

a correction introduced for them as described in Sec-

tion 10.1.

The rear-screen measuring machines used in the
present experiment were designed, and assembled at the
University of Michigan. The bubble-chamber film was
mounted horizontally on a movable stage, and imaged to
the back side of an upright viewing screen with a system
of lenses and mirrors. The position of the image rela-
tive to the center of the screen was controlled manu-
ally with a pair of electrically actuated motors that
drove the film stage to the right and left, and backward
and forward. Track coordinates were recorded by placing
a bubble under a cross-hair attached at eye level to the
front side of the viewing screen. The position of the

image relative to the cross-hair was monitored by scaling
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impulses from an angular-disc-encoder (or Moire fringe
counter) mechanically connected to the stage. The
bubble coordinates were recorded when the measurer de-
pressed a floor peddle that caused the scaler to place
the contents of its two registers into temporary storage
buffers. Following this operation the measurer was

free to move onto another bubble, while the buffered
data was automatically punched onto data cards with a
commercial key-punch unit. With this system the better
operators were able to measure on the order of ten events
per hour.

The checking program castt began its editing
task by looking for illegal, illogical, and missing data
in the control information, and filing the track and
fiducial measurements into convenient storage arrays.
The program then inspected the data for the proper num-
ber of tracks and interaction vertices, ascertained the
origin and termination of tracks, and deduced the posi-
tion of any unmeasured vertex points. A sliding circle
fit was then carried out on each track in each camera
view measured to detect badly measured points, as well
as determine the rms measuring error for the event. A

special policing subroutine MCFUZZ§ then graded the

TThe Michigan checking program CAST was written
by B. Bell, under the direction of T. Murphy and B. Roe.

SThe policing subroutine MCFUZZ was written by
T. Murphy.
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quality of the measurement by examining the measurer's
adherence to the scan rules, his tendency toward care-
lessness, and his rms measuring error. The average

score for each measurer was then compared with those of
other measurers, and personnel experiencing difficulty

given extra training.

7.5 Reconstruction and Fitting

After checking by CAST, the measured events
were reconstructed in the three-view hydrogen geometry
program TvGP.T The reconstruction was begun by trans-
forming the measured coordinates to a set of idealized
film planes, where corresponding fiducial lines were
made parallel, and camera dip and tilt suppressed.
Sliding circle fits were then made on the measured co-
ordinates in each view, and the three camera axes joined
by perpendicular reference lines. To determine the
chamber coordinates of bubbles, lines parallel to the
reference lines were drawn from the measured film points
to the sliding circle of the next view, the intersection

defining a so-called corresponding point in the new

TThe geometry program TVGP was written by T. Day
at Lawrence Radiation Laboratory in early 1965, and
introduced to the Michigan Bubble-Chamber Group by
J. Chapman in 1967. See, also, T. Day (1967).
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view. The measured point, and the corresponding point
were then projected into the chamber as optical rays,
and the point of closest approach of these rays taken

as the first approximation to the coordinates of the
bubbles. To check the accuracy of the determination a
third ray was drawn from the bubble back toward thé slid-
ing circle. 1If this ray missed the sliding circle,
another corresponding point was defined, and the pro-
cedure repeated until the chamber coordinates of the
bubble were considered well defined. After locating

the chamber coordinates of each measured bubble, the
program then fitted a helical spiral through the bubbles,
thereby obtaining a first approximation for the particle
trajectory in the chamber. The fit was then improved
by assuming that the fitted parameters of the spiral,
and fitted coordinates for the bubbles were only nominal
values, and subject to first order (linear) corrections.
To make these corrections the fitted bubble coordinates
were projected back to their respective film planes,

and the first order corrections determined by making a
least-squares fit in the plane of the film. Having de-
termined the best fit to the measured coordinates, TVGP
then calculated the momentum, dip and azimuth for the
track at the event vertex, assigning errors to these

quantities from the error matrix obtained during fitting.
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Finally, the measured range of the track was compared
with that predicted by range-energy tables, and incom-

patible mass hypotheses flagged.

Following reconstruction, the events were sub-
jected to kinematical analysis in TVGP's companion
program SQUAW.+ This analysis determined, using the
constraints of energy and momentum conservation, whether
the measured event.represented an elastic or inelastic
collision. As an aid SQUAW was given a list of ener-
getically possible reactions, called mass hypotheses,
and instructed to proceed through the list determining
whether one or more of the hypotheses was consistent
within statistical error with the measured angles and
curvatures. The determination was carried out by
assigning the outgoing tracks the mass presumed under
the hypothesis, and then adjusting the measured values
within their errors so as to best satisfy energy and
momentum conservation. In particular, the adjusted or
fitted values were obtained by minimizing the chi-square
error between the measured and fitted values under the

(mathematical) constraints of energy, and momentum

TLike TVGP, the kinematics program SQUAW was
written by T. Day at Berkley in late 1965, and intro-
duced to the Michigan Bubble-Chamber Group by J. Chapman
in early 1967.
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conservation. Besides allowing for larger adjustments
on poorly measured quantities, this technique had the
advantage--over, say, making joint cuts on missing mass,
and non-coplanarity--of producing a single number,
namely, the minimized chi-square, that was a measure

of the consistency of the hypothesis with the data as a
whole. Owing to the constraint equations, the minimiza-
tion was carried out via the method of Lagrange multi-
pliers, using a cut-and-try technigque to locate the

minimum.

The reconstruction, and fitting information put
into storage by SQUAW was abstracted, and placed on
magnetic tape with a specially written subroutine called
ARROW. The ARROW tape was then merged event-by-event
with another tape containing the results of the scanning
effort, i.e., whether the event was found by one out of
two scanners, two out of three, etc., and the result
placed on a preliminary summary tape. This summary tape
was then purged of all double, and triply measured
events, as well as the zero, one, and two-constraint
fits, and the result copied to a final summary tape con-
taining 6601 three- and four-constraint events. The
Berkley program SUMX (L. Champomier [1963]), converted

for use at Michigan by G. Benson (1966), read the final
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summary tape, and made the histograms, ideograms, etc.
necessary for the data analysis. When the University of
Michigan replaced its IBM 7090 computer with an

IBM 360/67 time-sharing and terminal system, SUMX was
converted to Fortran IV, and its machine language and
Boolean-algebra statements removed, thus making it a

universally compatible program.

7.6 Beam-Momentum Distributions

After the film arrived in Ann Arbor approximately
fifty long beam tracks from each of the six momentum
sets were measured using the rear-screen measuring ma-
chines. These tracks were processed with the Michigan
heavy-liquid program SHAPE, and again at New York Uni-
versity with the hydrogen geometry program TVGP. The two
programs yielded substantially the same results for the
center-of-chamber momenta, namely, the following: 2.224,
1.956, 1.888, 1.840, 1.782, and 1.630 GeV/c, all with a
spread of 1%. (Here a spread of 1% means that two thirds
of the measured beam tracks had momenta lying within 1%
of the nominal values quoted above.) All the elastic
events were fit with these momenta, using an assigned

error of *1.4% as input to the fitting program SQUAW.

Histograms of the beam-momentum stretch variable
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for good elastic events (3C and 4C fits with chi-square

< 36) suggested that the nominal momenta quoted above
were systematically high by about 3/4%. 1In particular,
these histograms all peaked at the stretch-variable value
.55, indicating that the fitted momenta were system-
atically lower than the inputted values guoted above by
approximately this amount times the assigned error of
1.4%, or about .77%.T 1In general, such an error can
arise either from an inaccurate beam-momentum determina-
tion, or improper magnetic-field values. Since elastic
events remain relatively insensitive to small changes in
the magnetic field, that is, the angle and mass con-
straints dominate those of curvature during fitting, it
was concluded that the nominal beam momenta were all set
too high in SQUAW. Thus, before processing the V-events,
new beam momenta were determined by looking at the good

elastic events refitted with an unknown beam momenta

TThe stretch-variable for a quantity x is defined
as

[x(unfitted) - x(fitted)]/|error (unfitted) - error(fitted) |

A histogram of stretch-variables should typically have a
gaussian shape, with zero mean and unit standard deviation,
provided the errors have been properly assessed. In the
present case error (unfitted) was set at 1.4%, and was gen-
erally very much larger than error(fitted). Thus, the beam-
momentum stretch-variables had the approximate form:

[x(unfitted) - x(fitted)]/error (unfitted).
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(giving 3C fits). The resulting spectra verified the
setting error, and led to the new nominal momenta used
to fit the V-events: 2.205, 1.944, 1.883, 1.823, 1.763,

and 1.624 GeV/c, again with a spread of 1.7

TThe V-events were measured, and processed by
M. Church, and H. Ring.



8.0 EVENT FITTING AND IDENTIFICATION

The measured events were fit to the elastic
hypothesis in SQUAW, and the good elastic events identi-
fied by means of the chi-square error in their highest
constraint fit. Sample purity was ascertained by check-
ing bubble-density consistency, and missing-mass dis-
tributions. The misassignment of measuring error, and
consequences of systematic error were determined by com-
péring the experimental missing—energy, and chi-square

distributions with the theoretical ones.

8.1 Elastic Fitting Procedure

The measured events were fit to the elastic
hypothesis in SQUAW using four independent fitting tech-
niques. These procedures--called respectively Mark 1,
Mark 8, Mark 9, and Mark 10 fits--were written into the
fitting program in an effort to pass both the normal
elastic events, and those suffering such difficulties as
an off-momentum beam track, or small-angle scatter in an

outgoing track.

MARK 1 FIT. The Mark 1 fit always attempted an elastic

fit using the maximum number of enforceable constraints,

producing thereby 4C-fits to the majority of the genuine

144
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elastic events. In cases where the measured length of
one or both of the outgoing tracks was too short for good
momentum determination, SQUAW dropped the uncertain
momenta, and tried instead a 3C- or 2C-fit to the elastic
hypothesis. Similarly, if the geometry program TVPG
sensed that one of the outgoing tracks was not a baryon
(because its measured range exceeded that predicted by
the range-energy tables by several standard deviations),
or deduced that it was too poorly measured for reliable
fitting, the angles and curvature of that track were

dropped, and a 1C-fit to the elastic hypothesis tried.

MARK 8 FIT. The Mark 8 fits always dropped the beam mo-

mentum, and then tried an eiastic fit using the remain-
ing enforceable constraints, producing thereby a 3C-fit
to the majority of the genuine eiastic events. (Dropping
the beam momentum allowed those events that failed Mark 1
fit because of an unusually high or low beam momentum, to
still pass the elastic hypothesis.) 1In the case where
the measured length of one or both of the outgoing tracks
was too short for good momentum determination, SQUAW
dropped the uncertain momenta, and attempted instead a
2C- or 1C-fit to the elastic hypothesis. However, if the
geometry program sensed that one of the outgoing tracks

was not a baryon, or very poorly measured, the angles and
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curvature of that track were dropped, and a simple 0C-fit

to the elastic hypothesis carried out.

MARK 9 FIT. The Mark 9 fit always dropped the momenta

of the two outgoing tracks, and then tried an elastic
fit using the remaining enforceable constraints, produc-
ing thereby a 2C-fit to the méjority of the genuine
elastic events. (Dropping the outgoing momenta allowed
those events that failed the Mark 1 fit because of a
small-angle scatter in an outgoing track to still pass
the elastic hypothesis.) If, however, the geometry pro-
gram sensed that one of the outgoing tracks was not a
baryon, or very poorly measured, the angles and curva-
ture of that track were dropped, and a simple 0C-fit to

the elastic hypothesis carried out.

MARK 10 FIT. The Mark 10 fit always presumed that an

unmeasured, neutrally charged particle (or particles)
was produced during collision, and thus tried a 0C-fit
to this inelastic hypothesis. This fit determined the
missing mass, missing energy, and missing momentum for
the interaction from the unfitted angles, and curva-

tures.
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8.2 Inelastic Fitting Procedures

The measured events were also fit to several
inelastic hypotheses to determine, as a function of the
permitted chi-square error, the number of events that
had both good elastic, and inelastic fits. The in-
elastic hypotheses tried were those considered most
likely to qontaminate an elastic sample, either because
their_cross-section was large, or because their kine-

matics resembled those for the elastic collision.

MARK 12 FIT. The Mark 12 fit hypothesized that the two

outgoing tracks were pions, and then attempted a fit to
this hypothesis using the maximum number of enforceable
constraints. (This fit was thus analogous to the Mark 1
fit for the elastic hypothesis.) If one or both of the
outgoing tracks was short, SQUAW dropped their momenta,
and tried instead a 3C- or 4C-fit to the hypothesis.
Similarly, if the geometry program sensed that one of
the outgoing tracks was not a pion, or very poorly
measured, the angles and curvature of that track were
dropped, and a 1C-fit to the hypothesis tried instead.
If more than three constraints had to be dropped no

Mark 12 fit was attempted.
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MARK 11 FIT. The Mark 11 fit hypothesized that the two

outgoing tracks represented pions, and that an unmeasured
missing neutral was produced in collision. In this case
SQUAW made a 0C-fit to this hypothesis, and obtained the
missing mass, missing energy, and missing momentum associ-

ated with the hypothesis.

MARK 21 FIT. The Mark 21 fit hypothesized that the two

outgoing tracks were kaons. This fit was otherwise

identical to the Mark 12 fit.

MARK 20 FIT. The Mark 20 fit hypothesized that the two

outgoing tracks were kaons, and that an unmeasured miss-
ing neutral was produced in collision. This fit was

otherwise identical to the Mark 11 fit.

MARK 4 FIT. The Mark 4 fit hypothesized that the two out-

going tracks were an antiproton, and proton, and that an
unmeasured pi-zero was produced during collision. In this
case SQUAW made a 1C-fit to the hypothesis, unless one

of the outgoing tracks was short, in which case its momen-

tum was dropped, and a 0C-fit carried out.

MARK 2 FIT. The Mark 2 fit hypothesized that the two

outgoing tracks were a pi-minus and proton, and that an
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unmeasured antineutron was produced during collision.

This fit was otherwise identical to the Mark 4 fit.

MARK 3 FIT. The Mark 3 fit hypothesized that the two

outgoing tracks were an antiproton and pi-plus, and
that an unmeasured missing neutron was produced during
collision. This fit was otherwise identical to the

Mark 11 fit.

8.3 Good-Elastic Events

The confidence-level range for the present ex-
periment was established by looking at the size of the
elastic sample, and the percentage of inelastic con-
tamination associated with various lower limits for the
confidence level. The final cut-off setting of one
chance per million was obtained by‘increasing the
confidence-level range until a 4C elastic event with less
than even betting odds against a constrained inelastic
hypothesis entered the sample of good-elastic events.
The sample-size attenuation corresponding to this limit
was then estimated, and found to be negligible (actu-
ally about 1/5%, as discussed in Section 8.6 below). The
confidence-level limit in SQUAW was thus set at one part
per million for all elastic-fit classes, with the proviso

that the 3C, 2C, and 1C contaminations would be studied
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separately.

8.4 Sample Purity

The distribution of passing elastic events (con-
fidence level greater than one part per million) among
the various fit classes is shown in Table 8.4-1. These
events were placed in the table according to the con-
straint level of their most restrictive fit, the Mark 1
fit being more difficult than the Mark 8, and the Mark 8
more difficult than the Mark 9, in general. As expected
the majority of passing elastics fell into 4C Mark 1
classification, indicating the basic correctness of our
measurement and fitting procedures. Because the 4C-
hypothesis is difficult to fake, most of the events in
this classification are believed to be genuine elastic
events. The 2C and 3C Mark 1 fits, and the 2C Mark 8
and Mark 9 fits, on the other hand, likely contain seri-
ous contamination owing to the reduced constraint level
of the fits. The 1C Mark 1 fits, and the 0C Mark 8 and
Mark 9 fits resulted when the geometry program TVGP
sensed a non-baryonic, or miss-measured outgoing track,
so that these events can be either elastic or inelastic

in general.

To estimate the sample purity for the various
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fit classes, the author went to the scanning machines,
and looked at 25% of the events entered in the middle
three columns of Table 8.4-1, and a small sample of those
in the last column. The elastic events were discrimi-
nated from the inelastic ones primarily on the basis of
ionization, although some subjective judgement was used
to delete obviously inelastic events. (For instance, no
baryon can orbit through §0 degrees in the MURA chamber,
and no elastic collision can have a V-decay with it.)
The results of this survey are shown in Table 8.4-2.

The various entries represent, respectively, the per-
centage of events that were determined to be definitely
elastic, definitely inelastic, and ambiguous. (Note
that as expected none of the 4C Mark 1 fits were con-
sistent with inelastic.) The errors shown were assigned

' using the usual square-root-of-the-sample-size formula.

To check that the fitting program did not fail
an anomalously large number of genuine elastic events, a
misSing—mass histogram was made of those events failing
all elastic fit attempts. This plot, which is shown in
Figure 8.4-3, shows no tendency for events to cluster
around MM=0, indicating that SQUAW was not failing events
with an elastic topology in substantial numbers. Further

confidence in the fitting technique evolved from the
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TABLE 8.4-1

Distribution of Events Among Fit Classes#

MARK 0C 1cC 2C 3C 4C TOTALS
1 3 79 1 63 3211 3357
8 177 0 9 19 0 205
9 9 0 34 0 0 43
TOTALS 189 79 44 82 3211 3605

#The table contains a total of 3605 entries taken
from a sample of 9185 measured events, of which 5580 had no
Mark 1, 8, or 9 fit to the elastic hypothesis.

TABLE 8.4-2

Sample Purity From Bubble Density#

Mark Constraint Elastic Inelastic Ambiguous
1 1 52+13% 41+12% 7+5%

1 2@ - - -

1 3 65+18% 25+13% 10+£7%

1 4 1008 0% 0%

8 2 0% 100% 0%

8 ' 3 100% 0% 0%

9 2 29+20% 71+32% 0%

#Errors quoted are purely statistical.

@No events of this type were examined.
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strong concentration of events around the pion mass

(135 MeV) in this plot, and the absence of the same in
the missing mass-histogram for the 4C Mark 1 fits of
Figure 8.6-1 below. From these observations it was con-
cluded that the fitting program had no tendency to fail
good elastic events, and was able to differentiate final

states such as PBAR-P-PIZERO from the elastic one.

As another check on the fitting procedure, a
two-dimensional histogram of missing-mass squared versus
missing-energy squared was prepared using those events
failing both the 3C, and 4C elastic-fit attempts. This
histcrram, which is shown in Table 8.4-3, also has a
pion peak at MM= 135 GeV, while the dip observed in the
missing-mass distribution at MM=0 appears lost in the
coarse resolution of the histogram. The missing-energy
squared also appears peaked, but at a higher energy,
namely, around 200 MeV, since the missing energy is the
sum of the rest and kinetic energy of the missing parti-
cle. The slight (100 event) rise in the missing energy
distribution at ME=0 represents those events whose
measured angles were in error, as a result, for example,
of a single scatter in an outgoing track. With these
facts in mind, the histogram is seen to contain no ano-

malously large concentration of events about MM=0=ME, as
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would be expected if elastic events were failing the

fitting program in significant numbers.

To eliminate the anomalies that might otherwise
arise from the inclusion of poorly fitted events in the
sample, only the 3C and 4C events were used to deter-
mine cross sections, angular distributions, etc. The
cut was made at the 3C, rather than the 4C level, so as
to include in the sample of good elastic events those
that had a short outgoing track. This insured that the
square-hit events, to which much of the experimental
effort was devoted, would not receive negative bias when
the antiproton stopped and/or annihilated in the chamber.
The sample-size correction necessitated by the deletion
of the 1C and 2C events was determined from Tables 8.4-1

and 8.4-2 above.

8.5 Missing Mass, Energy, Momentum Distributions

The distributions of missing mass MM, missing
energy ME, and missing momentum MP provide insight into
the quality of measurement, the misassignment of random
errors, the consequences of systematic error, and the
degree of inelastic contamination. Although only two of
the three quantities can be mathematically independent,

each is useful in its own right owing to its ready
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physical interpretation. The definitions adopted for
these quantities are the following more or less conven-

tional ones:

2 _ - 2
ME (Ein Eout!)
ME = Ejn - Eout

2 _ 13 -7 2
Mp* = IPin Pout|

> >

MP = |Pin - Poyil

“ -> >
MMZ = (Ein - Eout)z‘ (Pin - Pout)2
MM = sign(MM2) |Mm2|1/2

where sign x = +1 if x > 0, and -1 if x < 0. The ener-

gies, and momenta referred to here are the unfitted ones
obtained from the geometry program TVGP. Definitions
for missing mass, energy, and momentum squared are in-
cluded for completeness, but are not used in the sequel.
The missing mass, energy, and momentum distribu-
tions for the 4C Mark 1 fits are shown in Figure 8.5-1,2,3.
As expected, the missing mass distribution appears heavily
concentrated at the negative MM values, dropping toward
zero for MM > 0. The negativeness of the distribution
results because small errors in angle or curvature measure-
ments--whether positive or negative--invariably lead to
negative MM values. The handful of events with positive
MM likely represent those cases where the error in curva-

ture was large and positive. Since none of the 4C elastics
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had MM greater than 75 MeV/c, it was concluded that the
sample contained negligible inelastic contamination of
the form PBAR-P-PIZERO. A similar plot for the 3C
events, also contained no events with MM > 75 MeV/c,

indicating a similar purity for this sample.

The missing momentum distribution, on the other
hand, appears more or less symmetric about MP=0. The
dip at the origin results, as in the case of missing
mass, from the dependence of MP on more than one random
variable, namely, the three components of missing momen-
tum. The situation arising here is reminiscent of
Maxwell-Boltzmann theory, wherein each of the three
molecular velocity components is presumed distributed

like a gaussian random variable.

The probability that
the molecular velocity v lies between v and v+dv is then
given by the celebrated Maxwell-Boltzmann distribution

vzexp(—v2/2v02). The factor v2 leading the exponent

2 qv dQ, and

arises from the phase-space volume element v
causes the distribution to drop to zero at v=0. The same
argument holds if we replace v by MP, and presume the

errors in the missing momentum components are gaussian

random variables. 1In fact, the solid curve of Figure 8.5-2

+Alternatively, one can use the Central-Limit
Theorem to establish the gaussian character of the velocity
components.
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was obtained by fitting a biased Maxwell-Boltzmann dis-
tribution to the experimental data. The bias was added
to compensate for the long tails that exist in data, pre-

sumably a result of systematic errors.

The missing energy distribution, like the miss-
ing momentum distribution appears centered about the
origin, and wouid have the conventional gaussian form,
except that its tails are too high, and its peak too
narrow. If the measurement errors were truly gaussian,
and the systematic errors negligible, the ME distribution
would also have a gaussian structure, at least to first
order. The clearly non-gaussian behavior of the experi-
mental distribution indicates that one or both the above
assumptions is false, and suggests that the distribution
should be parameterized differently. In an earlier
thesis G. Benson (1966) proposed that a Breit-Wigner form
might be a more realistic fitting function, since its
peak is narrower, and its tails higher than those of the
gaussian form. Alternatively, J. Chapman (1965) has
suggested that the ME distribution might be the sum of
a widely dispersed base arising from the systemétic
errors, and an ordinary gaussian distribution produced
by the measurement errors. To check these ideas, and

also obtain an estimate of the rms width of the ME dis-
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tribution, the data were fit with both a Breit-Wigner
function, and a biased gaussian form. The chi-square
errors associated with these fits were, respectively,
103 and 113, indicating the superiority of the form sug-
gested by Benson. The results of the fitting, which are
shown in Figure 8.5-3, give a full-width at half-maximum
of 58.1 MeV to Breit-Wigner fit and an rms width of 35.0

MeV to the gaussian portion of the Chapman form.

When the measurement errors have been properly
assessed, both as to magnitude and form, the rms width
of the missing-energy distribution should equal that of
the resolution function formed from the errors in missing
energy, as propagated from those in the track measure-
ments. If properly assessed as to form, but not magni-
tude, the two widths will differ by the error in the
error assignments. According to the above we expect
that the measurement errors are approximately gaussian
distributed, so that a gaussian resolution function
should be formed of the errors. Such a resolution func-
tion was made, and is shown in Figure 8.5-4. The rms
width of the distribution is 29.2 MeV, indicating that
the errors assigned in TVGP were under estimated by about
(35.0 - 29.2)/35.0 = +16.6%, apparently because both the

assigned errors and the resolution function ignored the
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Figure 8.5-4. Gaussian Resolution Function. This resol-
ution function consists of 6115 uniformly weighted gaussian
forms, each of width equal to the error in missing energy,
as assigned to 6115 events in SQUAW.



165

3.0 BREIT—WIGNER
RESOLUTION
FUNCTION
2.5
%)
K
by
Y
J
b g0
1Y
Q
Y
N
N
2 .54
57}
(V]
v
Q
)l —
© 6.5
‘ I I | T >
0 >~ 50 7 100

~—c

ERRIR IN MSTiIG ENERSY I AEV

Figure 8.5-5. Breit-Wigner Resolution Function. The resol-
ution function consists of 6115 uniformly weighted Breit-
Wigner forms, each of full-width at half-maximum equal to
the error in missing energy as assigned to 6115 events in
SQUAW .



166

possibility of systematic error. For comparison a Breit-
Wigner resolution function was also constructed, and is
shown in Figure 8.5-5. Its full-width a half-maximum is
48.2 MeV, thus suggesting that the errors in TVGP were
under estimated by (58.1 - 48.2)/58.1 = +17.0%, consis-

tent with the gaussian result above.

8.6 Scatter Plots with MM, ME, MP

The two-dimensional histograms shown in Tables
8.6-1,2,3 were formed from the missing masses, energies,
and momenta associated with the events having a 4C Mark 1
fit. These plots provided additional insight into the

measurement, and fitting process, as described below:

MP vs ME. This plot has a strong concentration of events
along+ the diagonal line ME=MP, and a lesser concentration
along the missing momentum axis ME=0. The diagonal con-
centration results (presumably) from errors in curvature
measurement, as these reflect themselves approximately

equally in ME and MP. The axial clustering, on the other

+Actually, the distribution lies somewhat below
the diagonal line for MP > 0 and somewhat above for
MP < 0. This results because an error 8P in the momentum
generates a corresponding error SE in the energy given by
E = (P/E) 8P, where P < E. Similar effects can be found
in the MM vs ME, and MM vs MP plots.
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hand, represents those events having angular measure-
ment errors since the latter are manifested in the miss-

ing momentum, but not the missing energy.

MM vs ME. This plot has a strong concentration of
events along the diagonal rays lME] = MM < 0, and a
lesser concentration results from errors in curvature
measurements, while the axial clustering arises from

errors in angle measurements.

MM vs MP. This plot has a strong concentration of events
along the diagonal rays |ME| = MM < 0, but shows no

events along the missing mass axis. The diagonal con-
centration results again from errors in curvature measure-
ments, as well as those in the angle measurements. No
axial clustering is expected, since MM and MP depend

equally, but oppositely on the angular errors.

8.7 Chi-Square Errors

The distribution of chi-square errors for events
passing the 4C elastic hypothesis is shown in Figure 8.7-1.
Note that as Qith missing momentum the distribution dips
toward zero at the origin, rises to a maximum around chi-
square equal to two, and then drops exponentially until

it reaches a plateau that extends out to chi-square values
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on the order of thirty. In theory, the chi-square dis-
tribution should follow a four-dimensional Maxwell-
Boltzmann distribution. In other words, the probability
that the chi-square error for a given event will lie

2

between X2 and x° + dx2 is proportional to

2 2
2 exp(-x2/2) x3 dx = x exp(-x /2) dx2

providing the measurement errors are gaussian, and the
systematic errors negligible. If, however, the measure-
ment errors have been miss-assigned by a factor Q in
TVGP, the chi-square distribution will be magnified

according to the formula
(@x) 2 exp(-0%x2/2)

The factor Q can be ascertained by fitting the experi-
mental chi-square distribution under various magnifica-
tions until a best value for Q is obtained. On the other
hand, if systematic errors cause some of the track mea-
surements to be inaccurate, the functional form of the
chi-square distribution will be altered. Following the
interpretation for systematic errors used in the study of
missing energy, we presume that such errors produce only
a simple bias to the normal Maxwell-Boltzmann distribu-
tion. The so0lid curve in Figure 8.7-1 shows the result

of a biased, and magnified Maxwell-Boltzmann fit to the
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experimental data.+ According to.the fitting program

a best fit obtained at a magnification given by Q = 1.06,
and with a bias level of 7.5 events per bin. This in-
dicates that the measurement errors were over-estimated
by 6.0 percent, and that about 14 percent of the 4C fits

suffered from systematic error.§

The chi-square probability distribution for
events passing the 4C elastic hypothesis is shown in
Figure 8.7-2. Note that the distribution appears sharply
peaked near the origin, drops to a minimum in the inter-
mediate probability range, and then rises slowly to
another maximum at unit probability. When the measure-
ment errors have been properly assessed in magnitude
and form, and systematic errors negligible, the chi-
square probability distribution should appear flat. The
sharp peaking at the low confidence levels is a reflec-
tion of the syétematic errors that generated the plateau

in the chi-square error distribution from which the peak

*To ensure equivalent treatments of the error-
assignment problem, the fits to the missing-energy, and
chi-square distributions were applied to data samples
having the same dynamic range, namely, 16 decibels.

§The 14 percent figure was obtained by multi-
plying the number of bins in the chi-square-error range
zero to 16 by 7.5, adding the number of 4C events in
the unfitted range between 16 and 34, and then dividing
the result by the total number of 4C fits.
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derives. The slight tilting of the remaining distribu-
tion results from our over-estimate of the measuring
errors, since the latter tends to lower the chi-square
errors, and hence increase the confidence level. No
attempt was made to fit the probability distribution,
however, as this would amount to a repetition of our
analysis of the chi-square error distributions presented

above.

The chi-square probability distribution for a
sample of 144 events passing the 3C Mark 1, and 3C
Mark 8 fits is shown in Figure 8.7-3. Since the sample
contains so few events, a Maxwell-Boltzmann analysis was
not considered worthwhile, and thus was omitted. In-
stead, we note (qualitatively) that the events appear
concentrated at the expected confidence levels, namely,
zero and one, as in the 4C fits. This suggests that
SQUAW correctly analyzed the failure of the 4C fit
attempt, and remedied the situation by dropping the

proper constraint.
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Figure 8.7-2. Chi-Square Probability for 4C Events. The
histogram contains 5964 4C Mark 1 events; note the scale
change for the ordinate above 200 events.



15 —1—

EVENTS

10—

176

0,0

Figure 8.7-
histogram 1

I
0.2

I
6.4

CONFIDENC &=

O b

LEVEL

0.%

Chi-Sauare Probability for 3C Events.
5C Mark 8 and Mark 9 events.

/10

The



9.0 ABSOLUTE CROSS SECTION DETERMINATION

This chapter presents the details of our absolute
cross section determination. Since no attempt was made
to tabulate the total number of PBAR-P interactions pro-
duced at each momentum set, the data could not be nor-
malized to the accurate total cross section measurements
of R. Abrams, gE_gl.-(l967)o Instead, the absolute cross
sections were deduced from the total beam-track length
scanned at each momentum set. The scanned beam-track
length was in turn determined by examining the geometry,

and optics of the MURA chamber.

9.1 Geometry and Optics of MURA Chamber

The usable volume of the MURA chamber resembled
a right circular cylinder.approximately 30 inches (76.2 cm)
in diameter, and 15 inches (38.1 cm) in height. The top
and bottom faces of the cylinder were covered with glass
plates having fiducial marks engraved on their inner
surfaces. The chamber was illuminated through the bottom
glass, and photographed through the top glass. The nomi-
nal plane of the beam tracks was also approximately the
median plane of the chamber. The magnetic field ran
approximately parallel to the axis of the chamber, and

caused undipped 1 GeV/c tracks to arc with 101.3 cm radius

177
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of curvature. The chamber coordinate system had its
z-axis running along the chamber axis, and its origin
centered on the inside surface of the window nearest the

camera. (See Figure 9.1-1.)

Chamber illumination was provided by four cir-
cularly shaped xenon flash rings centered on the corners
of a square positioned parallel to, and approximately
218 cm below the median plane, and having a diagonal
dimension of 71.7 cm. A condensing doublet set adjacent
to the bottom window directed light from the four flash
rings diagonally through the chamber, and onto an image
plane that coincided roughly with the front nodal plane
of the four camera lenses in the unfolded optical system.
The lenses were also effectively centered on the corners
of a square running parallel to, and located an optical
distance of 152.6 cm above the median plane, and having a
diagonal dimension of 67.5 cm. (Table 9.1-1 gives the
guadrant, and coordinates of the unfolded camera axes.)
The chamber optics were designed so that the four flash-
ring images would lie concentrically about the diagonally
opposite camera lenses. With this geometry very little
unscattered light reached the cameras, and the system
appeared to have dark-field illumination. On the other

hand, a large fraction of the scattered light reached the
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‘II[E’CZi
CD BC

FRP CLP

Figure 9.1-1. MURA Chamber Geometry. Here BC
denotes the bubble chamber, FRP the plane of the xenon
flash rings, CLP the plane of the camera lens, and CD

the condensing doublet. (The figure is drawn approxi-
mately to scale.)
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TABLE 9.1-1

Quadrant and Coordinates of Camera Axes

Camera Number x-Coordinate y-Coordinate Quadrant
1 -23.35 cm +23.35 cm 2
2 -23.35 -23.35 3
3 +23.35 -23.35 4

4 +23.35 +23.35 1
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camera lenses, since (as in high-energy elastic scatter-
ing) most of the radiation was concentrated in the for-

ward direction where the cameras were located.

The four camera lenses were Carl Meyer (Burke
and James, Inc.) Videostigmats having an f£/4 aperture,
and a 125 mm focal length. These lenses were chosen to
minimize off-axis aberrations, mainly coma and astigma-
tism, with flatness of field and uniformity of focal
length of secondary importance. During exposure the
lenses were closed down to f£/16 or f£/22 to insure good
depth-of-field, and focused approximately one-inch beyond
the median plane to obtain good magnification on bubbles
nearest the camera. The film planes were located about
13.8 cm behind the back nodal plane of the lenses, pro-

ducing a nominal chamber-to-film minification of 11.2.

The chamber illumination system, rather than the
Videostigmats, determined the field-of-view of the camera
at the median plane of the chamber. A ray trace provided
by Argonne (J. A. Froehlich [1965]) of the extreme rays
from the flash rings indicated that the illuminated area
for each camera was approximately a circle of radius
33.2 cm, displaced approximately 3.7 cm from the chamber
axis in the direction of the optical axis of the camera

lens. The maximum fiducial volume for event vertices was
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thus the (mathematical) union of these areas. To speed
the scanning, and also provide adequate track length for
measurement, the scanners were instructed to record only
those events whose vertex appeared in all four camera
views. In terms of the chamber optiecs, this rule gener-
ated a vertex fiducial volume for the experiment that was
the (mathematical) intersection of the four circles of
illumination. The intersected region of Figure 9.1-2
indicates that this area was roughly circular with a
maximum radius of 30.6 cm, and a minimum radius of 29.5 cm.
Since the beam tracks entered the chamber from the lower
left-hand quadrant, and exited through the upper right-
hand quadrant, the minimum radius effectively defined

the vertex fiducial volume. The edges of the circles, how-
ever, were not always sharp when observed on film, so that
a margin of safety was included, and the optical fiducial
volume defined to be a circle lying in the median plane,
having a radius of 29.0 cm, and centered on the chamber

axis.

When the fitted elastic events became available,
checks were made on the above determination by looking
at histograms, and scatter-plots of the vertex coordinates.
The scatter plot shown in Figure 9.1-3, for example, gives

the xy-distribution of event vertices for 6601 good elastic
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Figure 9.1-2. Vertex Fiducial Volume. The vertex-
fiducial volume, as defined by the scan rules, was the
(mathematical) intersection of the four eccentric circles
of illumination. Since each circle was displaced diago-
nally from the center by a distance RDIS = 3.7 cm, the
length of the minimum radius vector RMIN = 29.5 cm, while
that of the maximum radius vector RMAX = 30.6 cm. (The
figure is highly exaggerated.)
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events. A histogram of the radial coordinate of the good
elastic events, shown in Figure 9.1-4, indicates in addi-
tion that the event distribution drops rapidly between

28 and 30 cm radius. This two centimeter uncertainty in
radius likely results from a similar uncertainty in the
illuminated edge on the bubble-chamber photographs. To
eliminate any inaccuracies that might arise from this
effect a new vertex fiducial volume was defined with a

radius of 28 cm, also centered on the bubble-chamber axis.

9.2 Beam-Track Count

The average number of beam tracks per frame at
each of the six momentum sets was determined by counting
the number of tracks entering the vertex fiducial volume
on every twentieth frame. Tracks were called qualifying
beam tracks, and included in the count only if they passed
between two selected points on camera view two, and
deviated by less than one part in fifteen from the nominal
direction of the beam. The line segment connecting the
points ran perpendicular to the general direction of the
beam, and was called the (gross) count line. The position
of this line in the vertex fiducial volume was ascertained
by noting its position relative to several fiducial marks,

and then projecting it through the camera lenses onto the
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i In terms of the chamber

median plane of the chamber.
coordinates, the count-line projection is described by

equation:
y = =-3.76x - 122,

where x and y are dimensioned in centimeters. (See

Figure 9.2-1.)

During the beam count careful note was also made
of missing rolls, missing frames, blank frames, and un-
derexposed or overexposed section of film. These notes
were compared with those made by the scanners on their
pass through the film, and differences resolved on an
individual basis. Table 9.2-1 contains the results of
the beam and frame counts at each of the six momentum
sets. These figures do not include a small correction
(less than 2%) for the beam tracks passihg ébove or below

the (gross) count line.

9.3 Beam-Track Profiles
The beam-track profile, as seen by the scanners,
was determined by partitioning the count line into twenty-

five appropriate sized bins, and then counting the relative

TThe author is indebted to C. Dyer for determining
the position of the count line in the fiducial volume.
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Bin 25
PCL

VEV TY

I —» X

Bin1

Figure 9.2-1. Count-Line Geometry.
on the partitioned count line PCIL denote the bins spanned
by the gross count line. The beam profile was determined
using all twenty-five bins. The circular segment denotes

the upstream edge of the (28 cm) vertex fiducial volume
VFV.

The elongated marks
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TABLE 9.2-1

Tracks and Frames Scanned

Beam Frames Qualifying Beam
Momentum Scanned Tracks Scanned#
2.20 Gev/c 23,034 310,148 +.80%8
1.95 o 23,136 323,504 *.78%
1.87 26,747 388,548 +.71%
1.83 24,710 319,522 *.79%
1.75 24,634 316,156 *.79%
1.63 24,078 281,765 *.84%

#Includes only beam tracks that crossed the
(gross) count line, and deviated by less than one part
in fifteen from the nominal direction of the beam.

@Includes a one-percent correction for misexposed
frames.
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number of beam tracks that crossed each bin at each
momentum set. Bin number one was located in the third
quadrant of the vertex fiducial volume near the optical
axis of camera two, and bin twenty-five in the second
quadrant near camera axis one. Bins five through twenty-
one spanned the (gross) count line used to determine beam-
track density. Approximately 800 tracks at each momentum
set were classified into the twenty-five bins, except

at the first set (2.20 GeV/c) where about 1200 tracks
were studied. Roughly half the tracks were taken from
the beginning of the respective exposures, and half from
the end, in an effort to average over any changes in beam
position arising from current fluctuations in the beam-

transport magnets.

The beam distribution along the count line was
determined by histogramming the good elastic events at
each momentum set. According to these plots the beam
was centered in the general vicinity of bin eleven, and
skewed slightly upward in the direction of camera four,
with a nominal full-width at half-maximum of ten bins.
(When used below to calculate average track lengths these
distributions are normalized, and denoted for the ith

momentum set by pi(j), j=1,25.)

The profile of the beam in the depth coordinate z
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was obtained by histogramming the vertex coordinate of
good elastic events from all momentum sets. The result-
ing distribution was centered about the plane z = -18.5 cm,
and had a full-width at half-maximum of approximately

1.5 cm. This indicated that the beam was confined to a
coin-shaped region located a half-centimeter above the

median plane, and having a nominal height of 1.5 cm.

The dip of the beam relative to the mediah plane
was also investigated using the good elastic events. As
indicated by histograms the beam dipped away from the
cameras by something less than one-tenth of one degree.
Dips of this magnitude increase the track length in the
fiducial volume by a negligible amount (a few microns),
and were thus neglected in determining absolute cross

sections.

9.4 Beam Variation Along Count Line

The last quadrapole in the beam line, Ql2, focused
the beam in the z-direction, and dispersed it in the y-
direction, thus causing the beam to enter the chamber port
in a form convenient for scanning. As a result of this
operation the pitch 6 of the beam relative to the x-axis
varied from bin-to-bin along the count line, with tracks

in the higher numbered bins having the greatest average



pitch. The distribution of pitches at each bin, and at
each momentum set was determined by making two-dimensional
histograms of the good elastic events. These distribu-
tions, together with the beam-track profiles, were then
used to determine the average beam-track length in the
chamber. (When used below to calculate average track
lengths, these distributions are normalized and, denoted
by pij(e), where the subscripts refer to the jth bin of

the ith momentum set.)

A check for similar fluctuations in the momentum
distribution of the beam indicated that significant, but
irregular variations were also present in these dis-
tributions. For completeness these results were also
tabulated, and incorporated into the track-length deter-
mination described below. (When used below to calculate
average track lengths, these distributions are normalized,

h

and denoted for the ith momentum set, and jt bin by

pij(P), where P is the laboratory momentum of the beam.)

9.5 Average Beam-Track Length

The average beam-track length at each momentum
set was computed by averaging over the beam profile, pitch,
and momentum distributions described above. The computa-
tion was carried out by first determining the fiducial-

volume track length for a beam track crossing the count
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line at bin j, with a pitch 6, and momentum P. This
length was then weighted according to the probability
distributions for the variables j, 6, and P. In particu-
lar, the average track length, assuming none of the anti-
protons interacted in the chamber, was obtained via the
formula:

5

ff Qt(jlelp) exp[QOtA(jre ,P) 1]
1

=
n
NN

P; (3) p;(8) p(P) 4o ap

To facilitate the calculation the two-integrals were also
reduced to sums, and the whole carried out on a digital

computer.

The exponential factor in the integrand compen-
sates for tracks that were not counted because they inter-
acted before reaching the count line (A>0), or that were
countéd but failed to reach the fiducial volume (A<O0).

The quantity A(j,6,P) is the orbital distance between
the edge of the fiducial volume when the track passés
through bin j with momentum P, and pitch 6, and is taken
positive (negative) if bin j lies inside (outside) the
fiducial volume. The product PO which specifies the
beam depletion per unit length, was obtained by taking

the density of hydrogen as .0622 g/cc, and using the
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PBAR-P total cross section measurements of R. J. Abrams,

et al. (1967).

Table 9.5-1 gives the average beam-track length
at each momentum set, assuming no interactions occur in
the fiducial volume. The assigned errors are purely
statistical, and based on the number of good elastic
events available at each momentum set for the determina-
tion of the profile, pitch, and momentum distributions,
as well as on the systematic and stétistical errors
associated with the PBAR-P total cross section measure-
ments. (See Section 9.8 below.) The right-hand column
of Table 9.5-1 specifies the efficiency of the beam-
count described above. These numbers are simply the ratio
of the number of qualifying beam tracks crossing the gross
count line (bins five through twenty-one) to the total
number of beam-tracks crossing the profile count line
(bins one through twenty-five). Their errors were assigned

with the usual square-root-of-the-sample-size formula.

9.6 Beam Contamination

Even before the experimental run little beam con-
tamination was expected owing to the relatively low beam
momenta, and relatively large mass difference between the

antiproton, and its possible muon, pion, and kaon
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TABLE 9.5-1

Average Beam-Track Length in Vertex Fiducial Volume#

Ave. Track Statistical Systematic Beam-Count

Moﬁ:iﬁum Length Uncertainty Uncertainty Efficiency
2.205 52.48 cm .08 cm +.,05 cm 99.4 *0.2%
1.944 52.41 +,08 +.05 99.9 *0.29
1.883 52.59 +.08 +.05 99.6 *0.2%
1.823 52.17 +.08 +.05 99.7 10.2%
1.763 52.09 +.08 +.05 99.6 *0.2%
1.624 52.70 +,08 +.05 99.8 *0.2%

#For 28 cm vertex fiducial volume.

@See text for definition of beam-count efficiency.
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contaminants. The possibility of contamination was
reduced further by the length of the Argonne seven-degree
beam (about 490 feet), and its two stages of separation
(both operated at less than peak efficiency to prevent
separated contaminants from orbiting over the mass slits,
and perhaps entering the chamber). Further precaution
was taken by mounting a pion-sensitive Cherenkov counter
upstream of the second mass slit to monitor high-velocity
particles. This counter was reset after each reel (1200
frames) was exposed, and its operation checked occasion-
ally by sweeping the beam across the mass slit with the
separators. During the course of the run the author
noted only one count in a series of random checks that

included about one-fourth the film.

A substantial portion of the beam was scattered,
however, by an aluminum cover plate, and the stainless-
steel beam-entry port, and by the liquid hydrogen situ-
ated between the bort, and the vertex fiducial volume.

The algminum cover plate was approximately .64 cm thick,
and presented about 5.42 x 1023 (effective) targets/cc,
while the stainless-steel port was about .27 cm thick, and

presented about 1.23 x 1024

(effective) targets/cc. The
distance between the port, and the fiducial volume was

about 15.2 cm, with the liquid hydrogen presenting about
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3.7 x 1022 targets/cc.'r The percentage of the beam
scattered into the inelastic channels by these two media
(using a total inelastic cross section of 60 mb) amounted
to 7.5%. Only a fraction of these scatters produced a
negative track with a direction and momentum capable of
simulating a qualifying beam track. An accurate calcula-
tion of this fraction was difficult, however, since
neither the total or differential cross sections for the
various inelastic channels are currently known. In lieu
of this calculation the author went to the scanning
machines, and looked at 157 obviously inelastic collisions.
Only six events in this sample produced a negative track
that could be construed as a qualifying beam track. Thus,
it was concluded from this study that the fiducial-volume

beam contamination was .3 +.2

o

Another estimate of beam contamination was obtained by
measuring the lengths of delta-rays produced a sample of
9800 gqualifying beam tracks.? Only one of these had a
range greater than that which could arise in an antiproton-

electron collision at our energies. Since the pion-

TThe author is indebted to F. Schweingruber for
furnishing these numbers.

8This study was carried out by R. Kiang under
the direction of J. Lys.
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electron cross section for producing delta rays longer
than that obtainable in an antiproton-electron collision
represents about one-fortieth the total pion-electron
cross section, it was concluded that approximately 40 of
the 9800 tracks were actually pions. This indicated that

the pion contamination in the fiducial volume was .4 +.3

oo
.

9.7 Cross-Section Per Event

The cross section per event at each momentum set
was determined from 1) the number of antiprotons entering
the vertex fiducial volume, 2) the average beam-track
length in this volume, 3) the density of targets, and 4)
PBAR-P total cross section. The beam contamination, and
beam-count efficiency were also incorporated into the
determination, but not the scanning, measuring, book-
keeping, reconstruction, or fitting losses, as these are
channel dependent in general. The number of targets
presented per unit volume by the liguid hydrogen was
deduced from the thermal conditions of the chamber. Accord-
ing to vapor pressure measurements taken during exposure,
the temperature, and density of the liquid hydrogen target

were, respectively, 26.4o i0.2° K, and 62.2 +0.4 mg/cc.+

tThe temperature and density of the hydrogen were
obtained in the usual way using the average metered vapor
pressure, and the National Bureau of Standards Cryogenic
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Consequently, the number of proton targets present per

unit volume was

2
(2 targets/molecule) (6.025 x 10 3 molecules/mole)

©
Il

(1/2.016 moles/g) (.0662 +.0004 g/cc)

3.717 £.022 x 1022 targets/cc

In making the above calculation, we have noted that hydro-

gen contains two atoms per molecule.

Tables 9.7-1 through 9.7-3 list the various para-
meters and correction factors used to determine the cross
section per event at each momentum set. The total cross
section values shown in Table 9.7-1 were obtained at
Brookhaven National Laboratory, and incidentally indicate
the existence of a two millibarn bump around 1.8 GeV/c
(R. J. Abrams, et al. [1967]). The right-hand column of
Table 9.7-3 contains the cross section per event at each
of the momentum sets. The uncertainties assigned to these
(important) gquantities were obtained by combining statis-

tical errors orthogonally, and systematic errors linearly.

Tables. A thermodynamic study of the MURA chamber, carried
out at Argonne National Laboratory, indicates that such
average values yield substantially correct target densities
at beam-entry time. (F. Schweingruber, private communica-
tion.)
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TABLE 9.7-1

Antiproton-Proton Total Cross Sections#

Beam Cross Statistical Systematic
Momentum Section Uncertainty Uncertainty®
2.205 GeV/c 86.31 MB +.06 MB +1/2%
1.944 91.36 .06 t1/2%
1.883 92.75 .06 *1/2%
1.823 94.14 .06 +1/2%
1.763 95.32 .06 +1/2%
1.624 97.57 *.06 +1/2%

#Deduced from R. J. Abrams, et al. (1967).

€Includes momentum—dependent uncertainties.
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TABLE 9.7-2

Scanned Beam Tracks

Beam Scanned Beam Scanned
Momentum Beam Tracks Count Beam Tracks
(GeV/c) (Uncorrected) # Efficiency (Corrected) #

2.205 310,148 £.80% 99.4 *.2% 311,084 +.,83%

1.944 323,504 +.78% 99.4 *.2% 324,480 +.81%

1.883 388,548 £.71% 99.5 *.2 389,329 +.79%

1.823 319,522 £.79% 99.7 .2 319,522 +.82%

1.763 316,159 £.79% 99.6 *.2 316,473 £.82%

1.624 281,765 *.84% 98.7 *.3 284,045 *.86%

#Quoted error purely statistical.
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10.0 EXPERIMENTAL FINDINGS

In this chapter we present the differential
cross sections obtained via the large-angle, and square-
hit scans. The raw data is first corrected for omission
and duplication in the bookkeeping system, and scanning
efficiency and scan-rule bias as a function of the center-
of-momentum scattering angle. The modified distributions
are analyzed for maxima and minima in the differential
cross section, and dips and bumps in the backward cross

section in the next chapter.

10.1 Bookkeeping and Processing Corrections

Problems of omission and duplication in the book-
keeping system were minimized by using a digital computer,
rather than human help, to tabulate the results of scan-
ning and measuring. Errors originating in the processing
system, particularly at the measuring machine, proved
more difficult to control, and a significant number of
the scanned events were either lost or duplicated in pro-
cessing. Event duplication resulted primarily from the
inadvertent remeasure of an already measured event,
although a small fraction were intentionally doubly mea-
sured to verify the soundness of the scan rules. Events

were omitted from the summary tape either because the

203
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measurer forgot, or decided not to measure an event, or
because the event failed the monitoring program CAST,

or the geometry program TVGP.

The event duplication problem was handled by
purging the sample of good elastic events of all dupli-
cate events. The procedure used was the following:
the roll, frame, and four-momentum transfer in (GeV/c)
associated with each event were first abstracted from the
summary tape, and stored in the memory of the digital
computer according to their roll, and frame number.
Events with the same roll, and frame numbers were then
compared with one another to determine if any pair had
the same four-momentum transfer to two decimal places.
When a pair of matching events was found, the first
event read from the summary tape was declared the dup-
licate, and deleted from the list in the memory. Using
the purged list, a new summary tape was derived contain-
ing only non-duplicate events. To check that the above
procedure was effective in detecting doubly measured
events, the author personally checked the results of the
purge for several rolls that had been mistakenly doubly
measured, and found that all such duplicates had been
deleted from the new summary tape. To determine if any

non-duplicate events were deleted in the processing, the
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probability that two events would have the same roll,
frame, and four-momentum transfer to two decimal places
was computed, and indicated that less than 1/10% of the
events could have deleted by the purge, a figure neg-

ligible in the present study.

Events were omitted from the summary tape, on
the other hand, either as the result of an error or
decision by the measurers, or because the event failed
to pass the monitoring and reconstruction programs CAST-
TVGP. With regard to the former the action taken by
the measurer fell into three categories: 1) he inad-
vertently skipped the event during measurement of the
roll, 2) he decided the event could not be measured under
the existing measuring rules, 3) he concluded that the
event was in flagrant violation of a scan rule, and hence
should not be measured. To keep the measurers from
falling back on 2) and 3) whenever a difficult event was
encountered, and also to obtain a list of intentionally
omitted events, the measurers were instructed to write
out in long-hand the reason for passing over the event.T
The list obtained with this procedure then provided a

means for determining the fraction of unmeasured events

TThe author is indebted to C. T. Murphy for point-
ing out this effective, but convenient enforcement tech-
nique.
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that should in fact have been subjected to measurement.

The number of good elastic events lost through
errors or omissions by the measurers, or failures in the
monitoring and reconstruction programs CAST-TVGP were
determined by collating the events on the general summary
tape (which contained the results of all measurements,
including the CAST-TVGP fails) with events found by the
scanners.+ New lists were then made on the unscanned
events, the unmeasured events, and the CAST and TVGP
fails. An event was declared unmeasured (unscanned) if
no event with same roll, and frame numbers appeared on
the general summary tape (scanned event list); an event
was considered a permanent CAST (TVGP) fail if its best
measurement led to a CAST (TVGP) fail. The list of un-
measured events was then compared with the list of events
overtly deleted by the measurers, and the fraction
accidentally left unmeasured thereby determined. The
fraction of good elastic events among the permanent CAST
fails, the permanent TVGP fails, and the accidentally un-

measured events was then presumed equal to fraction of

good elastic events appearing among the scanned events,

TThe collating, and bookkeeping program referred
to here was written, prepared, and run by L. Peterson.
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TABLE 10.1-1

Bookkeeping and Processing Losses

PLAB Loss Statistical Systematic

(GeV/c) (Percent) Error Error
1.63 8.3% 0.5% 1.0%
1.77 5.4% 0.5% 1.0%
1.83 4.7% 0.5% 1.0%
1.88 8.2% 0.5% 1.0%
1.95 5.7% 0.5% 1.0%
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when the latter were successfully measured, that is,

passed both CAST and Trvep. T

10.2 Large-Angle Scan-Rule Bias

As discussed in Section 7.4 above, the large-
angle scan rules were designed to detect all events with
0.6 < |t] (GeV/c)z, have a good probability for picking
up events in the range 0.3 < ]t| < 0.6, and heavily sup-
press events in the well-studied forward diffraction
peak 0.0 < |t| < 0.3. Since the scan rules proved wholly
efficient in none of these regions, it was necessary to
determine the exact scan-rule bias at each momentum set,
and in each t interval using digital-computer simulation
techniques. The simulation was carried out by determin-
ing the center-of-momentum energy from the nominal beam
momenta, and the scattering angles of the tracks from t.
The angles, and momenta of the outgoing tracks were then
Lorentz transformed to the laboratory system, and the
event vertex centered on one of the twenty-five laterally

positioned bins used to determine the beam-track

+This procedure, though less than appealing, seems
conventional, and appears the only method, short of a
detailed (and prohibitively difficult) study of each event,
for determining the number of good elastic events among
the CAST-TVGP fails.
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profile.Jr

The vertex was then stepped upstream, and
downstream by following the path of a hypothetical beam
track passing through the center of the profile bin.
(This procedure, though more complicated than a Monte-
Carlo technique, allowed the various event vertices to be
weighted according to the beam-track density at the inter-
action point.) After the vertex coordinates were picked,
a check was made that the coordinates lay in the illumi-
nated portion of the fiducial volume. On passing this
test, the antiproton's momentum vector was rotated into
coincidence with the beam direction at the vertex point.
A second rotation then put the event topology in the
desired azimuthal position about the beam. Finally, the
angles, curvature, and bubble density of each track on
each camera view were calculated using the formulas given

in the appendix, and the mathematical equivalent of the

scan rules applied on the various camera views.

To ensure that accurate results were obtained
the simulation procedure was repeated using beam momenta
spread above and below the nominal one. The pass-fail

results for each momentum hypothesis were then weighted

TThis set of bins, called the projected count
line in Section 9.2, partitioned a line (y=-3.76x-122)
in the median plane of the chamber that ran approximately
at right angles to the nominal direction of the beam.
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according to the normalized beam-momentum distributions

th +

(P) for i momentum set, and jth profile bin. The

Pj
simulation procedure was similarly embellished by vary-
ing the pitch 6 of the beam at the profile bins, instead
of the momentum P, with the pass-fail results being
weighted to the beam-pitch distributions. An additional
simulation was also carried out with both the momentum
and pitch varying to determine if the two had any ten-
dency to concatenate their effects on the pass-fail dis-
tributions. The results of these three studies indicated
that the average values for P and 6 yielded substantially
correct results, the largest pass-fail variance amounting
to less than 1%. Moreover, since the digital-computer
time required for the simulation increased from minutes
to hours when these variations were included, it was

decided in the interest of economy to use the mean values

for the balance of the study.

The mathematical formulation of the scan rules
proved straight forward in principle, but vexing in prac-
tice. Actually, only the fan-template rule (4), and the
positive-track curvature rule (5) were effective in fail-

ing elastic events with |t| > 0.3, since the other rules

TLSee, also, Section 9.4 above.
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were designed either to attenuate the forward diffrac-
tion peak, or suppress the background of inelastic events.
The more arduous phase of the formulation arose in at-
tempting to ascertain the rules actually employed by the
scanners, rather than the ones they were instructed to
use. The rule on positive-track curvature, for example,
was somewhat unclear, since curvature may be determined
either globally or locally with the same template. The
global determination amounts to a comparison of the
sagitta of the template with that of the track, a tech-
nique that tends to be ambiguous when the track is long,

T On the other hand, the

and inaccurate when it is short.
local determination is equivalent to a comparison of the
rate-of-change of the template tangent with that of the
track in the immediate neighborhood of the event vertex.
The technigue thus depends on the accuracy with which
the tangents can be aligned at the vertex, but is other-
wise unambiguous. Although the author trained the scan-
ners in the tangent technique, and also prepared a spe-

cial section in the scan rules describing the procedure,

the scanners still gravitated to the sagitta technique,

ﬁWhen the track is long, the radius of curvature
decreases with the range of the particle, but increases
with its distance from the optical axis; when the track is
short, the length of the sagitta (and hence the accuracy
of the determination) varies quadratically with the track
length.
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since the latter was slightly easier to apply. In spite
of this, and because it could be unambiguously defined,
the vertex-zone curvature was used throughout the simula-
tion. As a check on the soundness of this procedure,

the radius of the positive track in View 2 or View 4,
whichever was greater, was histogrammed using the good
elastic events, and is shown in Figure 10.2-1. Note that
the distribution drops sharply at 40 cm radius, but that
a significant number of events with a smaller radius
still slipped by the scanners. The latter, of course,
could have resulted either from use of the sagitta tech-
nigue, or from uncertainties arising when the positive

track was short.

The fan-template rule also proved somewhat dif-
ficult to formulate, mainly because of the template
design. As shown in Figure 7.2-1, the template rays
terminated a quarter inch from the template origin, thus
forcing the scanners to make their bin determinations at
this distance from the event vertex. As a result, some
tracks were able to curve out of their original bin, and
into an adjacent one prior to point where the scanners

.f-

made their bin determination. To determine the sig-

+This possibility was brought to the author's
attention by D. Sinclair.
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nificance of this effect the full set of scan rules were
applied both to the good elastic events, and the computer
simulated ones, assuming first that the bin determina-
tions were made at the origin, and then at one quarter
inch from the event vertex. When applied £o the real
events the first set of scan rules deleted a total of
1013 events from the original sample of 6214 good elastic
events, while the latter deleted only 995 events. As a
result it was concluded that the scanners tended to make
their bin judgements at some--perhaps variable--distance
downstream. Owing to the subjectivity of the effect and
its tendency to occur at the lower momentum transfers,

no attempt was made to parameterize it directly. Instead,
it was presumed both for the purpose of simulation, and
initial sample cutting that all bin determinations were

made exactly one-quarter inch downstream.

As a check on the soundness of the simulation
technique, the azimuthal distributions predicted by the
simulation program were compéred with those for the good

elastic events.+

In particular, two-dimensional histo-
grams of t versus azimuth were prepared at each momentum

set using both the good elastic events (with the scan

"This verification technique was suagested by
J. Vander Velde.



rules in force), and the computer simulated ones.” The
resulting distributions for all six momentum sets, and
the momentum-transfer range 0.5 < |t| < 0.6 are shown,
respectively, in Tables 10.2-2 and 10.2-3. Within
statistics--unfortunately rather poor owing to the cuts
on both projectile energy and four-momentum transfer--
the two distributions appear in good agreement.§ As a
result it was concluded that the simulation technique
accurately portrayed the event distributions in the cham-

ber, as well as the scanners' notion of the scan rules.

To guarantee accurate corrections for scan-rule
bias, a new set of scan rules was formulated that were
more restrictive than the ones used by the scanners.
These rules were then applied to both the good-elastic
events, and the computer-simulated ones to determine if
the original simulation was sound. The argument advanced
here presumes that, except for increased statistical
fluctuations, the experimental results should remain

invariant under transition to a more restrictive set of

THere -1 < Y < +7 is the azimuthal position about
the beam track, taken positive when the antiproton scat-
tered toward the cameras, and zero when it scattered with-
out dip in the positive y direction.

§Note the natural asymmetrical bias between events
with the antiproton scattered upwards, and those with it
scattered downwards.
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TABLE 10.2-2

Experimental Azimuthal Event Distributions?

Azimuth 1.63 1.77 1.83 1.88 1.95 2.20
Degrees (GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeVv/c)

10 2 0 0 0 0 0
30 4 1 0 0 0 0
50 0 0 1 1 0 0
70 1 4 1 1 0 0
90 1 6 4 1 0 4
110 1 3 4 0 0 1
130 1 0 0 0 0 0
150 3 0 2 0 1 0
170 0 0 0 0 0 0
190 3 1 4 0 0 0
210 4 5 3 6 5 0
230 4 5 4 5 6 0
250 6 6 6 2 9 2
270 4 2 1 5 3 2
290 4 8 6 5 6 2
310 7 3 3 6 6 4
330 8 3 7 6 6 0
350 3 1 3 2 1 0

#Table includes good elastic events with
0.3 < [t| < 0.4, and passing a (10% restricted) set of
computer-applied scan rules.
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TABLE 10.2-3

Simulated Azimuthal Event Distributions#

Azimuth 1.63 1.77 1.83 1.88 1.95 2.20
(Degrees) (GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c)

10 100% 30% 0% 0% 0% 0%

30 49% 0% 0% 0% 0% 0%

50 43% 28% 5% 2% 0% 0%

70 49% 12% 5% 4% 1% 0%
90 90% 80% 71% 71% 65% 51%
110 83% 53% 45% 27% 26% 10%
130 36% - 19% 5% 43 2% 0%
150 37% 12% 2% 0% 0% 0%
170 100% 0% 0% 0% 0% 0%
190 100% 99% 0% 0% 0% 0%
210 100% 69% 56% 53% 51% 37%
230 82% 82% 74% 65% 56% 41%
250 65% 65% 65% 65% 65% 61%
270 48% 48% 50% 52% 52% 63%
290 48% 48% 50% 49% 50% 48%
310 86% 84% 78% 81% 81% 58%
330 100% 100% 99% 94% 90% 13%
350 100% 12% 0% 0% 0% 0%

#The quoted percentages represent the scan-rule
efficiency at each momentum set, and each azimuthal angle as
determined from a sample of simulated events with |t]|=.35.
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rules.+

Toward this end the fan-template angles for the
positive track, and maximum allowed curvature for the
positive track were both reduced by a fixed amount,
namely, first by 10%, then by 20%. These changes made
the new rules a subset of the original ones in the sense
that events picked up by the second set were necessarily
also picked up by the first. The invariance of the ex-
perimental results was then checked by applying the two
sets of restricted rules to both the good elastic events,
and the computer simulated ones. The scan-rule bias for
each momentum set, each four-momentum transfer, and each
set of scan rules was then determined from the pass-fail
ratio for the simulated events. The passing good elastic
events were then weighted inversely as the scan-rule bias
associated with each event, and the result histogrammed
against t. As shown in Tables 10.2-4 through 10.2-6, the
results for the two restricted cases agree within statis-
tics, while there appears some discrepancy between the
non-restricted and 10% restricted case. This indicated
that by applying the 10% restricted scan rules to both
the good elastic events, and the computer simulated ones
that accurate corrections for scan-rule bias could be

obtained.

Trhe technique for verifying the soundness of the
simulation technique was suggested by C. Murphy.
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TABLE 10.2-4

Debiased Event Distributions (Non-Restricted Scan Rules)

|t , 1.63 1.77 1.83 1.88 1.95 2.20
(GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c)
0.25 163.6 274.3 302.6 306.9 317.9 464.1
0.35 47.7 72.2 68.4 67.0 74.3 56.7
0.45 48.0 60.9 61.5 51.3 60.4 33.9
0.55 111.0 107.0 100.0 111.5 89.1 58.0
0.65 135.0 119.0 114.0 135.0 104.0 92.0
0.75 128.0 135.0 98.0 128.0 110.0 102.0
0.85 108.0 57.0 70.0 84.0 60.0 93.0

TABLE 10.2-5

Debiased Event Distributions (10% Restricted Scan Rules)

[t[ , 1.63 1.77 1.83 1.88 1.95 2.20
(GeV/c) (GeV/c) V(GeV/~c) (GeV/c) (GevV/c) (GeV/c) (GeV/c)
0.25 679.8 439.0 434.3 518.9 388.7 326.7
0.35 48.4 73.1 81.8 88.2 93.9 78.0
0.45 49.3 54.3 57.1 45.1 50.6 29.7
0.55 105.0 100.0 97.4 103.8 79.2 46.9
0.65 106.0 119.0 114.0 134.0 102.2 86.4
0.75 95.0 135.0 95.0 128.0 110.0 102.0
0.85 63.0 82.0 77.0 108.0 83.0 93.0
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Debiased Event Distributions (20% Restricted Scan Rules)

| t| , 1.63 1.77 1.83 1.88 1.95 2.20
(GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c)
0.25 895.0 666.6 473.9 613.0 483.5 337.8
0.35 42.8 80.2 84.9 114.8 101.3 74.4
0.45 47.6 53.4 50.7 44.3 58.2 37.5
0.55 100.4 89.3 98.9 105.0 73.8 31.5
0.65 106.0 116.0 110.0 121.6 92.8 72.4
0.75 95.0 135.0 98.0 128.0 110.0 97.9
0.85 63.0 82.0 77.0 108.0 83.0 90.9

TABLE 10.2-7

Large-Angle Scan-Rule Efficiency (10% Restricted Scan Rules)

| £ , 1.63 1.77 1.83 1.88 1.95 2.20
(GeV/c) (GeVv/c) (GeV/c) (GeV/c) (GeV/c) (GeVv/c) (GeV/c)
.25 11.6% 11.2% 9.2% 7.9% 7.5 7.0%
.35 72.3 49.2 33.0 30.6 28.7 19.2
.45 97.3 92.0 82.3 77.7 69.2 40.8
.55 100.0 100.0 98.6 97.3 94.7 70.4
.65 100.0 100.0 100.0 100.0 99.8 92.6
.75 100.0 100.0 100.0 100.0 100.0 99.0
.85 100.0 100.0 100.0 100.0 100.0 100.0
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" Having established the soundness of the debias-
ing procedure, the simulation program was rerun at all
momentum sets, and narrow t intervals in an effort to
obtain accurate curves for the scan-rule bias. The
results of these runs are shown in Table 10.2-7, where
the scan-rule bias is listed against t for each momentum
set. Note that at the highest momentum set the bias
disappears beyond |t|=0.85, while at the lowest momentum
set this happens at |t|=0.55. The corrections required
in the region of the first minimum range vary from 10 to
50%. Finally, in the region of the forward peak the
statistics are poor, and the correction severe, as ex-

pected from the design of the scan rules.

10.3 Sqguare-Hit Scan-Rule Bias

The working rule for the square-hit scan required
that the scattered antiproton annihilate into charged
particles before leaving the chamber. As a result, the
events picked up on the square-hit scan, and those picked
~up on the large-angle scan formed substantially disjoint
sets. On the other hand, while neither scan was particu-
larly efficient about the cross-over point |u]| = 0.1,
the union of the two scans covered all angles in this

region with both high scanning efficiency, and low scan-
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rule bias. This suggested that by lumping the good
elastic events from both scans together, and purging

any duplicate events from the combined sample, the ex-
periment could be effectively reduced to one involving

a single double scan.t Owing to the simplifications
introduced with this point of view, it was decided to
combine the two sets of events, and treat the combination
for the balance of the study as arising from a single

ficticious double scan.

The more difficult aspect of the square-hit scan
resulted from the undesired, but unfortunately unavoid-
able, tendency for the scanners to miss highly dipped
events with a short (< 1 cm) antiproton track. The
region of this bias was determined using the good elastic
events by making a histogram of the antiproton track
length in View 2 or View 4, whichever was greater. As
shown in Table 10.3-1 the distribution drops sharply
betwéen three. and four millimeters track length, indicat-
ing that the scanners may have been missing events in
this region. To verify this possibility the azimuthal
distribution of events with short (few cm in chamber)

antiproton tracks was histogrammed using all the good

Trhis possibility was first suggested and veri-
fied by J. Lys.
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TABLE 10.3-1

Projected Antiproton Track Length

Number Events 0 0 0 6 1 5

Track Length (cm) 0.05 0.15 0.25 0.35 0.45 0.55

TABLE 10.3-2
i

Experimental Azimuthal Distributions

Azimuth® .005 .015 .025 .035 .045 .055
(Degrees) (GeV/c)2 (GeV/c)2 (GeV/c)2 (GevV/c)2 (GeV/c)? (Gev/c)?2

5 0 2 2 1 2 4
15 0 2 1 2 1 1
25 0 4 5 0 0 2
35 0 1 1 2 4 2
45 0 0 2 2 2 2
55 0 0 1 0 1 2
65 0 0 3 0 3 4
75 0 0 2 2 4 0
85 0 0 0 0 2 2

#

Here |u| increases from left to right.

@The azimuthal distribution has been twice-folded:
once about 180 degrees, and again about 90 degrees.
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elastic events, and the result presented in Table 10.3-2.
Note that the distribution drops sharply for highly
dipped events,'indicating that strong azimuthal bias was
present at the very backward scattering angles

(.00 < |u] < .02).,

To determine the magnitude of the bias, the
simulated events were subjected to a linearly increasing
bias whenever the projected antiproton track length
dropped below a specific value P, and to a 100% bias
whenever its projected length dropped below a second
value Q. The best values for P and Q were ascertained
by running simulations at various P and Q values until a
good fit to the experimental distributions of Tables
10.3-1 and 10.3-2 were obtained. This study indicated
that the nominal cut-off length was Q = 3 mm, and that
the linear bias affected tracks shorter than P = 1 cm.
As shown in Table 10.3-3, the simulated result agrees
within statistics with the experimental one, suggesting
that the source of the azimuthal bias has been properly

assessed.

To obtain the square-hit scan-rule bias the simu-
lation program was run at each projectile momentum, and
at appropriate u intervals in the range 0.0 < |u| < 0.1.

The results of the simulation, which are shown in Table
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TABLE 10.3-3
#

Simulated Azimuthal Distributions

Azimuth .005 .015 .025 .035 .045 .055
(Degrees) (GeV/c)2 (GeV/c)2 (GeV/c)2 (GeV/c)2 (GeV/c)2 (GeV/c)2

5 0.0% 51.5% 100.0% 100.0% 100.0% 100.0%
15 0.0 50.8 100.0 100.0 100.0 100.0
25 0.0 48.5 100.0 100.0 100.0 100.0
35 0.0 45.0 100.0 100.0 100.0 100.0
45 0.0 40.0 96.5 100.0 100.0 100.0
55 0.0 33.5 83.7 100.0 100.0 100.0
65 0.0 7.0 68.8 100.0 100.0 100.0
75 0.0 5.0 54.7 94.0 100.0 100.0
85 0.0 0.0 44.0 83.0 99.0 100.0

#The distributions have been twice folded as in
Table 10.3-2 above.

TABLE 10.3-4

Square-Hit Scan-Rule Efficiency

u (Gev/c)? .005 .015 .025 .035 .045 .055
Efficiency’ 0.028 68.0% 99.0% 100.0% 100.0%  100.0%

Efficiency@ 0.0% 31.1% 83.1% 97.1% 99.9% 99.0%

*with sharp cut-off at 3 mm projected track length, but
no linear bias.

@With 3 mm cut-off, and linear bias below 1 cm
projected track length.



226

10.3-4, indicate that scan-rule bias became severe back-

ward of [u|=.02.

10.4 Large-Angle Scanning Efficiency

The scanning efficiency for the large-angle scan
was determined with the correlated-miss model described
in the Appendix. This model incorporates the view that
each event may be assigned an event difficulty D, and
that relatively few events prove either extremely dif-
ficult (D >> 1) or extremely easy (D << 1) for scanners,
but that the great majority are of some intermediate
difficulty. In addition, it is presumed that scanners
find events with an efficiency e(D) that decreases
steadily with increasing D, thus introducing a tendency
for events missed by one scanner to also be missed by a
second. A concrete example of the latter effect arises
in connection with the present experiment if one compares
the (large-angle) scanning efficiency--calculated with
any reasonable model--at moderate scattering angles

(0.5 > cos 6 > -0.5) with that in the backward direction

Event difficulty D--always a positive number--
corresponds roughly to one's intuitive notion for such a
variable. However, like ordinary probability, it eludes
precise verbal definition, although (also like probabil-
ity) it can be defined operationally, as shown in the
Appendix.
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(-0.9 > cos 6 > -1.0). 1In the first region, where events
had the typical topology, and were prolifically produced,
the overall efficiency was high . . . better than 99%,
while in the second, where the topology was atypical,

and rarely produced, the efficiency dropped below the 50%
mark, indicating a strong correlation between events
missed by the first scanner, namely the backward scatters,

and those missed by the second, also the backward scatters.

Similar effects are observed even when cos 6 is
fixed. For example, the scanning efficiency tends to
decrease with increasing dip angle, as might be expected
on intuitive grounds. This effect is shown clearly in
Table 10.4-1, where the random-miss scanning efficiency
for the good elastic events in the rangeJr 0.4 > cos 6 > 0.3
has been tabulated against the azimuthal angle y. This
cutting, and searching process could, in principle, be
continued to look for other factors--such as event position
in chamber--that might cause missed events to appear
correlated. The method proves impossible in practice,
however, since each cut reduces the events available for
the next determination. Worse, the technique is unconvinc-

ing, since one has no assurance that all such effects have

TThe total scan-rule bias in the range 0.4 > cos 6 > 0.3
amounted to less than 0.1%.



228

TABLE 10.4-1

Scanning Efficiency Versus Azimuth#

Azimuth Single-Scan Double-Scan Double-Scan
(Degrees) Efficiency Efficiency Error
10 97.1% 99.9% 0.1%
30 94.7 99.7 0.3
50 94.5 99.7 0.3
70 93.6 99.6 0.5
90 86.6 98.2 1.2
110 88.9 98.8 1.0
130 96.9 99.9 0.1
150 93.6 99.6 0.5
170 94.1 99.7 0.3
190 91.4 99.3 0.6
210 89.7 98.9 0.9
230 95.1 99.8 0.3
250 97.2 99.9 0.1
270 86.4 98.1 1.5
290 92.5 99.4 0.5
310 98.0 99.9 0.1
330 94.6 99.7 0.3

350 96.0 99.8 0.2

#Calculated with the random-miss model using good
elastic events from the range 0.4 > cos 6 > 0.3.
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been listed, and accounted for. 1In addition, bias other
than the ones mentioned above tend to be gquite subtle

and virtually impossible to treat analytically.

The correlated-miss model represents a workable
alternative to the cut, and search technique outlined
above. Unlike the latter the correlated-miss technique
is both convincing and precise, since, on the one hand,
the model accounts for all sources of correlation among
missed events, and on the other, does not subject the
events to a concatenation of ever finer cuts. The pro-
cedure is workable in the sense that all factors correlat-
ing the missed events are summarily lumped, and a net
correction to the random-miss formulas determined from
the number of events observed by the scanners. The
correction factor is obtained by developing reasonable
forms for the event distribution, and scanning efficiency

as a function of the event difficulty D.+

For doubly
scanned rolls the model involves only one parameter Dg,
the event difficulty at which the scanning efficiency of

the average scanner drops to 1l/e of its best value,

namely, 100% at D=0. This parameter, in fact, replaces

1‘Although any parameterization is open to debate,
for reasons given in the 2ppendix the event distribution
p (D), and the scanning efficiency e (D) were parameterized

with 2D exp(-D2), and s exp (-D2/D,2) , respectively.
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the average scanning efficiency e used in the random-
miss model. (If a portion of the film has been triply
scanned, as for example, in the bresent experiment, addi-
tional information becomes available, and a second para-
meter ey the average scanning efficiency for zero dif-

ficulty events, can be defined.)

To account for correlation among missed events,
and the attendent loss in overall scan efficiency, the
correlated-miss model adds a (usually) small correction
to the basic random-miss efficiency formulas. As shown
in the Appendix, for doubly scanned events the overall
efficiencies associated with the two models are, respec-

tively,

E) (random) = 2NN,/ (Ng + N2)2

Ej (correlated) = 2NN, [1 - (N1/2N2)2]/(No + N2)2

Qhere N; is the number of events found by just one scan-
ner, N, the number found by both scanners, and Ny =

N; + N, the number observed by either or both scanners.
Note that the bracketea quantity modifies the basic random-
miss formula, and that if Ny >> N; --the case of high
individual scan efficiencies--the two forms become iden-
tical. On the other hand, if N; > 2N2——the case of very

low individual efficiencies--the correlated-miss model
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fails, at least as we have parameterized it. Since the
existence of correlation has already been demonstrated
among the good elastic events (cf. Table 10.4-1), and
because the models are both One-parameter theories, the
correlated-miss interpretation was chosen for the balance

of the study.

In an effort to obtain better statistics at each
plotting interval, the numbers Nl’ N5, E(random),
E(correlated) were histogrammed against the variable
cos 6 using the large-angle scan data from all six momen-
tum sets. Since the scanning efficiency varies slowly
with cos 6, and because cos 8 represents the most appro-
priate variable when considering both forward and back-
ward scattering, this variable was chosen over the other
two possibilities t, and u. As shown in Table 10.4-2,
the numbers Ny increase markedly relative to N, in both
the forward and backward directions, indicating that the
scanning efficiency was dropping rapidly in these regions.
The drop at forward scattering angles is credited both
to the severe scan-rule bias at small momentum trans-
fers, and small scan-rule variations among the individual
scanners, in this especially sensitive region. The drop
at the backward scattering angles,on the other hand,

reflects a poor detection efficiency for these square-
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TABLE 10.4-2

Large-Angle Scanning Efficiency for Double Scans#
cos © N, N, E (ran) E (cor) Error
+.95 5 2 - - -
+.85 69 37 76.7% 10.0% 4.9%
+.75 75 130 95.0 87.1 1.1
+.65 38 136 98.5 96.6 0.5
+.55 41 268 99.5 98.9 0.2
+.45 83 442 99.3 98.4 0.2
+.35 71 520 99.6 99.1 0.1
+.25 64 462 99.6 99.1 0.1
+.15 49 319 99.5 98.9 0.1
+.05 38 230 99.4 98.7 0.2
-.05 21 134 99.5 98.9 0.2
-.15 17 97 99.4 98.6 0.3
-.25 13 65 99.2 98.2 0.5
-.35 14 96 99.5 99.0 0.2
-.45 11 59 99.3 98.4 0.4
-.55 15 74 99.2 98.1 0.4
-.65 13 53 98.8 98.1 0.7
-.75 28 45 94.4 85.2 2.1
-.85 32 39 91.5 76.1 2.9
-.95 53 58 90.2 71.3 2.9

#Includes only events passing computer-applied
10% restricted scan rules.
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hit events having a very short antiproton track length.
These effects also reflect themselves as differences
between E(random), and E(correlated), indicating that
the random-miss model is correcting for the tendency of
events missed by the first scanner to also be missed by

the second.

Triple scans were carried out on approximately
13% of the film, primarily té increase the overall
scanning efficiency on those rolls where one or both of
the double scanners had low individual efficiencies. As
a result the average scanning efficiency for the triple
scanners fell below that for the double scanners, thus
necessitating a correction to the usual formulas for
triple-scan efficiency. When statistics are plentiful,
as, for example, when all the film has been triple scanned,
such effects are properly accounted for by introducing

a second parameter, e in the correlated-miss model, and

Ol
using the three numbers Nl' Ny, N3 (the number of events
found by one, two, and three scanners, respectively) to
D

ascertain e and E3(correlated). Unfortunately, in

o’ “or
the present experiment the numbers N; are generally too
small for accurate determination of these parameters, and
an alternate procedure had to be used. In particular,
the main parameter D, was taken directly from the double-

scan results, and the modifying parameter e, as well as
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the overall efficiency E(correlated), determined from the
two larger numbers N5, and N3.+ (The DO values, as

obtained from the double scans, are given in Table 10.4-3.

To determine E(random) and E(correlated) for the
triple scans, the numbers N, and N3 were histogrammed
against the angular variable cos 6, and the results pre-
sented, along with the two efficiencies, in Table 10.4-4.
Note that the scanning efficiency according to either
model drops rapidly in both the forward and backward
directions, similar to that observed for the double
scans, and ostensibly for the same reasons. Since the
large-angle scan involved a mixture of both doubly and
triply scanned events, an average overall scanning
efficiency, good for either model, was defined with the

formula:

E (average) = [N, (double) + Ny (triple)]

/[Nt(double) + Nt(triple)]

where Nt equals the total number of events, seen and un-
seen, passing the large-angle scan rules for the respec-

tive scans.

+Although the difference between a good scanner
and an average one results primarily from a decrease in
Dy, the difference between the average scanner and a poor
one obtains mostly from a change in €o-
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TABLE 10.4-3

Nominal Event Difficulty From Double Scans

cos 6 Do cos 6 Do
+.85 .27 -.05 3.43
+.25 1.57 -.15 3.23
+.65 2.48 -.25 3.00
+.55 3.47 -.35 3.57
+.45 3.11 -.45 3.12
+.35 3.70 -.55 2.98
+.25 3.67 -.65 2.67
+.15 3.46 -.75 1.49
+.05 3.33 -.85 1.20

TABLE 10.4-4

Large-Angle Scanning Efficiency For Triple Scans#

cos B N, N3 E(ran) E (cor) Error
+.90 10 2 75.6% - 25.6%
+.70 19 16 97.7 94.7% 4.1
+.50 35 102 99.9 99.6 0.3
+.30 20 127 99.9 98.8 0.1
+.10 20 74 99.9 99.7 0.2
-.10 7 32 99.9 99.7 0.2
-.30 6 23 99.9 99.7 0.4
-.50 4 17 99.9 99.6 0.3
-.70 8 7 97.9 95.3 5.6
-.90 6 3 93.6 75.0 13.4

#Includes only events passing computer-applied
(10% restricted) scan rules.
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10.5 Square-Hit Scanning Efficiency

In the interest of expediancy, and economy, second
scans weie omitted for a significant portion of the square-
hit scan. As a result, the scanning efficiency for the
average scanner was first determined from the doubly
scanned events, and then presumed the same for singly
scanned events. Since the single scans were carried out
by the same people, and at the same time as the double
scans, this supposition is believed sound. The results
from the double scans are presented in Table 10.5-1, and
indicafe that the total scanning efficiency remained
high (about 90%) out to |u|=.01. The single scan results,
which are shown in Table 10.5-2, suggest that the square-
hit scan was particularly sensitive to the very backward

scatters.

10.6 The Corrected Data

The distribution of events among the several
momentum sets, and over the various center-of-momentum
scattering angles are presented in Figures 10.6-1 through
10.6-10. In particular, the histograms of Figures
10.6-7,8,9 give the distribution of all events from all
momentum sets as a function of the three kinematic vari-
ables cos 6, t, u, while Figures 10.6-1 through 10.6-6

show the same distributions for the individual momentum
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TABLE 10.5-1

|u| Ny N, Effy Error
.005 0 0 0% 0%
.015 1 8 99% 1%
.025 7 7 89% 8%
.035 5 4 85% 12%
.045 11 4 66% 17%
.055 5 11 97% 3%
.065 7 6 86% 10%
.075 4 7 95% 5%
.085 6 5 86% 11%
.095 7 3 71% 19%

TABLE 10.5-2

Single-Finds Versus u

[ul N, |u]
.010 1 .110
.030 3 .130
.050 4 .150
.070 1 .170
.090 0 .190
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sets. Finally, the histogram of Figure 10.6-10 shows
the backward elastic cross section as a function of
energy for the four angular regions -0.9 > cos 6 > -1.0,
-0.8 > cos 6 > -1.0, -0.6 > cos & > -0.8, and

0.0 > cos 6 > -1.0.
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11.0 RESULTS AND CONCLUSIONS

This chapter presents the results and conclusions
drawn from the experimental findings presented in Chap-
ter 10 above. The collected data is first viewed as a
differential cross section measurement, and appropriate
parameterizations applied to the observed structure. The
angular distributions are then compared with those pre-
dicted by the four theoretical models for scattering dis-
cussed earlier, and conclusions drawn that our Regge
picture more closely represents the observed PBAR-P cross
section than the absorption-corrected exchange model.

The data is next studied for its energy-dependent struc-
ture, and evidence for a non-statistical backward peak
cited. Finally, the results of the present experiment
are compared with those obtained in other studies, and
conclusions drawn that a high-spin s-channel resonance

may form, and decay at our energies.

11.1 Large-Angle Cross Section

The angular distributions of Figures 10.6-1
through 10.6-9 appear highly structured relative to, say,
the P-P differential cross section. In Figure 10.6-7,
for example, the forward diffraction peak dominates the

cross section forward of cos 6 = 0.3, while at cos 6 = 0.6

249
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the distribution drops to a (first) minimum, consistent
with the findings of other experimenters (Chapter 1.2).
Following this wvalley the cross section rises again to a
(secondary) maximum at cos 6 = .35, and then drops again
to a plateau beginning around cos § = 0.0, and extending
out to the backward peak observed beyond cos 6 = -0.9.

The break defining the intersection of the secondary maxi-
mum and the plateau is difficult to interpret as a second
minimum, since on the one hand no third maximum appears

in the data, and on the other the distinct second minimum
observed by A. Ashmore, et al. (1968) at 5.9 GeV/c lies

at a much higher four-momentum transfer, namely, |t| =

1.8 (GeV/c)2. Thus the plateau suggests the presence of
an s-wave (or s-wave like) background, below which the
forward diffraction field drops at |t| = 1.1. At higher
energies, the plateau apparently disappears, leaving visible

the second minimum measured by A. Ashmore, et al. (1968).

The distribution of events in t, the square of
the four-momentum transferred from the projectile to the
target, is shown in Figure 10.6-8. Note that the dis-
tribution follows the same general behavior as the cos 6
histogram in the forward direction, but appears to tail-
off, rather than plateau, in the backward direction.

The forward behavior is expected since forward elastic

cross sections are known to depend primarily on t, and,
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hence for small changes in the projectile momentum, also
primarily on cos 6. The backward behavior, on the other
hand, results mostly from the kinematical fact that the
maximum four-momentum transfer increases with projectile
momentum, so that the lower momentum sets are expected
to stop contributing events to the histogram before the
higher ones do, causing the data to tail-off at the
higher |t| values. For completeness we also note that
the first minimum appears around lt| = 0.4, the maximum
peaks around |t]| = 0.7, and the plateau initiates around
|t| = 1.1, although these numbers will be given more

precisely in the sequel.

The distribution of events in u, the complement
of the four-momentum transfer squared, is given in
Figure 10.6-9. Note that the distribution follows the
same general behavior as the cos 6 histogram in the back-
ward direction, but shows a materially different struc-
ture in the forward direction, including the destruction
of the (first) minimum. The backward behavior is ex-
pected on the grounds that backward elastic cross sec-
tions tend to depend primarily on u, aﬂd, hence for
small variations in the projectile momentum, also pri-
marily on cos 6. The destruction of the (first) mini-
mum, on the other hand, results from the kinematic fact

that phenomena occurring at a fixed t, and which are
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nominally independent of the projectile energy neces-
sarily appear at variable u values. Consequently, the
(first) minimum falls at different abscissa values for
different momentum sets, thus smearing away any evidence

of the minimum.

'Forward peak. As usual the forward diffraction peak

dominates the other features of the differential cross
section. According to the results of other experiments
(Chapter 1) this peak widens with increasing projectile
momentum--in contrast, for example, to the shrinking
observed in P-P elastic scattering. However, because
our statistics are meager, and momentum bite narrow,

no attempt was made to measure the slope, or antishrink-

ing of the forward peak.

The first minimum. The first minimum, first observed

by Lynch, et al. (1962), appears unusually pronounced

in our data owing to the linearity of our ordinates.

The position of these minima in t--the appropriate vari-
able if the minima, like the forward peak, interpret as
diffraction effects--was determined by fitting the bottom
half of each valley (as measured with respect to the top
of the secondary maximum) wifh the parabolic form

A + B(t—t(min))% where A specifies the height of the

minimum, B its relative width, and t(min) its position
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along the abscissa. The results of this fit are given
in Table 11.1-1, and indicate that the minima, like the
widths of the diffraction peak, work toward the larger
|t| values with increasing projectile momentum. The
energy dependence of t(min) was estimated quantitatively
by fitting the six t(min) values with the linear form
|t(min) | = C + Dp”*, where p* denotes the CM

momentum. The resulting fit produced the values

cC = .21 0.1 (GeV/c)? D= .30 #0.1 GeV/c at a least-
square error of 9.1, thus confirming the tendency of

t(min) to increase with beam momentum.

The secondary maximum. Like the first minimum, the

secondary maximum was first observed at 1.61 GeV/c by

G. Lynch et al. (1962). Actually, this enhancement
appears more a reaction to the first minimum than some
independent fluctuation, with the intensity lost through
the destructive interference at the minimum appearing
redisplayed as constructive interference at the secondary
maximum. Presumably, also, the angular variable t also
describes the secondary maximum, if the two phenomena
are in fact related. To determine the height, width,
and position of the maxima the top half of each was
fitted with an inverted parabola of the form

2
A + B(t-t(max)). The results of this fit, which are
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TABLE 11.1-1

PLAB PCM A B | £ (min) |

1.63 .663 0.73 110.5 .408+.076
1.77 .704 0.73 88.9 .425+,060
1.83 .722 1.04 41.0 .415+.092
1.88 .739 0.63 70.4 .438+.036
1.95 .756 0.86 43.3 .448+.045
2.20 .822 0.64 32.3 .473+.051

TABLE 11.1-2
Parabolic Fits to the Secondary Maxima

PLAB PCM A B | £ (max) |

1.63 .663 2.35 -30.54 .640+.060
1.77 .704 2.23 -27.50 .681+.032
1.83 .722 1.90 -11.40 .625+.051
1.88 .739 2.05 -21.80 .700+.019
1.95 .756 1.74 - 8.90 .718+.046
2.20 .822 1.71 -15.70 .764+.024
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presented in Table 11.1-2, indicate that the maxima,
like the forward peaks, and first minima, move toward
the larger |t| values with increasing p*. A quanti-
tative estimate of this shift was undertaken by fitting
the six t(max) values of Table 11.1-2 with the linear
form |t(max)| = C + Dp*. The results of this fit gave
C = .28 0.1 (GeV/c)z, D = .56 #0.2 GeV/c at a least-
square error of 16.6, also indicating a mild growth of

|t (max) | with increasing p*.

Appearance of the plateau. The gently sloping plateau

following the secondary maximum appears distinctly

at the five lowest momentum sets, and presumably results
from Rayleigh-like scattering between the projectile and
target. The plateau appears to initiate at the point
where the secondary maximum drops below this

s-wave like background. Since no particular interference
is observed near the cross-over point, the two waves
appear more or less incoherently generated. According
to this interpretation the data points forward of the
plateau likely depend primarily on t, while those back-
ward of the break more probably depend on cos 6. To
determine the location of the cross-over point, data
forward of the break was fitted with the linear form

A - Bt, while the data backward of this point was fitted
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with the analogous form A' - B't. The position of the
break was then defined by the intersection of these
lines. The results of these fits, and the break point,
t (break), are shown in Table 11.1-3, and indicate, con-
sistent with our other observations, that the diffrac-
tion field moves outward in |t| with increasing p*. A
quantitative estimate of this movement was then made by
fitting t(break) with the linear form |t(break)| =

C + Dp*. The resulting fit led to the values

C = .46 +.12 (GeV/c)z, D = 2.16 +.24 GeV/c at a least-
square error of 3.4, the sign of D indicating outward

movement with p*.

Fluctuations in the plateau. The event distributions

in PLAB and cos 6 backward of the secondary maximum are
shown in the plots of Figure 10.6-10. Generally speak-
ing, the distributions remain fairly flat in both s and
cos 6, thus suggesting the presence of a general s-wave
background in this region. In the very backward direc-
tion a backward peak appears to rise from the background
at the lowest three momentum sets near cos 6 = -0.9.
Since our scanning efficiency dropped to zero backward
of |u|l = .01 (GeV/c)?, the enhancement could actually

be a good deal larger than indicated.
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TABLE 11.1-3

Linear Fits to Break

PLAB PCM A B c’ D' |t (break) |

1.63 .663 9.38 -9.52 +0.48 -0.18 0.95+0.20

1.77 .704 7.89 -7.17 -0.23 +0.38 1.08+0.20

1.83 722 8.21 -7.22 +0.59 -0.21 1.09+0.20

1.88 . 739 4.40 -3.44 +0.47 -0.17 1.20+0.20

1.95 .756 5.65 -4.53 +0.28 -0.02 1.19+0.20

2.20 .822 3.37 -2.41 -0.59 -0.19 1.25+0.20
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11.2 Comparison with Scattering Theory

The angular distributions presented in Chapter 10
above apparently neither support nor invalidate the
optical, eikonal, exchange, or Regge models discussed
earlier. On the other hand, the experimental findings
.indicate (to varying degrees) how these models should be
interpreted and parameterized for PBAR-P elastic scatter-

ing.

Optical model: Basically independent of energy, the

optical model provides a surprisingly accurate descrip-
tion of elastic scattering. The gaussian nature of the
forward peak (in momentum transfer) suggests, for ex-
ample, that the interaction potential is also gaussian,
and, assuming the validity of the Chou-Yang hypothesis,
that the projectile and target also have gaussian
probability densities. Off the forward peak the measured
PBAR-P differential cross section drops much more slowly
than predicted by a simple gaussian potential, and
indicates that a more sophisticated parameterization is
required. In addition, the pronounced first minimum
observed near |t| = 0.4 (GeV/c) 2 suggests that a sharper
edged potential--perhaps a square-well--dominates the
scattering in this region. On the other hand, the

square-well potential leads to a differential cross
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section that 1) has several distinct zeros, and 2)
drops inversely as the cube of the momentum transfer.
Since the observed data possesses neither of these
characteristics, the square-well also represents an

inadequate description of the collision process.

The above observations suggest, however, that
a hybrid potential might accurately describe the data.
In particular, it might be conjectured that the inter-
action potential contains enough gaussian structure
to match the sharp drop in the differential cross sec-
tion, and enough square-well character to obtain the
various maxima and minima present in the experimental
data. The convolution operation provides one method
for mixing the effects of two such potentials. 1In
fact, by convolving a square-well with a gaussian one
obtains an interaction potential that looks like a
square-well, but has rounded corners. The scattering
amplitude generated in this case will have the maxima
and minima characteristic of the square well, and the
exponential drop produced by its gaussian structure.
Consequently, the hybrid potential leads 1) a smoother
looking interaction potential, 2) a scattering ampli-
tude more consistent with the observed cross section,

and 3) an optical model with three parameters, namely,
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the well depth, the well diameter, and gaussian's radius.

The hybrid model, as outlined above, still pre-
dicts zeros in the differential cross section, an effect
clearly not present in the experimental data. On the
other hand, the plateau observed beyond the secondary
‘maximum suggests that a second amplitude might be con-
tributing, and that this amplitude might also be filling
in the first-minimum created by the square well. Owing
to the flatness of the plateau, one suspects (in the
spirit of the optical model) that the amplitude in ques-
tion arises from a second potential having a highly local-
ized spatial structure. This potential, combined with
the hybrid form conjectured above, leads to a four-
parameter optical model capable of describing the essen-
tial features of the forward PBAR-P scattering cross

section.

Eikonal picture: The eikonal picture differs from the

optical model in that the former attempts to account for
the distortion and/or depletion suffered by the incident
beam. In the limit of small phase shifts, however, the
eikonal formulas all degenerate to the ones arising from
the optical model, so that comparisons with experiment
become the same with either picture. Conversely, when

phase shifts are large, the two scattering amplitudes
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become quite distinct, and thus allow different inter-
pretations of the data. 1In particular, the need for a
hybrid potential disappears, since the first-minimum

secondary-maximum sequence can be attributed to inter-
ference between a high-energy and difference amplitude,

‘as explained below.

Using an eikonal picture, the observed PBAR-P
differential cross section may be attributed in part to
absorption by a gaussian cloud, and in part to scatter-
ing from a spatially localized core. The forward peak
is then credited to the gaussian cloud, and the flat
plateau to the inner core. As in the optical model, a
gaussian interaction potential leads to a gaussian
shaped differential cross section, since, when expanded
in powers of the phase shift, the eikonal amplitude
approximates the one for the optical model to first order.

Mathematically speaking,

f£(k,8) = £;(k,8) + £y (k. D)

14

k / x(b) Jo(Ab) b db

+

ik J x2(b) Jo(Ab) b db

The first-order term fl(k,A), being linear in the eikonal

x (b) , and hence also the interaction potential, indicates
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optical-type scattering. Consequently, a gaussian poten-
tial will produce a gaussian cross section characterized
by an rms momentum transfer that varies inversely as the

radius of the potential.

The second-order term fz(k,A) appears quadratic
‘in the eikonal, and thus indicates some higher-order
scattering process. Squaring the eikonal, of course,
narrows its rms radius, and hence widens the diffraction
field described by fz(k,A). The same result obtains if
the projectile suffers two successive small-angle scat-
ters off the interaction potential. In this case the
angular distribution still looks gaussian, except that
the diffraction field widens owing to the larger momentum
transfers possible with two collisions. It is thus con-
venient to interpret fz(k,A) as arising from double
scattering on the potential. This point of view allows
simple explanation of the dip-bump sequence seen in the

PBAR-P differential cross section.

At large enough momentum transfers fz(k,A), having
the shallower slope, dominates the single-scattering
amplitude fl(k,A). At the cross-over point substantial
interference may be expected between the two amplitudes.
In the present experiment such interference appears

destructive owing to the pronounced minimum observed near



|[t] = 0.4 (Gev/c)?. at larger momentum transfers the
interference term becomes small (that is, fl(k,A) falls
exponentially relative to fz(k,A)), and f2(k,A) alone
dominates the amplitude. As the interference term
diminishes, the cross section rises again to form the
‘secondary maximum at |t| = 0.7 (GeV/c)2, and at still
larger momentum transfers the cross section drops (with
the shallower slope) toward the flat plateau, below which

it plunges around |t| = 1.1 (GeV/c)z.

Exchange model: The exchange model, as developed here,

presumes that at high energies the forward elastic scat-
tering amplitude reflects the absorption occurring into
the production and annihilation channels, and that at
lower energies the various exchange mechanisms modify
this basic amplitude according to a prescription pro-
vided by the eikonal picture. As discussed earlier, the
peripheral P-P and PBAR-P amplitudes are linked by
charge conjugation and crossing symmetry to the direct-
channel PBAR-P amplitude. Thus, at high energies both
processes should have the same forward scattering ampli-

tude:
i(ko,/4m) exp(-R2A%)
t P (o)

or, equivalently, the same eikonal:
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ik {1 - exp ixo(k,b)}
= [i(kct/4ﬂ)/2Rg] exp(—b2/4Rg)

At energies attainable with present accelerators, the
forward P-P cross section tends to shrink (as predicted
by the Regge-pole picture), while the PBAR-P cross sec-
tion definitely antishrinks, thus indicating a contribu-
tion from some strong secondary process. In this connec-
tion, R. Arnold (1967) observes that in PBAR-P scatter-
ing "the annihilation cross sections ... are equal in
importance to those of production without annihilation,
and the latter are comparable to the corresponding P-P
reactions." Thus, one expects that the PBAR-P amplitude
differs from the P-P one because of the extra absorption

introduced by the annihilation channels.

In a Feynman picture, the first-order PBAR-P
annihilation amplitude results from the exchange of a
nucleon between the target and projectile. If spin can
be neglected, the (covariant) annihilation potential takes

the usual Yukawa form
Ua(b,z) = —iUl exp (-mr) /mr

where m denotes the mass of the exchanged nucleon. As
shown above, this potential leads to an eikonal of the

form:
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Xq(ksb) = (1U;/kMm) K (mb) (M = V/3)

where KO denotes the zero-order modified Bessel function.
Thus, according to the eikonal perturbation formula, the

P-P and PBAR-P amplitudes differ by
£, (k,0) =k {m X5 €xp(iXy) J,(Ab) b db

Rather than evaluate this (difficult) integral directly,

we note that within the spirit of the approximation
i 2 2
Ko (mb) <+~ 1/(A7 + m")
~ exp(-A2/m?) /m? <> 1/2 exp(-m2b2/4)

where the double-headed arrow denotes Fourier-Bessel
transform correspondance. Hence, upon substitution we

obtain the pair of formulas:

i(kdt/4ﬂ) exp(—RgAz)

Hh
I

Hh
]

a = (iU1/Mm3) exp(-42/m?)

[iUlot/BﬂMng(m2 + 1/R2)]
. expl-42/(n? + 1/8%)]

Note that fa vanishes at high energies, so that fO

dominates the scattering amplitude.

At lower energies fa may be expected to modify fo
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in an experimentally detectable way. Since m2 = 1
(GeV/c)+2, and Ré = 5 (GeV/c)_z, the diffraction field
associated with f_, looks much wider than that for fo-
Consequently, at sufficiently large scattering angles,
f, will dominate f,, and the differential cross section
will appear to change slope. At the cross-over point
destructive interference presumably occurs, giving rise
to the familiar minimum at |t]| = 0.4 (GeV/c)z. At
still larger scattering angles a secondary maximum appears,
followed by an exponential drop to the flat plateau ob-
served in this study. Strong antishrinking may also

occur, as noted below.

Regge theory: 1In a Regge picture the difference between

the P-P and PBAR-P scattering amplitudes may be credited
to the exchange of nucleon-isobar trajectories between
the target and projectile. At high energies the PBAR-P
scattering amplitude is, of course, dominated by diffrac-

tion scattering, so that

£,(k,A) = i(kop/4m) exp(-R22%)

where o = 40 mb, and Rg ~ 5 (GeV/c)—z. The high-energy

eikonal to be associated with this amplitude obtains as a

solution to

fo(k,8) = ik /¥ {1 - exp ix,(k,b)} Jo(Ab) b db
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Inverting the Fourier-Bessel transform, and then substi-

tuting for fo(k,b) yields:
ik {1 - exp ixg(k,b)}
= [i(ko,/4m)/2R%] exp(-b2/4R%)
t o) P (o]
This easily solved formula defines xo(k,b) implicitly.

At lower energies the amplitude deviates from
fo(k,b) owing to trajectory exchange between the target
and projectile. The (covariant) Regge-pole amplitude

for such a process takes the usual form:
. oy (8)
Mfl(k,A) = 1A1(A)(s/so)

where M = Vs, Studies (Barger and Cline [1967]) of back-
ward pion-nucleon scattering--presumably also dominated

by nucleon-isobar exchange--indicate that

Al(A) = constant
al(A) = OLO - RgAz
) 2 -2
with ag = .15, and Ry = 5 (GeV/c) ~. Thus, the Regge

pole scattering amplitude takes the simplified form:
: o 2,2
fl(k,A) = 1(A1/M)(s/so) o exp(—ROA ln(s/so))

The eikonal to be associated with this amplitude obtains
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as a solution to
fl(k,A) = k { Xl(k,b) JO(Ab) b db
In other words,
ky. (k,b) = ilA. (s/s ) ©/2MR% 1n(s/s )]
1 1 o) o o)
2 2
+ exp(-b“/4Rg 1ln(s/sg))

As expected, xl(k,b), and hence also the exchange ampli-

tude vanish at high energies.

The net scattering amplitude--valid at both high

and moderate energies--is given by the Fourier-Bessel

transform:
£(k,b) = ik {w {1 - exp ix(k,b)} J_(4b) b db
x(k,b) = x,(k,b) + Xy (k,b)

The above formula contains just one free parameter,
namely, Ay, and suggests that an unambiguous fit to the
PBAR-P differential cross section is possible. To de-
termine a best value for Ay fits were made to the forward
PBAR-P cross section over a wide range of momenta

(.15 to 1.98 GeV/c). A best fit obtained with Ay =

10.8 0.6 GeV-F, and resulted in the curves shown in

Figure 11.2-1. Although not part of the fitted data
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sample, all curves evidence distinct dip-bump structure,
as well as substantial antishrinking. The dip-bump
structure arises for reasons cited under the exchange-
model described above; the antishrinking follows from an
argument given by Arnold (1967), and is discussed in

Section 6.4 above.

Strong antishrinking also occurs in the exchange
model, as shown in Figure 11.2-2. These curves were
obtained as above, except that xl(k,b) was replaced with

xa(k,b), where
Xa(k,b) = i(Ul/ka) Ko(mb)

and a value instead obtained for Uj, namely, 13180 % 690
GeVZ/F. These curves evidence both antishrinking and
dip-bump structure, so that the Regge and exchange pic;
ture yield similar qualitative cross-section behavior.
To determine which model best matches the experimental
data, the forward slope, first minimum, and secondary
maximum have been compared with the values measured ex-
perimentally, as shown respectively in Figures 11.2-3,4,5.
Both theories follow the observed data remarkably well,
especially considering the high-energy character of the
approximation. Detailed inspection of these curves
indicates, however, that the Regge picture is more con-

sistent with the measured structure than the absorption-
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corrected exchange model.

11.3 Backward Cross Section

According to Figure 10.7-10 the backward elastic
cross section rises sharply below 1.95 GeV/c lab momentum,
or 2400 MeV CM emergy. The effect becomes especially
noticeable at the largest scattering angles
(-0.92 > cos 6 > -1.0), where the cross section drops more
than a factor of three between 1.70 GeV/c, and 1.95 GeV/c.
Structure at these momenta has also been observed by
R. J. Abrams, et al. (1967) in both the PBAR-P and PBAR-D
total cross sections. Using the two cross sections to
untangle isospin states, this group also determined that
such structure could be attributed to a pair of I=1
resonances at 2345 MeV (width=140), and 2190 MeV (width
=140), and an I=0 resonance at 2380 MeV (width=85).
(These bumps may also be credited to nucleon-isobar pro-
duction, as discussed below.) To compare these findings
with our own, the points given in Figure 10.6-102 have
been replotted with an energy abscissa in Figure 11.3-1,
and the resonances hypothesized by R. J. Abrams, et al.
(1967) shown as horizontal baxrs above the data. Inspec-
tion of this figure indicates that the rapid cross-
section rise appearing in our data more likely results

from resonance structure at 2345 MeV, than 2380 MeV.
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Figure 11.3-1. Backward Energy Cross Section. Histo-
grammed events have -0.9 > cos g > -1.0. The horizontal
bars indicate the position, and width of the resonances
hypothesized by R.J. Abrams, et al. (1967).
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As noted in Section 2.4 above, the minimum ex-
pected total cross section for a resonance with (2J+1)K
= 1.0--approximately the wvalue quoted for the structures
observed by R. J. Abrams, et al. (1967)--decreases from
.120 mb at J=2 to .046 mb at J=6. On the other hand,
the absence of any three standard-deviation peak in the
backward hemisphere cross sections of Figure 10.6-10D
indicates that a boson resonance communicating with the
backward hemisphere must do so with less than .100 mb
of cross section. Consequently, the total cross-section
enhancements observed at 2345 and 2380 by R. Abrams can-
not be credited to the formation of a single boson
resonance with spin less than three, and one-half its
elastic scattering amplitudes decaying into the backward

hemisphere.

Other nearby cross-section measurements indicate
that additional structure exists in the backward cross
section. However, owing to smaller data samples these
experimenters cite results only for the wider angular
interval -0.80 > cos 6 > -1.0, thus possibly diluting
evidence for high-spin boson resonances. In addition,
corrections for square-hit scanning efficiency--known to
be important from the present study--were not apparently

undertaken in these experiments. Thus, to compare our
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results with those of others, our data has been recom-
piled using the wider angular interval, and with correc-
tions for square-hit scanning efficiency removed. The
new backward cross sections, along with those reported
by G. Lynch, et al. (1962), W. Cooper, et al. (1968),
Z. Ma, et al. (1968), are shown in Figure 11.3-2. For
comparison the resonances conjectured by R. J. Abrams,
et al. (1967) have been indicated with the three upper
horizontal bars. Similarly, the two lower bars show the
boson structures detected by M. Focacci, et al. (1966)
with a missing-mass spectrometer at 2382 MeV (width < 30),

and at 2195 MeV (width < 13).

Inspection of the data collected together in
Figure 11.3-2 shows that another (or perhaps the same)
bump appears in the backward cross section below our
energies. As noted by W. Cooper, et al. (1968), this
structure may be credited to resonance formation at
2190 MeV, as originally proposed by R. J. Abrams et al.
(1967) . The activity at 2290 MeV, on the other hand,
suggests a sharp dip in the backward cross section near
1.60 GeV/c. Evidence supporting this interpretation,
though weak, amounts to the following: 1) The last two
points taken by Cooper, et al. (1968) indicate a rapid

drop in the backward cross section which cannot be attrib-
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uted to inter-experiment normalization error. 2) The
point reported by Z. Ma, et al. (1968) at 1.58 GeV/c
appears much lower than our 1.63 GeV/c measurement, the
two experiments appearing consistently normalized owing
to the proximity of the two data points at 1.88 GeV/c.
3) The point taken by G. Lynch, et al. (1962) at 1.61
GeV/c appears consistent with Z. Ma, et al. (1968),
lending support to the conjecture that neither point is

anomalously low.

Rapid activity in the backward PBAR-P cross sec-
tion has also been observed at lower energies by D. Cline,
et al. (1968), and such structure has been credited in
part to Ericson fluctuations. Ericson fluctuations occur
when two or more resonant states couple to the same
system, and the spacing between these states is small
compared to their average width. The amplitudes associ-
ated with these resonances may then interfere, thereby
producing cross-section structure over-and-above that
expected from the resonances alone. Such fluctuations
have been observed in nuclear physics, as noted by
T. Ericson (1965). Assuming, as conjectured above, that
direct channel resonances form and decay at both 2190
and 2345 MeV--with the widths quoted by R. J. Abrams,

et al. (1967)--one may speculate that the activity
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observed at 2290 MeV amounts to an Ericson fluctuation.
Such fluctuations, however, resist analysis, as a minimum
of three amplitudes (two resonances, plus the background)

mix to form the observed structure.

Both the elastic and inelastic cross sections
may vary rapidly near the energy threshold for the

reaction
PBAR + P - QBAR + Q

where Q and QBAR denote a pair of (perhaps unrelated)
baryon states. The inelastic cross section fluctuates
because it depends linearly on k' (where k' represents
the CM momentum of the QBAR), since k' increases rapidly
above its threshold value of k'=0. The elastic cross
section, on the other hand, fluctuates because the double-
exchange diagram shown in Figure 11.3-3 becomes ener-
getically possible, and contributes to the measured cross
section. Below threshold the inelastic process cannot,
of course, be observed, while the elastic one may still
occur with a finite probability, since energy-momentum
conservation need only hold within the constraints im-

posed by the uncertainty principle.

As noted by R. J. Abrams, et al. (1967), the

bumps observed in the PBAR-P and PBAR-D may be attributed
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Figure 11.3-3. Elastic Threshold Reaction. The exchanged
particles are mesons.



to nucleon-isobar production near threshold, instead of
boson resonance formation at the energies quoted above.
In this case the energy fluctuations in the elastic cross
section depend on the Feynman propagators for the hyper-
ons Q and QBAR, while changes in the angular distribu-
tion arise from the meson exchanges. Since the Q and OBAR
may take any energies E' and E" such that their sum equals the
invariant mass M, the energy dependence of the threshold
reaction will depend on a factor

6(M-E'-E")

/[ dE' 4"
(E|2_m|2) (E..z_m..2)

where m'(m") denotes the (perhaps complex) mass of the
Q(QBAR). The delta function, of course, kills one of
the integrals, turning the remaining one into a convolu-
tion integral. Application of the convolution theorem

then yields a term proportional to
2
1/ M - (m' + m")%]

This factor, being formally identical to the one describ-
ing a direct channel resonance of mass (m' + m") ,
indicates that the elastic cross section looks resonant
at the threshold for a (well-coupled) inelastic process.

However, the angular distributions observed in the present

experiment look too structured to be attributed to the
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production of baryons at threshold, as explained below.

11.4 Angular Character of Backward Peak

The backward peak appearing at our lowest three
momentum sets may be credited td a direct-channel boson
resonance with mass 2345 MeV, and width 140 MeV. To
ascertain the angular nature of this enhancement, events
from these momentum sets have been combined, and histo-
grammed against cos 6 in Figure 11.4-1. According to
this plot, the backward peak emerges from the plateau
around cos 6 = -0.9, and then rises approximately four
standard deviations above the plateau in the last angular
interval. When the various background amplitudes are
small, the observed structure results entirely from
resonance amplitudes, and the remarks of Chapter 2 apply
directly. On the other hand, if the background ampli-
tudes compare with those of the resonance--as suggested
in Chapter 6--the situation becomes more complicated.
In either case, however, upper and lower limits may be
placed on the spin of the resonance, according to the

arguments presented below.

Weak background. When all the background amplitudes are

weak relative to those of the resonance, and thus con-

tribute only negligibly to the differential cross section,
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the angular distributions shown in Figures 2.5-1,2,3
represent those expected from the decay of the resonance.
Owing to the existence of a plateau forward of cos 6 =
-0.9, the observed enhancement appears consistent only
with the distributions shown in Figure 2.5-3, since the
other curves contain oscillatory structure not present

in the measured cross section. In addition, spin assign-
ments J=1,2,3 all lead to angular distributions

(Figure 2.5-3A) too smooth to match the sharp change in
cross section seen at cos 6§ = -0.9. On the other hand,
spin assignments larger than J=5 produce plateau-to-

peak cross—-section ratios larger than the factor of three
characterizing the measured data. Thus in the presence
of a weak background a good lower limit for J is 4, and
good upper limit is 5, as entered in column one of

Table 11.4-1.

Incoherent background. When the background is strong,

but incoherent in the sense that interference terms formed
with the resonance remain small, the observed angular
distribution represents a superposition of background and
resonance effects. The background in this case presum-
ably fluctuates slowly, and thus generates part of the
plateau seen forward of cos 6 = -0.9. This implies that
the singlet, or either triplet state could produce the

observed enhancement, with the background smoothing, or
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TABLE 11.4-1

Resonance Spin Assignments

Weak Incoherent Coherent
Background Background Background
J (upper) 5 5 8
J (lower) 4 3 3
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otherwise masking the oscillatory structure present in
Figures 2.5-1 and 2.5-2. 1Inspection of the latter two
figures indicates that even with such background, spin
assignments lower than J=3 lead to backward enhancements
too flat to be consistent with the observed data. On
the other hand, Figure 2.5-3 suggests for similar reasons
that J be at least four. As to an upper limit, Figures
2.5-1,2 indicate that spins greater than four lead to
backward enhancements too sharply peaked to match with
the measured cross sections. Figure 2.5-3 shows, on

the other hand, that J=5 represents an upper limit for
this triplet-state possibility, Thus, with a wholly
incoherent background a good lower limit for J appears

to be three, and safe upper one five.

Coherent background. When the background is both strong

and coherent, so that interference effects dominate the
amplitude, the observed angular distribution represents

a nonlinear combination of background and resonance
structure. The various interference terms, being a
mixture of partial waves, look like products of associated

Legendre polynomials,
] n
Pi? (cos 9) Pf% (cos 9)

where L" denotes the orbital angular momentum of the
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background wave, and L' that for the resonance. For a
resonance of spin J the orbital angular momentum L' may
take any of the three values J-1, J, J+1, while for back-
ground waves like those necessary to form a forward
diffraction peak, values for L" considerably in excess
of thirty may be expected. Consequently, though the
Legendre products quoted above form substantially less
than a (mathematically) complete set, they may still
simulate very complicated structure when the magnitudes
and phases of the background are correct. In particular,
for any given J these products may readily simulate--
within statistical error--the crude angular-distribution
meaéurement shown in Figure 11.4-1. For this reason it
is difficult to place a theoretical upper limit on the
resonance spin, although as a practical matter spins in
excess of seven or eight appear unreasonable. As to a
lower limit, owing to the absence of any three standard-
deviation structure in the backward hemisphere cross
section of Figure 10.6-10D, spins less than three for the
2345 MeV resonance may be ruled out, as noted in Sec-

tion 11.3 above.

The sharp backward peak shown in Figure 11.4
might also be interpreted as a threshold effect associ-

ated with the production of baryons . The angular
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dependence expected at threshold can, in principle, be
determined using the Feynman diagram shown in Figure
11.3-3. 1In practice, however, substantial absorption
occurs, and the observed cross section appears more
wider than predicted by an unadorned exchange model.

On the other hand, the low kinetic energy of the Q and
OBAR near threshold, and the requirement of CP invari-
ance in the strong interaction pléce severe restrictions
on the participating partial waves. In particular, near
threshold the QBAR-Q system resides mostly in an S-wave
state, so that the total spin J must obtain from the
intrinsic spins of the Q and QBAR. For a pair of spin
3/2 particles, like the N*(1238;3/2,3/2+) and its anti-
particle, this can be as high as J=3. However, CP

invariance requires that
S(initial) = S(intermediate) = S(final)

so that L=0 implies J=0,1. The J=0 possibility leads

to a bump in the total cross section with a flat angular
distribution, while J=1 case leads to a term quadratic

in the first-degree Legendre polynomial. Neither of
these, however, is consistent with the sharp backward
peak shown in Figure 11.4-1. Experiments tend to confirm
these conclusions. For example, W. Cooper, et al. (1968)

found no smooth excitation function that both reproduced
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their cross sections for single pion production, and the
bumps observed in the total cross section by R. J. Abrams,
et al. (1967). In a similar effort, but at energies
overlapping our own, Z. Ma, et al. (1968) found no struc-
ture in their single-pion production cross sections that
could be associated with the ‘2345 and 2380 MeV resonances

hypothesized by R. J. Abrams, et al. (1967).

If, as conjectured, the observed enhancement
results from the decay of a legitimate boson resonance,
its effects ought also to be observed in other reaction
channels. According to Figure 10.6-10 the enhancement
cross section drops rapidly between 1.63 and 1.88 GeV/c,
a result paralleling a similarly rapid drop in the di-
pion annihilation cross section measured by J. Chapman,
et al. (1968). The angular distribution associated with
this reaction evidences no forward or backward peak--as
would be expected if the annihilation were proceeding via
nucleon or dibaryon exchange--thus éuggesting that the
di-pion final state obtains mostly via the decay of one
or more intermediate states. The angular distribution
observed by J. Chapman, et al. (1968) follows a fourth-
degree Legendre polynomial remarkably well, lending strong
support to a J=4 spin assignment for the intermediate
state. This value is, of course, consistent with the

estimates quoted in Table 11.4-1 above.



APPENDIX A

PROJECTIVE GEOMETRY OF MURA CHAMBER

A.1 Introduction

The angles, curvature, and bubble density of
the projected track are determined by examining the
differential geometry of the viewing-screen image.
Since the projection formulas are space variant, the
viewing-screen azimuth obtains from the slope of bound,
rather than free vectors. Curvature, on the other hand,
follows from the usual two-dimensional curvature formula
applied to the projection of a bound cylindrical helix.
Finally, the bubble density is determined by examining
the contraction, or dilation of vertex-zone spatial
length on projection of a track through the camera

lenses.

The geometry assumed for the formulas presented
below is shown in Figure A.l1-1. Call p the distance
from the camera lens to the nominal plane of the beam
tracks, and g the distance from the back of the camera
lens to the plane containing the film. With the co-
ordinates shown, the image (u,v) of a vector (x,y,z)

bound to the point (x',y',0) has the form:

u = qglpx + 2zx']/p(p - 2)

292
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Figure A.1-1. Camera and Chamber Geometry. Here v,
and v. denote positive and negative particle tracks]
and the curved vectors the directions they tend to
orbit. (The beam enters in the xy-plane.)
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v = qglpy + zy'l/p(p - 2)

Note that the projection (u,v) depends explicitly on the

coordinates to which the vector (x,y,z) is bound.

From the geometrical point of view it is more
convenient to deal with spherical coordinates (r,6,9¢)
centered on the vector (x',y',0) than the rectangular

coordinates (x,y,z). In this case

b
I

r sin 6 cos ¢ = r cos A cos o

r sin 6 sin ¢ = r cos X sin ¢

<
]

r cos 6 = r sin A

N
Il

where X = 71/2 - 8 denotes the track's dip angle. Simi-
larly, it sometimes proves convenient to work with the

cylindrical coordinates (p,y) in the plane of the film:

o
I

p cos Y

<
il

p sin Y

A.2 Projection of Azimuth
The angle {y that the projected track makes with
the u-axis obtains by parameterizing x with the para-

meter t = r, and then looking at the derivative:

tan ¢y = dv/du

(dv/dt) / (du/dt)

p sin ¢ + y' tan A

p cos ¢ + x' tan A



Note that the projected azimuth depends on the collision

vertex (x',y',0),but not the lens-to-film distance q.

A.3 Projection of Bubble Density
The viewing screen bubble density obtains from
the ratio of spatial distance on film to spatial distance

in the chamber. Thus, we consider

2

du® + dv2 = [(au/at)2 + (8v/3t)2] dt2

Consequently, the viewing screen bubble density follows

from the ratio:

ionization(film) / ionization(chamber) =
ql(p cos A cos ¢ + x' sin A)z

+ (p cos A sin ¢ + y' sin A)211/2/p2

where the right-hand formula is just the bracketed

expression above, evaluated at collision vertex (x',y',0).

A.4 Projection of Curvature
Viewing-screen track curvature obtains by para-
meterizing the space curve as a cylindrical helix, and

then using the well-known curvature formula:

K = (ulvu - unvl)/(ulz + V'2)3/2

on the projected image. (Here the primes denote
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derivatives with respect to t.) The magnetic field
generating the helix is presumed parallel to the camera
axis, so that the particles orbit in helices with radius

of curvature

o))
I

P cos \/.3B

and pitch

o
i

P sin )\/.3B

where P denotes the momentum of the particle in MeV/c,

and B the magnetic field in kilogauss.

The derivatives u', u", v', v" follow after some

algebra:

u' = glpa cos ¢ + bx']/p2
v' = glpa sin ¢ + by']/p2
u" = gl * pa sin ¢]/p°

+ 2gb[pa cos ¢ + bX']/P3
v" = ql ¥ pa sin ¢]/p>

+ 2gb[pa sin ¢ + by']/p3

where the upper (lower) signs refer to positive (negative)
particles. (The magnetic field B points in the positive

z-direction, that is, toward the cameras.)
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A.5 Rotation of Event Geometry

In simulating two-prong events one normally
begins with a beam track running parallel to the x-axis,
and suffering an interaction at the point (x',y',0) with
the outgoing tracks in the xy-plane. In,this case the
track geometries must be rotated about the x-axis by
various angles o to account for the various azimuthal
possibilities for the interaction, and about the z-axis
by some angle B to obtain the correct pitch of the beam
with respect to the x-axis. If an outgoing track ori-
ginally makes angle ¢o with the x-axis, then after these

two rotations its dip A and azimuth ¢ are given by

sin X sin a sin bo

cos a cos B sin ¢4 + sin B cos ¢q
tan ¢

cos B cos ¢o - cos o sin B sin ¢4

These complicated-looking formulas are readily evaluated

with a digital computer.
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APPENDIX B

SCANNING EFFICIENCY THEORY

B.1 Introduction
In this appendix we discuss the random-miss,
correlated-miss, and two-scanner models for scanning
efficiency. The random-miss model, which is more or
less conventional in bubble-chamber work, is based on the
hypothesis that all events are of equal difficulty, and
hence that events missed by one scanner are independent
of those missed by the other. The correlated-miss model
on the other hand, incorporates the hypothesis that some
events are more difficult than others, and thus that
some correiation exXists between the events missed by the
first scanner, and those missed by the second.
B.2 Random-Miss ModelTL
The random-miss model for scanning efficiency is
based on the hypothesis that all events are equally
difficult for the scanners, and that no tendency exists
for the scanners to miss one event rather than another.

Such a hypothesis is tenable only if all events,

1-Most of the material in this section was brought
to the author's attention by his colleague M. Church.
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regardless of their exact topology, stand out equally
prominently against the beam-track background. Mathe-
matically speaking, the random-miss assumption implies
that the events missed by the scanners are statistically
independent, and that no correlation exists, for example,
between event topology and scanning efficiency. In this
case probabilities are given as simple sums and products,
and no calculus is required to specify scanning effi-

ciency, as in the correlated-miss model introduced below.

A second tenet of the random-miss model holds
that the concept of an average scanner with an average
scanning efficiency is meaningful for the experiment.
The average scan efficiency is determined by making a
histogram of the scan efficiencies obtained for each
scanner on each roll, and then calculating the mean e,
and rms width Ae of the resulting distribution. The
. average scan efficiency may then be considered well
defined if the uncertainty §e in e is small compared to
the other statistical errors of the experiment. The

uncertainty de in e is given by the usual formula
se = Ae/VN

where N is the number of entries in the histogram. For

oo

example, if N=625, e = 80%, Ae = 5%, then ge = 1/5%.



Errors of this order are considered negligible in most

bubble-chamber experiments.

When the film is double scanned the overall
efficiency on each roll improves materially, since, under
the random-miss hypothesis, the events missed by the
first scanner stand a good chance of being picked up by
the second, and conversely. To calculate the efficiency
for the double-scan, let N1 be the number of events seen
by just one scanner, N2 the number seen by two scanners,
and Ny = N, + N, the number observed by either or both
scanners. Then, if the film contains Nt events that

pass the scan rules, the above numbers are related to

the single-scan efficiency e by

Ng = N, [1 - (1 - e)?] =N, (2e - &2
o= Mgt T © = Ny (2e - ef)

Since Ny = N; + Ny, we have two independent equations
in the two unknowns e and Nt‘ To determine e we divide

Ny by N5, and solve directly for e obtaining
e = 2N2/(Nl + 2N2) = 2N2/(NO+ N2)

The double-scan efficiency is, of course, given by
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No/Nt' so that

_ _ 2 _ 2
E = NJ/N, = 2e - e = 4N N,/ (N, + N,)

The above formulas may be applied to the experiment as
a whole, or, if it is suspected that e depends on some
parameter like the center-of-mass scattering angle, to

some restricted portion of the data.

If some of the film has been triple scanned, the
validity of the random-miss hypothesis can be checked by
counting the number N; of events seen by just one scanner,
the number N, seen by two scanners, and the number N3 seen
by all three scanners. In this case the numbers are

related to e by

2
3Nt(l - e)e2

e3

b=
N
1l

N3=Nt

We now have three equations in two unknowns, and the
system is overdetermined. However, if the random-miss
hypothesis holds, any pair will yield the same value for
e as any other pair. On the other hand, if the hypoth-

esis fails, e will depend on the pair chosen.
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B.3 Correlated-Miss Model+

In many experiments, and in particular for the
present one, some events prove more difficult for the
scanners than others. The variance in difficulty can
arise for a manifold of reasons: for example, the
topology of some events may stand out distinctly on the
scanning screen, while for others it may be obfuscated
by other events, as well as the beam-track background.
Similarly, in some cases the event topology may be wholly
unique, while in others it may closely resemble that of
an unstudied channel. Such effects are generally quite
subtle, and virtually impossible to treat analytically.
However, when the variance is small one can hope to
account for such effects by making first order correc-
tions to the scan-efficiency formulas for the random-
miss model; this, in fact, is the objective of the

correlated-miss model introduced below.

To set the foundations for the correlated-miss
model, we consider a hypothetical experiment wherein the
greatest share of events are of the random-miss variety,
while only a small fraction tend to be missed by the

second scanner if already missed by the first. 1In

TThe author is indebted to statistician R. Todd
for many of the ideas contained in this section.
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particular, we postulate that the events follow a line-
arly biased gaussian-distribution law in a difficulty

variable D:
0(D) = 2D exp(- D?) (D > 0)

From the scanner's point of view events in the range

0 < D <1 are relatively easy to find, while those with

D > 1 present a serious challenge to his scanning abil-
ity--although he may still have a high efficiency for
finding them. The distribution has been given a linearly
biased gaussian form, since 1) events tend to be dis-
tributed this way in practice,+ 2) the exact form of the
distribution plays little role in determining the first
order corrections to the random-miss model, and 3) the
mathematics resulting from this distribution are partic-

ularly simple (contain no radicals).

The average scanner generally displays a better
efficiency for the easy events than for the more difficult
ones. To account for this tendency we postulate that the

average scan efficiency e has a gaussian dependence on D:

e(D) = e, exp (- D2/D02)

1'In most bubble-chamber experiments, the greater
share of events tend to be of intermediate difficulty,
with only a few being extremely easy or extremely difficult
to find.
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where e is the average scanner's efficiency for zero
difficulty events, and Do the difficulty at which his
efficiency drops to 1l/e of its best value. According
to this formula, and the one preceding it, the average
scanner will find a total of No events on a roll con-

taining N, good events, where

t

(=]

2 2
Ny = Ng fo p(D) e(D) 4D = NyeqDg /(DO + 1)

Note that if the scanners have no trouble with

the difficult events, the number found is

N. = Nte

o (Do >> 1),

@]

a formula identical to that for the random-miss model.
On the other hand, if the difficult events represent a

severe problem for the scanners, the number found will be

N_ =N

(o] teoDo (Do << 1).

Finally, if the scanners have no trouble at all with the
easy events, but tend to miss the difficult ones, the

number found is given by

2 2
Ny = N, Dy /(DO + 1) (eo = 1),

a formula useful, for example, in the present experiment.



DOUBLE SCANNING: When the film is double scanned we

expect a marked improvement in the overall scan effi-
ciency, since, even under the correlated-miss hypothesis,
the events missed by the first scanner stand a good
chance of being observed by the second, and conversely.
To calculate the efficiency for the double scan, let N,
be the number of events found by just one scanner, N,

the number found by two scanners, and NO=N1+N2 the num-

ber found by either or both scanners. Then,

oo

Ny = 2Ng { o(l-e)e dD

2 2 2. 2 2
2NteoDo /(Do + 1) - 2N e “Dg /(Dge + 2)

oo}

Ny = N [ pe? dD = Neeg®Do®/(Do? + 2)

We have two equations in the three unknowns Ni, e D

o’ o’

so that the system is indeterminate. However, we can

eliminate Nt and write e_ in terms of Do:

(o]

2

e = 2N o

o 2(D

2
+ 2)/[(2N2 + Nl)(Do + 1)1
a formula that will prove useful in the sequel.

In certain cases one of the two parameters eq

or D, can be suppressed, thus allowing solution for the

other in terms of Nl and N2.+ I1f, for example, the

+Most of the arguments presented in this paragraph
were worked out in collaboration with M. Church.
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scanners have about the same problem with both the easy

and difficult events, the parameter Do will be large, and

ey = 2N,/ (2N, + N;) (Dy >> 1)

as in the random-miss model. On the other hand, if they
have little trouble with the easy events, but tend to
miss the more difficult ones, the parameter eq will

approach unity, and Dy will be specified by

2

e n/m2 +2) = 2N,/ (28, + Ny

(D

from which we conclude that Do2 = 2N2/Nl - 1. Under the

latter hypotheses the.scanning efficiency for the indi-

vidual scanners is given by

2

)
Il

D2/ (D 2 + 1)

2
[2N,/ (2N, + Np)1[1 - (Ny/2N,)°]

Similarly, the overall scanning efficiency is given by
E = [AN_N,/(N_ + N,2)1[1 - (N;/2N,)?]
o2 o) 2 1 2

Note that in both expressions the bracketed quantity
specifies the difference between the random-miss and
correlated-miss efficiencies. When the average scanning
efficiency is high, N, >> Ny, and the two theories give
the same results. Otherwise, the correlated-miss hypoth-

esis adds a small correction to the usual formulas.
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TRIPLE SCANNING: TIf some of the film has been triple

scanned, the parameters, ey and D, may be determined
explicitly. Let Nj be the number of events found by
just one scanner, N, the number found by two scanners,

and N3 the number found by all three scanners. Then,
N, = 3N, f - e)?

3Ny S p(1 - e)e2 db

2
N
il

3

2
w
|

= Ny J pe” dD

The three integrals are simple functions of €o and Dg.
_Thus, we have three equations in the three unknowns
Ni{,e,,Dy, and the system is solvable. Since Ny is the
least interesting of the three variables, we eliminate it
by dividing N; and N, by N3, obtaining upon evaluation of

the integrals

N;  3(D,2 + 3) 6 (D,2 + 3)
T T2, 2 ) 2 *3
N, ey (Do + 1) e (DO + 2)

N, 3(Dg2 + 3)

_— = 5 - 3

N3 ey (D" + 2)

This pair of equations is readily solved for the unknowns

eq and Dy. We omit, however, the explicit solution, since
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the algebra is fairly involved and not particularly

illuminating.

REMARKS: The equations of the correlated-miss model
should, and in fact do go over to those for the random-
miss model in the limit Do approaches infinity. In this
sense, the random-miss model represents a special case
of the correlated miss-model, and should be used when-
ever its hypotheses are observed to hold. In doubtful
cases the validity of the random-miss hypothesis may be
checked by using the triple scans to determine e, and
Do. If Dy turns out to be large, say greater than five,
the random-miss hypothesis is probably valid. If, on
the other hand, D, takes on an intermediate value, say,
in the range 1 < Dy < 5, the correlated-miss model will
give the more accurate scan efficiencies. Finally, if
Dy is small, that is, less than unity, neither model can
be considered reliable, and a revision of the scan rules

should be considered.

The internal consistency of the correlated-miss
model may be tested by checking that the values for eq
and D, obtained from the triple scans satisfy the formula
in ey and D, obtained from the double scans. Discrepan-

cies between the two may arise either because the
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exponential parameterizations are unsound, or because

the double and triple scanners were of different scanning
ability. When the discrepancy is not too large, the
former problem may be resolved by reformulating the
difficulty distribution p (D), and/or the scanning effi-
ciency dependence e(D). On the other hand, if the scan-
ners were of different capability, one can use separate

efficiency formulas p (D) for the double and triple scans.



APPENDIX C

ISOSPIN COMPOSITION OF NUCLEON-ANTINUCLEON SYSTEM

C.l Isospin States of Nucleon

The antinucleon-nucleon system consists of two
I=1/2 baryons, whose charge Q is related to their baryon
number B, and z-component of isospin IZ by the well-

known formula:
Q = IZ + B/2

As usual in quantum mechanics, the joint probability
amplitude obtains as the product of the individual ampli-
tudes. Thus, for example, the isospin part of the joint

probability amplitude for a PBAR-P system is just
|1/2,+1/2>|1/2,-1/2> = Vy1I/2 |1,0> + VI/2 |0,0>,

The bracketed quantity |I,IZ>, defined explicitly in
Table C.1-1, is Dirac's short-hand notation for the iso-
spin eigenfunction. The right-hand expression repre-
sents the decomposition of the PBAR-P isospin amplitude
into its I=0 and I=1 components; the radicals are the
well-known Clebsch-Gordon coefficients, and given in
Table C.1-2 below. If this table is used oppositely it

instead decomposes the I=1, and I=0 nucleon-antinucleon

510
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TABLE C.1l-1

Particle B I 1% 0 |1,12> Symbol
Proton +1  1/2  +1/2 1 |1/2,+1/2> |p>
Neutron +1  1/2  -1/2 0 |1/2,-1/2> |N>
Antineutron -1 1/2 +1/2 0 |l/2,+l/2> |NBAR>
Antiproton -1 1/2 -1/2 -1 |1/2,-1/2> |PBAR>
TABLE C.1-2
Clebsch-Gordon Coefficients
Joint Amplitude |1,+1> |1,0> |0,0> |1,-1>
|1/2,+1/2>|1/2,+41/2> 1 0 0 0
l1/2,+1/2>|1/2,-1/2> 0 +1/V2 +1/V2 0
|1/2,-1/2>|1/2,+1/2> 0 +1/V2 -1/V2 0
|1/2,-1/2>|1/2,-1/2> 0 0 0 1
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states, as shown in Table C.1-3.

C.2 Charge Conjugation and Charge Symmetry

The operation of charge conjugation, C, converts
a particle to its antiparticle without changing its
spatial position, momentum, or spin. Specifically,
charge conjugation changes the sign of a partiéle's
baryon number, parity, strangeness, charge, and other
additive quantum numbers, and thus converts the non-
spatial portion of the particle's eigenfunction to (plus
or minus) its antiparticle's. For a nucleon-antinucleon
system the sign of the conjugated eigenfunction obtains

via the generalized Pauli principle, which states that
E(space) E(spin) C |J,J32;1,1%2> = -|J,J%2;1,12>,

where the E operators exchange the denoted coordinates.
Owing to the well-known properties of the spherical
harmonics, and the necessity for Fermi-Dirac statistics
among fermions, the exchange of the space coordinates
yields a factor (-l)L, while that of the spin a factor

(—l)S+1. Thus, for the nucleon-antinucleon system

Cc = (_l)L+S

Moreover, since the parity operation applied to the sys-

tem yields
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TABLE C.1-3

Eigenstates of Isospin

|1,12> Unnormalized Eigenstates?
|1,+1> +|P,PBAR>

|1,0> +|P,BAR> +|N,NBAR>

|1,-1> +|N,PBAR>

|0,0> +|P,PBAR>- |N,NBAR>

#To normalize these states divide by the square
root of the number of Dirac kets.

TABLE C.3-1

Charge Symmetry on Nucleon-Antinucleon Systems

Original Unnormalized Charge Resulting
State Decomposition Symmetry State

|P,NBAR> |1,+1> -l1,-1> - |N,PBAR>
|p,PBAR> |1,0>+|0,0> -]1,0>+]0,0> - |N,NBAR>
|N,NBAR> |1,0>-]0,0> -|1,0>-]0,0> - |p,PBAR>

|N,PBAR> |1,-1> -|1,+1> - |P,NBAR>
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P (system) P (orbital) P(particle) P (antiparticle)

(-1) L+1,
it is also true that
CP = (-1)S+1,

Happily, C, P, CP are all conserved by the strong inter-

action.

The operation of charge symmetry, S, on the other
hand, converts a given system to one with opposite z-
component of isospin. Specifically, charge symmetry
rotates the isospin vector 180 degrees about the y-axis.
For integer isospin systems this operation implies that
the polar and azimuthal angles suffer the following trans-

formations:
S=(0->m=-6, ¢>m - ¢)

It will be noted that this operation is wholly equivalent

to a coordinate inversion, I,
I =(6->m~-06,¢~>¢ - 7
followed by a reflection, R,
R=(0~>6, ¢ > - ¢)

The spherical harmonics, understood as eigenfunctions of
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isospin space, undergo the following changes under these

operators:

In other words, in Dirac notation
I
s|1,1z2> = (-1)" |1I,-I2>

for integer I.

C.3 G-Parity

G-parity, defined as charge symmetry followed by
charge conjugation, is useful as it is conserved in the
strong interaction. For a system of N pions the G-parity

is given by the analog of Furry's theorem for photons:
¢ = (-1Y

This relation follows from the observation that the
positive, negative, and neutral pions all belong to the
same isospin triplet, and hence when S is applied to the

joint isospin amplitude
|11,121> |12,122> |I3,123> ...

it generates a factor (-1) for each Dirac ket, as well as

changes the sign of all the z-components is isospin.
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Since the negative pion is the antiparticle of the
positive one, and the neutral member its own antipartiéle,
charge conjugation changes the sign of the z-components
back to their original values, and multiplies the result-
ing expression by N times the C-eigenvalue of the neutral
pion. Since the neutral pion is its own antiparticle,

it is necessarily an eigenstate of C, and its eigenvalue
must be the same as the two photon state it prefers to
decay into, which--regardless of the photon's particular

C-eigenvalue--must be plus one.

Unlike the multiple pion system, the PBAR-P
system cannot be assigned a definite G-parity; that is,

for the nucleon-antinucleon system

L+S+I
G = ('l) 12

and L+S+I may be even or odd in general. Nevertheless,
the PBAR—Pbsystem may communicate with a system of
definite G-parity, especially when forming a resonance
where the intermediate state consists of a system of
pions. 1In the latter case, only that portion of the
PBAR-P amplitude having the right G-parity will enter the
resonant state. Thus, it is useful to construct nucleon-
antinucleon isospin amplitudes that are eigenstates of

both I and G. This is accomplished in the usual way by
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TABLE C.3-2
+

|1,12;6> (-1)*5 Unnormalizea Eigenstates#

|1,+1;+1> -1 +|P,NBAR>- |NBAR,P>

|1,+1;-1> +1 +|P,NBAR>+ |NBAR,P>

|1,0;+1> -1 ~|P,PBAR>+ |N,NBAR>~ |NBAR,N>+ |PBAR, P>

|1,0;-1> +1 - |P,PBAR>+|N,NBAR>+ |NBAR,N>- |PBAR, P>

|1,-1;+1> -1 +|N,PBAR>- | PBAR,N>

|1,-1;-1> +1 +|N,PBAR>+ |PBAR,N>

|0,0;+1> +1 - |P,PBAR>- |N,NBAR>- |NBAR,N>- |PBAR,P >

|0,0;-1> -1 - |P,PBAR>- |N,NBAR>+ |NBAR,N>+ |PBAR, P>
#To normalize these states divide by the square

root of the number of Dirac kets.

.1.

J. Vander Velde, private communication.
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forming linear combinations of the amplitudes listed in
Table C.3-1. One such construction is shown in

Table C.3-2. Note that all states satisfy
G =c(-1)7,

as well as yield G upon successive application of the

operators S and C.
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APPENDIX D

PREVIOUS EXPERIMENTAL RESULTS

TABLE D.1-1

Experimental Measurements of Diffraction Peak@

Experimenter PLAB Slope Cross Sec.
A. Hossian, et al. (1965) .15 "flat" 8.1 +1.3
A. Hossian, et al. (1965) .24 ~-53.5 +7.3 21.5 +2.3
B. Cork, et al. (1957) .29 -44.7 +7.8 23.7 +4.2
A. Hossian, et al. (1965) .31 -33.5 +4.0 24.4 +2.5
B. Cork, et al. (1957) .42 -25.5 +6.7 27.2 t4.7
C. Coombes, et al. (1958) .52 =20.8 +4.3 29.4 +2.8
B. Cork, et al. (1957) .54 -24.7 +3.7 28.5 +4.8
C. Coombes, et al. (1958) .64 =-20.3 +3.9 37.2 £2.9
B. Cork, et al. (1957) .72 -=16.2 +3.9 27.1 7.2
C. Coombes, et al. (1958) .75 =19.2 +4.1 32.1 +2.8
C. Coombes, et al.*' (1958) .86 -15.3 +3.8 36.1 +4.0
T. Elioff, et al. (1959) 1.14 -22.9 +2.8 57.2 +3.4
L.. Dobrzynski, et al. (1966) 1.18 -16.5 +1.7 52.7 +14.8
T. Elioff, et al. (1959) 1.34 =-22.8 +2.4 72.9 +4.8
T. Elioff, et al. (1959) 1.48 -19.0 +2.6 70.5 +6.2
N. Xuong, et al. (1961) l1.61 -14.5 +1.6 67.1 +7.9
T. Elioff, et al. (1959) l.64 -18.0 +2.3 64.9 iS.Q
R. Armenteros, et al. (1960) 1.70 -15.7 +1.7 74.2 #3.9

@Slope in (GeV/c) ?; forward cross section in

mb/ster.
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TABLE D.1-1 (Cont.)

Experimental Measurements of Diffraction Peak

Experimenter PLAB Slope Cross Sec.
C. Daum, et al. (1968) 1.73 -=19.3 +2.7 221.2 +96.6
T. Elioff, et al. (1959) 1.77 -18.4 +1.8 74.8 +3.9
R. Armenteros, et al. (1960) 1.98 -=-15.7 +1.7 76.1 +5.6
C. Daum, et al. (1968) 2.13 -8.7 +3.6 53.7 +28.4
C. Daum, et al. (1968) 2.37 =12.1 +2.4 110.2 £47.7
V. Domingo, et al. (1967) 2.70 -=-13.3 #0.2 93.1 +1.7
R. Armenteros, et al. (1960) 2.78 -=11.9 +2.0 107.5 +12.2
C. Daum, et al. (1968) 2.97 -7.3 0.5 40.6 +9.6
B. Escoubes, et al. (1963) 3.00 -16.3 +2.2 107.4 +4.6
T. Ferbel, et al. (1965) 3.28 -12.8 +0.8 104.8 +3.7
B. Escoubes, et al. (1963) 3.60 -14.1 #0.6 105.1 +5.0
0. Czyzewski, et al. (1965) 4.00 -13.0 #0.6 —-_—
K. Bockann, et al. 51966) 5.70 -12.0 #0.4 140.1 +7.2
T. Kitagaki, et al. (1968) 6.90 -14.3 +1.5 198.3 +29.8
K. Foley, et al. (1963) 7.20 -13.2 +0.5 ---
K. Foley, et al. (1963) 8.90 -12.8 +0.2 -—-
K. Foley, et al. (1963) 10.00 -11.8 +2.9 -
K. Foley, et al. (1965) 11.80 -12.3 +0.8 -—-
K. Foley, et al. (1963) 12.00 -12.7 40.3 -—-
K. Foley, et al. (1965) 15.91 -8.8 +1.0 —-——-

@

mb/ster.

Slope in (Gev/c)—2

; forward cross

section in



TABLE D.2-1

Experimental Measurements of First Minimum

Experimenter PLAB t (min) Cross Sec.
J. Berryhill, et al. (1968B) .25% .06 %.01 30.00 +30.00
J. Berryhill, et al. (1968B) .35% .11 +.01 10.60 +9.50
J. Berryhill, et al. (1968B) LA45%# .14 +£.01 7.90 +2.60
J. Berryhill, et al. (1968B) .55% .19 £.02 6.70 +2.20
J. Berryhill, et al. (1968B) .65# .23 +£.02 4.00 +1.50
L. Dobrzynski, et al. (1966) 1.18 .36 +.03 .60 +0.60
J. Berryhill, et al. (1968A) 1.40#% .40 +.05 2.00 +0.50
B. Barish, et al. (1966) 1.50 .41 +.05 3.00 +.50
G. Lynch, et al. (1963) 1.61 .43 +.05 .95 +.75
C. Daum, et al. (1968) 1.73 .38 +.10 .90 +.65
This Experiment 1.88 .44 +.05 .72 +.20
B. Barish, et al. (1966) 2.00 .48 +.05 1.20 +.20
C. Daum, et al. (1968) 2.13 .52 +.10 2.55 +.50
C. Daum, et al. (1968) 2.37 .51 +.15 2.86 +.45
B. Barish, et al. (1968) 2.50 .45 +.05 1.30 +.20
V. Domingo, et al. (1967) 2.70 .50 +.10 .60 +.50
C. Daum, et al. (1968) 2.97 .53 +.20 2.45 +.45
T. Ferbel, et al. (1965) 3.28 .70 +.20 .55 +.55
B. Escoubes, et al. (1963) 3.30% .73 +.15 .56 +.10
W. Katz, et al. (1967) 3.66 .58 +.05 .35 +.10
K. Bockann, et al. (1966) 5.70 .60 +.10 .10 +.10
A. Ashmore, et a. (1968) 5.90 .60 +.20 .10 +.10
T. Kitagaki, et al. (1968 6.90 .60 +.20 .02 +.05

@témin) in (GeV/c)?;
mb/ (GeV/c) <.

#

Indicates a nominal value.

cross section at t(min)

in
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TABLE D.3-1

Experimental Measurements of Secondary Maximum@

Experimenter PLAB t (max) Cross Sec.
D. Cline, et al. (1968) A5 # .18 +.02 16.30 +3.30
D. Cline, et al. (1968) .55 # .26 +.02 23.80 +2.30
D. Cline, et al. (1968) .65# .35 t.03 16.50 +1.70
L. Dobrzynski, et al. (1966) 1.18 .53 +.05 3.50 +1.20
J. Berryhill, et al. (1968A) 1.40# .55 +.05 3.50 +#1.00
G. Lynch, et al. (1963) 1.61 .74 +£.13 2.20 #0.70
C. Daum, et al. (1968) 1.73 .52 +.09 2.60 +0.65
This Experiment 1.88 .69 +.05 2.00 #0.20
B. Barish, et al. (1966) 2.00 .73 +.02 3.00 +0.20
C. Daum, et al. (1968) 2.13 .57 +.12 2.89 +0.48
C. Daum, et al. (1968) 2.37 .66 +.15 3.10 +0.42
B. Barish, et al. (1966) 2.50 .79 +.03 2.50 +0.20
V. Domingo, et al. (1967) 2.70 .79 +.09 1.20 +0.17
C. Daum, et al. (1968) 2.97 .76 .12 2.80 +0.30
T. Ferbel, et al. (1965) 3.28 1.05 +.20 1.08 +0.54
B. Escoubes, et al. (1963) 3.30# .83 +.33 .69 +0.09
W. Katz, et al. (1967) 3.66 .90 +.06 .66 +0.18
K. Bockmann, et al. (1966) 5.70 .80 +.15 .30 +.10
A. Ashmore, et al. (1968) 5.90 .80 #.20 .30 +.10
T. Kitagaki, et al. (1968) 6.90 .80 *.20 .10 +.10

@t(max) in (GeV/c)z; cross section at t(max) in
mb/ (GeV/c) 2.

#Indicates a nominal value.
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TABLE D.4-1

Backward Cross Section Measurements@
Experimenter PLAB Cross$ Cross$
D. Cline, et al. (1968) .25 .250 +.075 51.00 +15.00
D. Cline, et al. (1968) .35 .150 +.050 16.00 +5.30
D. Cline, et al. (1968) .45% .200 +.050 13.00 +3.30
D. Cline, et al. (1968) .55# .450 +.050 20.00 +2.30
D. Cline, et al. (1968) .65# .375 +.050 1.20 #0.16
W. Cooper, et al. (1968) 1.25 .055 +.020 .59 +.22
W. Cooper, et al. (1968) 1.35 .075 +.025 71 .24
W. Cooper, et al. (1968) 1.46 .090 +.020 .76 +.17
Z. Ma, et al. (1968) 1.58% .037 +.015 .28 +.11
W. Cooper, et al. (1968) 1.59 .065 +.015 .48 +.11
G. Lynch, et al. (1963) 1.61 .050 +.020 .36 +.15
This Experiment 1.63 .078 +.017 .56 +.12
This Experiment 1.77 .076 +.013 .47 +.08
This Experiment 1.83 .063 +.012 .40 +.07
This Experiment 1.88 .049 +.010 .28 +.06
Z. Ma, et al. (1968) 1.89%4 .049 +.009 .28 +.06
This Experiment 1.95 .044 +.009 .24 +.05
This Experiment 2.20 .021 +.007 .11 +.03
V. Domingo, et al. (1967) 2.70 .003 +.003 .01 +.01
W. Katz, et al. (1967) 3.66 .002 +.001 .01 +.01
@ror events in the range -0.8 > cos 6 > -1.0.

#Indicates a nominal value.

$Left column in mb/steradians, right in mb/(GeV/c)2.
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