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ABSTRACT

A finite difference method for computing velocity and temperature
profiles of an unsteady, incompressible, laminar boundary layer around
a two-dimensicnal cylinder of arbitrary cross section is develcped.
Blowing or suction may be present cn the wall of the cylinder. The
thermal boundary condition at the wall may be either specified wall
temperature or specified heat flux at the wall.

The governing finite difference equations are explicit, the velocity
and the temperature at the next time step can be directly computed in
terms of those at the current time step. Various errors associlated with
the finite difference methcd are studied. Great effort has been made
to derive the stability and convergence ccnditions of the method. The
upper bound of the local rounding errors is estimated.

Two examples, one oscillation in Blasius flow and the other impulsive
start of wedge flow, are given; the numerical results are compared with
the existing analytical and experimental results. It is concluded that
the present methcd can be used fcr the aforementioned computation with
high accuracy except at and near a singular point where the singular

errors become significant.
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CHAPTER I

INTRODUCTION

It is well known that the motion of a viscous, incompressible fluid
can be described by the Navier-Stokes equations coupled with the equation
of continuity. The general solution of these equations has not yet been
available within the present knowledge of mathematics. However, by assum-
ing the viscosity effect important in a thin fluid layer over boundaries,
Prandtl (1) introduced his well-known boundary-layer equations which have
simpler forms than full Navier-Stokes equations. After Prandtl, most
research has been concentrated on the steady flow. It is only during
the last two decades, the unsteady laminar boundary-layer flows have
been treated extensively.

The unsteady laminar boundary layer theory presents many challeng-
ing problems which may be classified as the periodic and starting-ending
problems. In the former case, the periodic behavior may be introduced
by oscillating the obstacle or the fluid. As a result of this, the re-
sponse velocities of the fluid particles in the boundary layer are also
periodic with respect to the time. Many practical important problems
fall into this category, such as the flow past a turbine blade or past
an oscillating airfoil. The latter case includes all the flow problems
in which the obstacle or the fluid starts to move from the rest with a
time dependent velocity. The flow generated by an impulsive motion of
an obstacle in a stationary fluid field is a special example of this

category.



Generally speaking, the method of solving an unsteady, laminar bounda-
ry-layer problem will fall into one of the following six ways:

Similar solutions.
Semi-similar solutions.
Series solutions.
Successive approximations.
Integral method.

Other methods.

Nl W -

A detailed review of the literature about the above methods will be
given in Chapter II. Here we shall briefly discuss these methods.

The method of similar or semi-similar solutions reduces the number
of independent variables of a two-dimensional unsteady laminar boundary-
layer problem from three into one or two, respectively. ©Such similar
or semi-similar solutions exist only when the free stream velocity of a
given boundary-layer problem behaves in a certain specific way. Therefore,
these methods are restricted to problems in which the obstacle has a par-
ticular geometry and moves with a particular time-dependent velocity.

The method of series solution is based on the expansion of the local
velocity into a power series of some parameter or coordinate. Because
of the mathematical complexity, only the first few terms of the series
may be calculated. The series solution deviates appreciably from the
exact solution when the value of the expansion parameter or coordinate
becomes large.

The method of successive approximations is actually an iteration
procedure. In this case, a first approximation is obtained by physics,

and the successive approximations are then obtained by iteration. Therefore,



the convergence of the final approximation to the exact solution of the
problem largely depends on the choice of the first approximation. Also
the higher approximations of this method are rather complicated alge-
bralcally.

The integral method is an approximate procedure, because of the fact
that the profiles obtained by this method only satisfy the boundary con-
ditions and the integral form of the governing equations.

None of the foregoing methods meet the requirements of generality
and high accuracy. In recent years, advances in high-speed digital com-
puter technology have made it possible to develop some numerical methods
applicable to complex fluid flow problems which were beyond reach by the
foregoing methods of solution. For example, De Saute and Keller (2)
recently studied the transition form laminar to turbulent flow over a
flat plate by finite-difference technique. Der and Raetz (3) developed
a numerical method for general three-dimensional laminar boundary-
layer problems. Fromm (L) computed the development of the vortices
behind a two-dimensional obstacle. Also Yang (5) was able to study the
hydrodynamic stability of two-dimensional unsteady incompressible laminar
boundary layers by means of the numerical iteration scheme and Barakat
(55) studied the transient natural convection in closed container by
finite difference method.

It is the purpose of this work to develop a finlte difference method

to determine both unsteady velocity and temperature profiles in a laminar



boundary layer over a cylinder of arbitrary cross section moving with

an arbitrary time-dependent velocity in an incompressible fluid. Suction
or blowing on the surface of the solid cylinder may also be included.

The wall temperature or the heat flux at the wall of the obstacle may
vary arbitrarily with the time and the distance from the front stag-
nation poilnt. 1In order to illustrate the applicability of the method,
two numerical examples, one periodic and the other starting-ending type,
are consldered. The results are compared with those obtained by the

analytical methods and, whenever possible, by experimental measurements.



CHAPTER II

REVIEW OF THE PREVIOUS WORKS

In this chapter, a brief survey of the existing literature about
unsteady incompressible laminar boundary layers will be given based on

the methods classified in Chapter I.

A. SIMIIAR SOIUTIONS

The solutions of the velocity component u in an unsteady two-di-
mensional laminar boundary layer are called "similar" if the two velocity
profiles at the different coordinates x and at the different instants

t differ only by a scale factor. More precisely,

U4 t)  — £

uo(%;t) (2.1)

where,

=565 =

The transformation defined in the equation (2.2) is called the
"similarity transformation” and the function 'g' is called the "scale
function." Through this transformation, the original governing PDE¥

for u can be reduced to an ordinary differential equation. Consequently,

a considerable mathematical simplification of the problem is achieved.

*Partial Differential Equation.

\n



Schuh (6) showed similar solutions may be obtained if the velocity
at the outer edge of the boundary layer is proportional to £8, ebt or
x/t, where 'a' and 'b' are arbitrary constants. Yang (7) studied the
similar solutions of a stagnation flow of which the free stream velocity
can be expressed as ax/(1-bt).

Perhaps, the most complete work about the similar solutions of an
unsteady boundary-layer flow was the one given by Hayasi (8) who studied
the possible similar solutions in an unsteady quasi-two-dimensional in-
compressible flow. The definition of a "quasi-two-dimensional” flow
can be found in Reference (9). The similar solutions found by Schuh (6)
and Yang (7) are only the special cases of Hayasi's results when the
flow becomes exactly two-dimensional.

A systematic study of the topics by means of the "free parameter
method" is described in a recently published book by Hansen (10). The
rest of this section is devoted to a brief review of this method.

Let ® be some physical unknown to be solved. Assume it satisfies
a certain governing PDE and depends on some independent variables x,,

Xg,..., X5 and z. Let the boundary conditicns in z be

Qe 1,,00,%;,3) =0 (2.3.a)

L PO, % 0=, %1, 5) = D%, %, -+, %s) (2.3.b)
373,

In searching for a similar solution of @, one usually assumes

Qex, %, - %0, 1) =Bx, X, -0 () (2.14)



where,

Vo= V70, 0, % . ) (2.5)

'T' is the unknown 'free parameter" to be specified. By means of
the transformations given by the foregoing equations, one hopes to trans-
form the governing PDE for ¢ into an ordinary differential equation for
"f' under certain imposed conditions. If the given physical problem meets
these conditions, then a similar solution of ¢ exists and vice versa.

It is also very important tc examine the boundary conditions for
"f'. According to equations (2.3) through (2.5), the boundary conditions

for 'f' are

{M)=o0 (2.6.2)

Liom 4'”7':::
T )= (2.6.0)

where,

E:r(X|,x2,"') XIi;é'o) (2.7.8.)
T=T(x.%, - % &) (2.7.5)

If a similar solution of ¢ exists, the values of I'y and I'y must be
independent of x) (k=1,...,1). These requirements become difficult to
be achieved when both z. and z; take finite values. In general, the

o}

problems of finite geometry do not have similar solutions.



B. SEMI-SIMILAR SOLUTIONS

The solution of the velocity component u in an unsteady two-di-
mensional boundary layer is called "semi-similar" if it can be expressed
as a function of two independent variables. An example of such flow is
the incompressible boundary layer whose free stream veloclty takes one
of the following forms: atb, a/(1+bt), £(1\)t?, where A = xta+l. The
first two cases in the above example were treated by Cheng (11) and
the last one was studied by Hassan (12).

Recently, Hayasi (13) gave an extensive treatment to the semi-
similar solutions of an unsteady quasi-two-dimensional incompressible
laminar boundary-layer flow; two simplest cases, time-dependent and
space-dependent semi-similar boundary layers, were studied.

The semi-similar solutions are obtained by the 'group-theoretic
method” (10). Because of the length of the background required, this
method will not be reviewed here. In short, one tries to find a one-
parameter transformation group under which the governing PDEs can be
transformed into the different variables. Therefore, by doing so, one
reduces the number of independent variables by one.

As pointed out in the Reference (10), there are two disadvantages
to employing the group theoretic method. The first is the boundary
conditions which are not taken into account until the entire analysis
is completed. The second is the uncertainty in choosing a proper trans-

formation group.



C. SERIES SOLUTIONS

For boundary-layer problems of starting-ending type, the stream
function is usually expanded in ascending powers of some parameter
related to t or x. Blasius (14) employed this method to study the im-
pulsive motion of a cylinder and the uniform acceleration of a cylinder
in an incompressible fluid. In both cases, the stream function has been
expanded in ascending powers of A which is defined as tuc/xc, where u,
and X, are the characteristic velocity and length, respectively. 1In
the first case, only the first two terms of the series have been cal-
culated by Blasius, the third term has been given later by Goldstein
and Rosenhead (15).

Watson (16) generalized the Blasius' problems by studying the

boundary-layer growth on a cylinder starting from rest with the ve-

lolt _ elolt

locity uyy proportional to t8 or e For the case when Uiy

Watson expanded stream function in ascending powers of the parameter
t

'N' which is defined as I ugp(t)dt.
=]

The boundary-layer problem of a semi-infinite flat plate starting
initially from rest in an incompressible fluid with an arbitrary ve-
locity uyy, was studied by Cheng and Elliott (17) by means of the series

t
solution method also. A parameter Q, which is defined as x/\/ﬁuob(t)dt,
o]
has been used in power series expansion of the stream function.
For periodic boundary-layer problems, the local velocity is expanded

in ascending powers of Auo/uO which is the relative amplitude of oscil-

lation of the free stream. For instance, Kestin, Maeder and Wang (18)
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utilized this method to study the effect of a longitudinal sine wave on
the boundary-layer along a flat plate. Hori (19) used the same method

to investigate the boundary-layer around a cylinder of arbitrary cross
section in a fluctuating main stream. Clearly, the mathematical com-
plexity does not allow the computation of many terms in a series solution.
It is doubtful, unless checked by experiments, that the series solution
converges to the exact solution when the parameter involved in expansion
becomes large. As pointed out by Rosenhead (21), for example, the series
solutions employed in Reference (14) are not valid for values of A
greater than 0.3.

The foregoing method of series solution is actually a small per-
turbation technique. In starting-ending problems, .the time or space
coordinate is used as perturbation quantity, hence, the method may be
classified as the coordinate perturbation. In periodic problems, the
relative amplitude of oscillation is used as the perturbation parameter,
therefore, the method becomes a parameter perturbation. It should be
remarked that the choice of an appropriate perturbation parameter is by
no means an easy task. The details of the small perturbation method

may be found in the book by Van Dyke (21).

D. SUCCESSIVE APPROXIMATIONS
The process of the successive approximations has been described in
Reference (22). An example on the application of this method can be

found in Reference (23). The method is based on the physical argument
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that if a solid obstacle is initially at rest relative to the fluid, the
boundary layer formed on the surface of the solid obstacle is thin right
after the start. Consequently, the viscous term in unsteady boundary-
layer equations is large, while the convective terms retain their normal
values. Therefore, at early stage of the transient phenomenon, it may

be assumed that the viscous term is balanced by the acceleration plus

the unsteady portion of the pressure gradient. According to the foregoing
argument, the first approximations u(l) and v(l) satisfy the following

linear PDEs:

au U ou
5t = - TV Y (2.8)
O] ()
a—+ b;{(,r —0 (2.9)
with the boundary conditions y = O: u(l) = V(l) =0; y > o« u(l) =
uo(x,t).

2)

The second approximations u(2) and V( may then be calculated from

the following equations:

AU g-ua) dU » U (l)bb((') ) L(“)

au® | W

2wt oY =0 (2.11)
with the boundary conditions y = O: u(g) = v(2> = 0; and y > ow: u.(2> =
uo(x,t).

The third and higher approximations are obtained by repeating the

above iteration procedure. However, the complexity of algebra grows at
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a staggering rate. It should be noted that the successive approximation
method fails to distinguish an unsteady boundary-layer along a semi-
infinite flat plate from that along an infinite flat plate. This is due
to an oversimplification in the first approximation of the boundary-layer

equations.

E. INTEGRAL METHOD

The methods discussed so far give local profiles which staisfy the
differential form of boundary-layer equations. A high accuracy may be
obtained by carrying out enough terms. When it is desired to predict
approximately the distribution of the skin friction, the position of the
flow separation, etc., an 'approximate' method such as the integral method
becomes quite useful. Schuh (24) studied the unsteady boundary-layer
problems by using this method. It was shown that in the general case
of any type of velocity distribution over outer edge of the boundary-
layer, regarding space and time, the integral of boundary-layer equations
could be reduced to two simultaneous differential equations, one being
an equation of characteristics. Two numerical examples were given:
first, the growth of the boundary-layer around a circular cylinder for
impulsive motion, second, the generation of the boundary-layer along a
flat plate for impulsive motion and the steady acceleration. In the
first example, Pohlhansen's (25) velocity profile was used, while in the
second example, Hartree's (26) velocity profile was assumed. Schuh's

procedure was later modified and extended by Yang (27) to problems includ-
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ing heat transfer. Other works related to integral method may be found
in References (28,29).

Recently, Hayasi (30) developed an approximate method for calculat-
ing unsteady quasi-two-dimensional laminar boundary-layers. The velocity
profiles were assumed to be given by one-parameter family of curves.

The profile parameter which was selected to be the non-dimensional shear-
ing stress at the wall was determined by the momentum and energy-integral
equations. It was found, after comparison with the exact solutions,

that Pohlhansen's velocity profile gave good results for decelerat-

ing main flows, while Hartree's velocity profile was good for ac-

celerating main flows.

F. OTHER METHODS

For a special unsteady boundary-layer problem, one may make some
assumptions which are particularly suitable to the conditions of the
problem under consideration. Thus the method to be developed based on
these assumptions may not be used for problems of the different nature.
To illustrate this point, a brief review on C. C. Lin's (31) theory of
the harmonic oscillations is given next.

Lin considered an unsteady two-dimensional boundary-layer with a
main stream oscillating periodically about a mean value. The mathe-
matical difficulty of the problem was simplified by taking time-averages
of the terms in boundary-layer equations in a manner analogous to that

used in turbulent flows. Denoting the oscillating components by primes,



14

Lin assumes

UotX, 1) = Uo(0) 4 Us (K, 1), TT; =0 (2.14.2)
UL B = DLW+ W (Y1), W =0 (2.14.5)
U()L,%,t)::\?(%b,;)ﬂf’(x,tf,t), =~'~'~_—0 (2.1k.c)

Pixt)= ?(k)-f P,(X,t), —‘—Pﬁz o) (2.14.d)

By restricting the oscillation of the main stream to very high
frequency range, the unsteady portion of the boundary-layer equation is

linearlized in the form:

W . > Ue 2 W
oY%

2t — it t+ (2.15)

After calculating the longitudinal velocity component u' from the
equation above and the corresponding boundary conditions, the transverse
velocity component v' is obtained from the unsteady portion of the con-

tinuity equation

YU T’
X *‘g%_==0 (2.16)

The steady portion of the boundary-layer equations reduces to

=S dUe, pTU 0 s (oo, AW
G T2 gl p Uy B ~(w2u + V) (2.an)

W,
s ooy =0 (2.18)
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From the above two equations, the time-averaged velocity components u
and v may be calculated with the corresponding boundary conditions.
Clearly, the foregoing method of solution can not be used for fluid
flow problems other than those related to high frequency oscillations.
Finally, it is worth noting that the same problem was later considered

by Gibson (32) by the so called "splitting solution" method.



CHAPTER III

FORMULATION OF THE PROBLEM

A. DIFFERENTIAL FORM
A curvilinear orthogonal coordinate system attached to the surface

of a two-dimensional cylinder is selected as shown in Figure 1.

Free Stream Velocity, Ug (x,t)
Local Velocity, U (x,y,t)
(x, ‘-l
Y N

Main Flow Velocity, Ug (t) L=
\

R(x)

Figure 1. Curvilinear orthogonal coordinates.

The laminar boundary-layer equations with respect to these co-

ordinates are

16



dU u _ DU
TR VR YR S

‘éb\d - R (3.1.p)

%‘%‘* %"é“ =0 (5.2)
X, 2T T )
at tU otV %‘=§‘%~5§7 (5.3)

where R(x) is the local radius of curvature of the wall, reckoned posi-
tive when the wall is convex outward.

The derivation of the above set of equations can be found in texts
on boundary-layer theory, for example, in References (20, 22). The
equations are valid within the following assumptions:

(1) The fluid has constant properties.

(2) The solid obstacle may be stationary or may move with a trans-
lational motion parallel to the motion of the main flow.

(3) The Reynolds number Re based on the characteristic velocity and
length of the problem is large enough so that the viscous effects of the
flow are limited to a thin layer on the wall. The thickness of this layer
is one order smaller than that of the characteristic length. Outside the
velocity boundary layer, the flow is assumed to be inviscid. Also the
variation of the velocity in the direction of the y-axis is one order
greater than that in the direction of the x-axis.

(4) The Prandtl number Pr must be order of unity or higher. This
implies the thickness of the thermal boundary-layer 1is the same order

or less than that of the velocity boundary-layer. Consequently, the
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variation of the temperature in the direction of the y-axis is one order
greater than that in the direction of the x-axis.

(5) The viscous dissipation is negligibly small.

(6) The magnitude of the local radius of curvature of the wall is
one order greater than that of the local velocity boundary-layer thickness.

(7) The variation of the local radius of curvature along the direction
of the x-axis is at most of the order of unity.

In general, the Navier-Stokes equations are derived relative to a
space-fixed coordinate system. Consequently, the resultant boundary-
layer equations are restricted to a coordinate system fixed in space.
However, when the coordinate system moves with a translational motion
parallel to the main stream, the uniform inertial force per unit volume
due to the translational motion of the coordinate system appears in
equation (3.1.a) in the form of an induced pressure gradient. The trans-
form from the inertial force to the pressure gradient is achieved in-
stantaneously by the acoustic waves in an incompressible medium (33).
Therefore, as indicated by the second assumption, the boundary-layer
equations (3.1) and (3.2) are valid for both stationary and moving obsta-
cles.

Based on the third assumption, equation (3.1.b), it may be concluded
that the magnitude of the pressure variation across the boundary-layer
is second order. Therefore, hereafter the pressure is assumed to be
constant across the boundary-layer, and the pressure gradient in equation

(3.1.a) is same as that given by the momentum equation of the inviscid



flow at the outer edge of the boundary-layer. Thus

oUe
ot

Ly AU DY D | «
o 5o + Vo Sy v (3.1)

where uy and v, are the streamwise and the normal components of the ve-

o
locity at the outer edge of the boundary-layer, respectively. DBecause
of the boundary layer thickness, the first approximation u, and A of
equation (%.4) may be assumed to be the corresponding velocity components

evaluated at boundaries. Since the normal component of the fluid velocity

vanishes at boundaries, equation (5.&) reduces to

_ols AU,
ot Ty =

—3—% (3.5)

|
For boundary-layer problems with blowing or suction, equation (3.5)
is approximately true provided that the magnitude of blowing or suction

velocity is smaller in order than that of the free stream velocity u,.

Accordingly, equations (3.1) become

Y
ot

BU )UO

2
+ uD DU& ﬂ ab‘gz (56)

Equations (3.6), (%.2) and (3.3) are the governing differential

+ U

”’B[:f

equations for dependent variables u, v and T in a laminar boundary-

layer flow. Their boundary conditions are

for x =0, y >0 and t >0; u = uO(O,t) (3.7.a)
T = To(0,t) (3.7.0)
for x >0, y =0and t >0; u =0 (%.7.¢)
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v = vy(x,t) (3.7.4)
T = T,,(x,t) (3.7.e)
for x >0, y »w and t > 0; u = ug(x,t) (3.7.1)
T = Tolx,t) (3.7.8)

where u, and T, are the velocity and the temperature of the free streanm,
respectively, while v, is the blowing or suction velocity normal to the
wall and Ty, is the wall temperature. When the blowing or suction is
absent, vy is equal to zero. The thermal boundary condition given by

equation (3.7.e) specifies the wall temperature. In case when the heat

flux at the wall is specified, this boundary condition becomes then

o/

|

~K (3% )zzo———‘h(?(,t) (3.7.h)

=

where qw(x,t) is the heat flux at the wall, reckoned positive when heat
flows from the wall to the fluid.

The initial conditicn of the problem is

at t = 0; u = ug(x,y) (%.8.a)
v = vg(x,y) (3.8.p)
T = T (x,y) (3.6.¢)
where ug, Vg and Ty are the initial distributions of velocity components

u, v and temperature T, respectively. However, only u, and Ty need to

S

be specified according to the physical situation of the problem; once

u, is given, v, can be readily obtained by integrating equation (3.2).

S S

Next, the above governing differential equations will be nondimension-
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alized. Defining the following dimensionless quantities:

1

W R T T e PG,
Uz.qu V“'&) o= [Uz Fe— ﬁf

<)

X = X% T{::<_14__4 T= t Q= a

) & &) 55

where u, denotes some constant characteristic velocity, equations (%.6),

(3.3) and (%.2) take the following forms, respectively:

dU AU 3G Vs, .« 3o . YU

ST USX TV oY =t fUox T oyt (3:9)
20 L1388 _ 136

T +U 5% +v’b = B 2Y?2 (3.10)
——g—g—)(—-k g%’, =0 (3.11)

The dimensionless boundary conditions are

for X =0, Y>O0and 7> 0; U = Uo(0,T) (3.12.a)
9 = 6,(0,1) (3.12.p)
for X >0, Y=0and v >0; U=0 (3.12.c)
Vo= V,(X,T) (%.12.4)
8 = ow(X,T) (3.12.e)
for X >0, Y >wand 1> 0; U= Uo(X,T) (3.12.1)
6 = 8,(X,T) (3.12.8)

If the heat flux at the wall is specified, the thermal boundary condition

given by equation (3.12.e) becomes

—(—%—197 =O=QW(X,T) (3.12.h)
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The dimensionless initial condition is

at 1 =0; U =TUg(X,Y) (3.1%.2)
Vo= vV (X,Y) (3.13.0)
® = 04(X,Y) (3.1%.c)

B. FINITE DIFFERENCE FORM
1. System of Space Grid Points
To obtain the solutions to a set of partial differential equations
by the finite difference approximations, it is necessary to establish
a system of space grid points in the domain of interest. The space grid
used in this work is shown in Figure 2. The interval AY between two neighbor-
ing grid points along a line where X = X; 1s assumed constant. However,

this constant varies with the value of 'i' as follows:

AY

A, for1<i<m (3.14.a)

[
i<
|

=2A, formpg < 1i<m (3.14.p)

where 1, m and mp are positive integers, and 'A', any positive constant.
Likewise, the interval AX; between two points (i-1,1) and(i,1l) on the X-

axis also depends on the value of i. Thus

KX; = fn(i), for2 <i<m (3.15)

where fn(i) is any real function of i, its value 1s positive and increases

monotonously with 1i.

All grids are smaller in the neighborhood of the stagnation point
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and become larger in the downstream region. The reason of choosing such
nonuniform grid size will be explained in Section (B-8) of this chapter.
Figure 2 also shows a 'stair" shaped domain of interest. This is
specially designed for boundary-layer problems.
The space grid point (1,1) corresponds to the origin of the coordinate
system described in Part (A) of this chapter. The relations between the

coordinate point (Xi:Yj) and the space grid point (i,j) are given as follows:

XlEO, YlEO (5.16.8)
i
=\’ .
Xi:z: MXy, for 2 <i<m (3.16.b)
k=2

2<J <S8+l (if 1 <1 <m)

Yy = (j-1)AY, for
2<J<es+tl (if my <i <m) (3.16.c)

where i, j, m, my and S are all positive integers. Special attention
is paid to the following two points: firstly, AY in equation (%.16.c)
takes two different values according to equations (3.1L); secondly, for
a given set of AX; and AY, the integers m, m;, mp and S are so chosen
that the corresponding "stair" shaped space domain covers the entire
boundary layer flow.

Besides the space variables X and Y, time variable T is also involved
in the study of an unsteady boundary-layer problem. Hence, in addition
to the space grid, a uniform positive time step At will be specified.

The relation between the time variable T, and the time step At is

n
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Ty =040 (%.17)

where n is a positive integer or zero.
Based on the foregoing space and time intervals, the correspondence
between the coordinate point (Xi, Yj’ Tn) and the grid point (i,j,n) is

one to one. Thereafter, any physical property ¢ at the coordinate (Xi,

n
Y5, Tn) is uniquely described by P14

2. Approximation of Derivatives by Finite Differences
Let @(X,Y,T) be any function with continuous and bounded partial
derivatives of sufficient high orders. By Taylor's series with remainder,

it yields

<p§j,13+|:: (Q,\j +AY(§ ) +(BY) (5\?;;_)1 5 (5.18)
L, 3+

CP;:..,_ (P —AY(BAYD-) +3 (4Y) (g;p) (3.19)

where © is some number between O and 1, and it generally takes different
values in the different terms unless specified. Dividing the foregoing

equations by AY, after some arrangements, they become

n N
Yo Bar s o (0
(aY/ AY z(AY) (ble 5 (3.20)

N 4
T e oo N o

If Taylor's expansions of ®(X,Y,t) in equations (%.18) and (%.19)
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are carried out including the fourth term, they become

! AP TN L 1 3

ﬁﬂﬂﬂ (‘]fﬂ E:)g]:éiAY)(dyékiﬁgg(AY)13Y9L5+3 (3.22)
A YW 2y P\" FIECRONG ‘
L 8 AY(W)L\{‘—‘ZL(AY) (aYl)ij‘e(lW) (ng)L’j-S o)

Subtracting equation (3.23) from equation (3.22), then dividing the

result with AY, gives

noo n 2 )
(%%):z C&g(lagm ) (%) [@;P) iR (g_iﬁ)L ke 3] o

The first terms on the right-hand side of equations (5.20), (5.21) and

(3.24) are called forward, backward and central FDAs™ for the derivative
(8@/6Y)?,j, respectively. The difference between this derivative and
its corresponding FDA is known as the truncation error of FDA. The
truncation error of the central FDA involves the higher ordered deriva-
tives of ¢ with respect to Y than that of the forward or backward FDA.
In general, the truncation error of any FDA approaches zero as the interval
AY approaches zero. In this limiting case, FDA becomes the exact repre-
sentation of the corresponding derivative.

Finally, it is easy to show that the second partial derivative of
® with respect to Y at (Xiy YJ, Tn) can be represented by the follcwing
formula:

] -t T g

:

(%*_@L)“\ 1 (3.25)

LI LI

*Finite Difference Approximations.
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3. Finite Difference Form of Boundary-Layer Equations

As 1s well-known, the boundary-layer equation given by (3.9) is valid
only if there is no reverse flow within the boundary layer. Otherwise,
the boundary layer becomes so thick that the third assumption in Part
(A) of this chapter no longer holds. Therefore, the streamwise velocity
U will be restricted to zero or positive values. Consequently, problems
involving instantaneous local separation are excluded from the present
investigation.

Now equations (3.9) and (3.10) are considered at the coordinate

(Xi, Y3, 7,) and equation (3.11) at (X3, Yj-1/217n+1) as follows:

el bl e O, - (R B, o

' A LA i i L
00V (B0 A8 _ 1 (aE\" _
(a_ﬁi,f u(&_X);rVu(Bﬁd Pr XY%;N}‘“O (3.27)
lﬂz_n+l bxr Vel B
(‘)X)L,J-; (X‘ﬁcgg =0 (3.28)

Note the use of forward, backward and central exact finite difference
representations for the derivatives in the first, second and third terms
on the left-hand side of equation (3.26), respectively. Furthermore,
the last term on the left-hand side of the equation is represented by
the formula given by equation (3.25), then PDE stated by equation (3.26)

becomes
USRUS L 1 (U003 o (U U (U2 U5+ U )
i U (P - e C{EE

— (0 e o
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where
-1 vﬁﬂfﬁ%/_* L RU\R (@y NI L.?j'“ )
=2ty L I‘A‘Xl)qg / Xz)[-a,a ® W}(('%Yi\)a,sé“ (A_YL“)N&J
BT AT ) .
) ”’Z—(\b\“‘)la+a+(a¥4'}‘z,j-xh (3:30)

Similarly, PDE given by equation (3.27) becomes

§14 ,\( H 1 v ki " "
6 179 7 el 6! -, n 6}( i 6. lu ] _(eg‘4+l—2' 6«;'; + et\.f\‘l)
AT U (__AAX‘L ) +VL)< - ) TraY)*

|
T

(3.31)

where

TRy NN s KRV RE
n (AY)Z( 56\ gy
+ (L8
P 12 (BY“);":‘“} (a (‘r)a,;‘..gj (3.32)

It should be remarked that the first two terms on the right-hand

side of equation (3.29) remain in differential form. These terms can

easily be calculated once the functional form of the free stream velocity

Uy, is known. In boundary-layer problems, U, is available from the cor-

0

responding inviscid flow problems.

Next equation (3.28) is expressed in finite difference form. An

exact central finite difference representation will be used for the second

term of the equation. The first term of the equation, namely, the deri-
vative of U with respect to X at the grid point (i,j-1/2, n+l) is first
expressed by the mathematical average of the same derivatives at points

(i,J-1,n+1) and (i,j,n+l), then each of these derivatives is replaced by



the backward finite difference form. The complete equation becomes then

ISR SRy NH_Trhs 7 pnd .
Ul Uc-|,3-|+UL,i UL-I,i + Vii LZTNE R
2 (0X;) AY t (3.33)

) 2t el 2 vl 2 N+ 2 +1
tz—i{A_ L[(%—%Z)i—ﬁ,j-k %%)(—S,ﬁ—l JFAY(TO%I\TI—)L:J—HZ(%XJ& h &)

Ld-
(3.34)

and £ is some number between O and 1/2, its value may vary from term
to term.

The above treatment of the continuity equation was first used by

n+l
Wu (34). Its main advantage is that the normal velocity Vi 3 for entire
)

space domain can be directly calculated according to the order j = 2,

n+l

3,4, ... provided that the streamwise velocity Ui 3 is known for entire
J

+1

n
space domain and the boundary condition Vi 1 is given for all values of

)

1 !

i In addition, BV/BY term in the continuity equation is replaced by
a central FDA which is a better approximation than a forward or back-

ward FDA.

4. Numerical Computation Procedure

Equations (%.29), (%.31) and (%.3%) are the exact finite difference
representations of PDEs given by equations (3.26), (%.27) and (3.28),
respectively. Hence, no truncation error has been introduced in these
equations. Suppose now the space intervals AY, AX; and the time step

At in equations (3%.29), (3.31) and (3.33) are chosen to be sufficiently



30

small such that the terms Ey, and Ey and Ey in these equations become

negligible. Hence, they can be approximated by the following FDAEs¥*,
respectively:
N+l n PIUAN BUD n (U5 -Ui Y _" lHR+EE;?Q
Uy =U, KT[( ).+ (0, 1%3( X )‘“VLjC“"%?Ayfl’)
U n
4_( Ll ZUll FL/LJ ! ) :
(AY)? (3.35)
Y\+|_ 14 N W ) 6{{ h @lj _@;\5_‘-
=y g v S
¥ w
1 (6050260 +604) ]
P (aY)* (3.36)
_— Nt !AY (Y\H n) N+l nH
%J::vdl AXQ[IU 1,31 U ILH) (3.37)

The truncation errors of FDAEs (3%.%5), (3.36)
AT-Ey and AY-Ey respectively, where Eg, Et and Et
(3.20), (3.32) and (3.34),

correspondingly.
Directly interpreted from equation (3.12),

are

n+l n+l
for S+1 > j > 2 and n > O; Ul,j = (UO)l
n+l n+l
61,5 = (8)y
n+l
form > 1 > 1 and n > O; Ui 1= 0
2
n+l n+l
V'i,l = (Vw>i

*Finite Difference Approximate Equations.

and (3.37) are AT -Ey,

are given in equations

the boundary conditions

(3.38.a)

(3.38.b)

(3.38.c)

(3.38.4)
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(3.38.h)

where k =8 + 1, formy >1 >1; k=25 +1, form>1>m.

The initial condition, according to equations (%.13), is

o)
Ui,J = <Us)1,3
o
Vi;j - (VS)¢,J'
o)
®i,5 = (es)i,j

(3.39.a)

(%.39.b)

(3.39.c)

where (i,j) covers all the space grid pcints in the domain of interest.

FDAE given by equaticn (3.%6) is called "explicit’ because of the

fact that the temperature variable © at time step (n+l) can be directly

computed from this equation once the values of O, U and V at time step

n are known and the boundary conditicns of © are specified. Suppcese.

instead of a forward FDA, a backward ¥FDA were used for the first term

on the left-hand side of equation (3.27), then the corresponding FDAE

of equation (3.27) would be

N i 8

i od ) .
9] i /@‘:'l g‘
i (] L

Ll..‘. L,:‘ - \ fl )

ﬁ\l(.t, bl \ 7+ NY

\ ~{ Vi oo f
F o= E Al iU (bkl__lil -, J) \/H (| )Lm Vi, \,;.l\) EIRSCINELIN

Fe(ay)? )
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which is equivalent to

| N wh ntl nt ot h+
R B

WA T 2y Fr (aY)?

In this case, even the values of U and V at time step (n+l) are known,

a large set of simultaneous algebraic equations must be solved in order
to compute the temperature variable O at time step (n+l) in terms of the
values of © at time step n. This kind of FDAE is called "implicit". In
general, an iteration procedure is necessary to solve a large set of
simultaneous algebraic equations on a digital computer. Therefore, it
i1s clear that one advantage to choose an explicit system of FDAEs is

to avoid time consuming iteration procedure. Equation (3.35) coupled
with equation (3.37) is also an explicit FDAE.

Equations (3.35) through (3.39) are actually used in the numerical
computation. The procedure of the numerical computation may be outlined
as follows:

(1) Determine the numerical values of m, my, me and S.

(2) Choose a proper set of At, AY and AXj.

(3) Set n =0, and compute U?}j, V?}j and O?)j according to the
initial conditicns given by equations (3.39) for all possible grid points
(1,3).

(k) set i = 2.

n+l n+l

(5) Compute Uy 3 and 8, 4 according to equations (3.35) and (3.36)
2 2

respectively for all possible values of 'j' except the two values j=1

and j = S+1 (for my > 1 >2) or j = 25 + 1 (for m >1i>mp).
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n+l

(6) Compute V; 3 according to equation (3.37) and the boundary
J

1 st
.

condition given by equation (%.3%8.d4) for all the values of 'j

1

(7) Increase the value of 'i' by one.

(8) Repeat steps (5) through (7) unitl i = m is included.

(9) Increase the value of 'n' by one.

(10) Repeat steps (4) through (9) until 'n' takes any desirable

value.

In the fifth step, the stability conditions of FDAEs (3.35) and

n+l
(3.36) should be examined before proceeding to the computation of Us 5
n+l
and @i,j‘ If they are satisfied, the computation can be continued as

outlined above. Otherwise, equations are unstable and the computation
should be stopped. In this case, a new set of At, AY and AX; should

be chosen such that the stability conditions are satisfied. A general
definition of the "stability" of a FDAE is given in the next section.

The stability conditions of FDAEs (3.35), (3.%6) and (3.37) are discussed

in Section(B-6) of this chapter.

5. General Error Analysis

To Jjustify the use of a finite difference method, various errors
associated with the method must be examined first. For a detailed dis-
cussion on the errors involved in the approximation of finite difference
method to steady, three-dimensional, compressible laminar boundary-layers,
Raetz (35) may be referred to. Here these errors are classified as the

truncation, instability, singular, rounding and machine errors.
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The truncation error of a FDAE is defined as the difference between
the FDAE and its corresponding PDE. The existance of this error intro-
duces the problems of "consistency” and "convergence'.

A FDAE is said to be consistent with its corresponding PDE if its
truncation error vanishes when all the space intervals and the time step
approach zero. In our case, FDAEs given by equations (3.35) through (3.37)
satisfy this requirement.

A FDAE is said to be convergent if its solution approaches the
solution of its corresponding PDE as all the space intervals and the
time step approach to zero. Note that the consistency of a FDAE does
not necessarily imply its convergence; the solutions of both FDAE and its
corresponding PDE may not be unique and even may not exist. The convergence
conditions of FDAEs (3.35) through (3.37) are studied in Section (B-7)
of this chapter.

The instability errors are those due to the growth or amplification
of any local errors (such as rounding errors) as the computation advances.
They are directly related to the "stability” of the FDAE. A FDAE is called
stable 1f its solution remains uniformly bounded as the computation ad-
vances indefinitely under a set of fixed space intervals. Thus, for a

stable FDAE, if any local error is introduced in its solution at some-

1 !

time level 'n' of the computation procedure, it must either remain bounded
or decrease as the value of 'n' advances. Hence, if the decay of the
local errors in a stable FDAE is faster than the generation of the local

rounding errors, the computer soluticn of this FDAE will closely approxi-
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mate its exact solution. On the other hand, when the instability exists,
a small error tends to grow as the computation progresses and finally
leads to a meaningless computer solution. The stability conditions of
FDAEs (3.35) through (3.37) are discussed in Section (B-6) of this chapter.
The singular errors are due to the existance of mathematical singu-
larities. At and near a singular point, the velocity or temperature changes
so rapidly that the otherwise valid FDAs of their derivatives become in-
adequate. An example of thig kind of error will be given in Section
(B-8) of this chapter.
The rounding errors are those due to rounding the numbers. IBM 7090
digital computer, by which all numerical computations are carried out,
has thirty-six binary bits in every single word. This gives an accuracy
of eight decimal digits if a floating-point number system is used in the
computer. Any number has decimal digits more than eight will therefore
be rounded in the computer, that introduces the rounding error. Likewise,
any arithmetic operation on the computer which leads to a number of more
than eight decimal digits also introduces the rounding error. An estimate
of the upper bounds of the local rounding errors introduced in the numerical
computations for U?fﬁ s G?jé and V?jﬁ according to FDAEs (3.35), (3.36)
and (3.37), respectively, are given in Section (B-9) of this chapter.
The machine errors are those due to the incorrect functioning of
the computer machine. The probability that such errors occur is very

low.



36

6. Stability Analysis and Test
Here the stability thecry is briefly reviewed first. In literature
(36,37), Von Neumann's theory has been often used to study the stability
conditions for the governing FDAEs of the nonlinear fluid flow problems.
Strictly speaking, Von Neumann's stability theory, which may be found in
References (38,%9,40,41,42) is only valid for initial-value problems with
linear, homogeneous governing differential equations. The theory predicts
the necessary and sufficient conditions for the stability of a multi-
level FDAE which approximates a differential equation of the above category.
John (43) studied the stability conditions of the following explicit

FDAE:

N
N+l n n
CPL 1}:&(%'*'“)'(R+h+4t'(0‘2)i (3.L0)
=N

which corresponds to the differential equation,

5% . %‘,9(—-+@z(m,<@) (3:41)

<L =ao(')(,t)%7 10,1 t)

2
where ap > O and the functions ay, da,/dx, O a5/9x%, a1, da1/dx, ap are
bounded and uniformly continuous in all their arguments. Furthermore,

az satisfies a uniform Lipshitz condition in ¢, that is

0,0 t9,) ~0.(% T, 0)| < ¢ |- |

for any values of ®2 and @i.
Next the stability conditions for FDAEs (3.35), (%.%6) and (3.37)

are derived. First, these equations are rearranged in the following form:
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(A7) (A7) n —.n (A7)
+(Va.a 2ay) Pr(AY)Z) 65,3_,"%[&] (AX)J Utﬂ (3.43)

(3.44)

V*”:H—Vnﬂ u)L ) ml -er.n \)mi)

o2\ LIJI Gy T

Then, it is assumed that

(1) o&T, AY and AX; are all positive quantities.

(2) A finite time domain Ty, 1s assumed. Thus, Tp > nAt > 0. Hence
n > o implies the limit At - O. However, the converse is not true.

(3) A finite space domain X, by Y, is considered. Furthermore, the
space intervals AY and AX; are fixed and take finite but non-zero values

during the numerical computation.
n

(4) Flow separation is excluded. That is Uj,; 20,

(5) The initial values (Us)i,j and (es)i,j are bounded by M  and

o
No respectively. Thus, according to eguations (3.39), ]Ui,jf < M, and

f@i jl < Ny for all the space grid points (i,J) under consideration,
s >

n+1
(6) The boundary values (V ); given by equation (3.38.4d) is
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n+l
uniformly bounded by (Vw)b. Thus, |Vi l| < (Vw)b for all possible values
, >

of 'i' and at any time level 'n'.

. n n

(7) The terms (BUO/BT)i + (UOBUO/BX)i on the right-hand side of

equation (3.35) represent dimensionless pressure gradient in the boundary
layer. It is assumed that this pressure gradient remains finite in the

interested space and time domains. Let its maximum value be P,, then

(Bl <

sU0

for all possible values of 'i' and at any time level 'n'.

Based on the above assumptions, the stability conditions for FDAEs

(3.42), (3.43%) and (3.44) are derived in the following theorem.

n+l
Theorem: The sufficient conditions for the uniform boundedness of IUi,Jl

n+l
given by FDAE (3.L2) and Iei,j] given by FDAE (3.43) are respectively,

( \

=7 Z A
‘%";“ + 2 L (3.45.2)
ﬁ AXy (AY)
—Z _ 5 AY (3.45.0)
Vel T
and
’ = | > > AT
Ll 4 (3.46.a)
) AX;  R(AY)?
2
\ F}|\ﬂf}| 2 AC( (3.46.p)
n+l ntl

Furthermore, if lUi,jl is uniformly bounded, then fV l given by FDAE

1,4

(3.44) is also uniformly bounded.
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n+l
Proof: First, the uniform boundedness of |Ui J[ 1s proved. According to

FDAE (3.42),

2 (AT AT) n o (AT) § 44+
anHI l ugf&)) (L&?)’!HUC“JI"_I_%W_V;‘J 2(AI)l |U£':Ifl+l|

v T n (AT 1
+HV S+ Lol TS+ U5 e Ul

Flatl-| %) + (1)

Let the maximum of fUl)J] be My for all the space grid points (i,j)

under consideration. Hence,by the assumptions (1), (4), (7) and stability

conditions (3.45), the above inequality can be written as

IUV\+|I<[ UnLT AT)] M, + (_@l, VLJ iLE:)) }Mn

W (axy T Ay A
(40 . (AT Un A1)
)y 2(4Y) ml] Mnt (U] (AX )]Mh t 4R

or

UL | £ Mat4T-R

n+l
Since Mn+l is the maximum value of lUi,j] for all the space grid

points (1,j) under consideration, therefore,
Mnn £ Mat4AT-B

Successive application of the foregoing inequality until n = O

gives
Mh+l Mot (N AT) R

or

[UN | < Mot (MR
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The second assumption implies nAt < 7, therefore,
el
‘(J ‘.. P4o+'Il'TZ (3.47)

Since Mo’ T, and P, are all finite and are independent of 'n',

n+l
hence, it is concluded that IUi jl is uniformly bounded. The uniform
)

n+l
boundedness of l@i Jl under the stability conditions given by equation g
s
(3.46) can be proved in a similar way.

n+l
Next, the uniform boundedness of IVi,Jl is proved from FDAE (3.LL)

as follows:

|

VLPLH' ‘ + IZ(A-XO‘ I UnH riy n+i- Un+|

| -| - T l,J i-1,3
< ‘V:ml lz ‘ [|- ln:u‘ _ L)Ln:uJ |'+ l-bm' Z\:"jU

The fourth assumption and inequality (3.47) imply

‘UnH ::||£‘Max of u',\;l dUm; ‘“ M°+ Tb

L=t
tUm' 4 I < MOTT{%

(RN

< |Max. of UJ owd Uy

t-hd

It follows then

‘le\ \ h+'| 2_}{:“\401*"[1,—‘30)

Repeatedly applying the above inequality until j = 2 and also making

use of the assumption (6), the following expression is obtained:

VI 1< (), +G-0(AL) (Mgt TP
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Furthermore noting from Figure 2 that j < 25 + 1, the above inequality

may be rearranged in the form

VT < (), + 25 (A 1)(MD+TL R) (5.18)

If AY/AXi is denoted by C;, the assumption (3) implies that C; is
a finite number. Then in terms of the maximum value Co of Ci correspond-

ing to all possible values of 'i', equation (4..48) becomes

V< 1), 25 o M T P

Since (Vy)p, S, Co, My, T, and P, are all finite and are independent of
n+l
'n', therefore, ]Vi’j[ is uniformly bounded and the theorem is proved.

A test on the computer has been carried out for Blasius flow. A
standard space domain shown in Figure 2 is used. Its dimensions are given
by system no.l in Table 1. The result shows how the size of time
step At affects the amplification of the local errors. At first, Blasius
solution is read into the computer as the initial condition. Then the
numerical computation is carried out according to the procedure described
in Section (B-4). Time step AT is chosen to be 200. After 600 time

steps, the numerical solutions of the local velocity become steady.

Actually, the criterion employed to determine the steadiness is

for all the grid points (i,j) in the above space domain. At this stage,

'n' is set to be O, a new quantity Z.

. 1s defined as follows,
1,d
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Zi_,] :-Ui.,j (51“‘9'3)

o
Then a —5% error is artifically introduced in U5,12 which takes a numerical

value of 0.8115774 before the introduction of the error. Now denoting

n
the instantaneous local errors by € 30 it yields
J

n -
Ci=Uy L (3.19.1)
n
where the initial value of € j are
)

o = -0.05 x 0.8115774 = -4.0578870 x 1077
3,12

and

o)
e, . =0
1,d

for all the space grid points (i,j) except the point (3,12).

During the test, the stability condition given by equation (3.45.p)

is assured, however, that given by equation (3.45.a) is not imposed.

n
First U; j is computed according to FDAEs (3.35) and (3.37) for At = 200,

n
250, 300 and 350. Then local error €310 is computed from equation (3..49.b)
correspondingly. Its numerical results are shown in Figure 3. For cases

n
At = 200 and 250, |65 12] becomes smaller and smaller, and finally vanishes
J

as 'n' increases indefinitely. This implies, according to the definition

n

3,12 is uniformly bounded and

of e? p given by equation (3.49.b), that U

)
approaches its steady value Z5 1o 8s 'n' increases. When At = 300,
)

n
le3 l2| first decays, and finally remains constant with a numerical value
)
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14.3

40—

Condition of Stability: AT<266.

At =350.

’////////Ar=300
A= 250.
/Ar=zoo

NA N NN AN f
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[
—
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—
—
—
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X
Y

-40fGee—_| - Error Artificially Introduced at n=0

-5.0

Figure 3.

Effects of the size of At on the instability errors.
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TABIE 1

SYSTEMS OF SPACE DOMAIN

system
no.l no.2 no.3 no.4
dimension ]

m; L 7 T 3

mo 8 15 15 [

m 8 38 38 30

S 20 20 20 22

Ax 25.0 25.0 30.0 16.4

AXi** series series series series
no.l no.2 no.3 no.2

*AY = A formp > 1 > 1, AY = 2A for m >1i>me.
*% Series of AXi are listed in Table 2.

n
of 0.5 x lO—3 as 'n' increases. Hence, U5 12 is still uniformly bounded
J

but deviates from its steady value Z5 10 by an amount of * 0.5 x 1072,
J

]

n
In the last case that At = 350, 165 1ol is amplified indefinitely as 'n'
)

increases. In fact, it becomes so large that the accumulator of the

n

computer overflows before 'n' increases to 50. Consequently, U5 10
)

becomes unbounded and is meaningless in the limit as n + «.

+1

n
It is important to note that, for U 12 to be uniformly bounded,

J
the stability condition given by equation (B.hS«a) requires At < 266.

This estimate of the limiting value of At agrees very well with the re-

sults obtained from the above test on the computer.

7. Convergence Analysis and Test
If a FDAE is consistent with its corresponding PDE, the proof of

its convergence is reduced to the proofs of the uniqueness and the ex-
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TABLE 2

SERIES OF SPACE INTERVAL AXy

series no.l no.2 no.3
A X, X, AX, X, AX, X,
1 1 1 1 1 1

1 - 0. - 0. - 0.

2 1514.67| 1514.67 | 700.35 700.35 | 1200. 1200.
3 1965.42| 3480.09 | 814.32 | 1514.67 | 1400. 2600.
4 2404.02| 5884.11 | 927.06 | 2441.73 | 1600. 4200.
5 2827.83| 8711.94 [ 1038.36 | 3480.09 | 1800. 6000.
6 3289.12/12001.06 | 1148.04 | 4628.13 | 2000. 8000.
7 3620.64|15621.70 | 1255.98 | 5884.11 | 2200. | 10200.
8 3982435/19604.05 | 1561.97 | 7246.08| 2400. | 12600.
9 1465.86 | €711.94 | 2600. | 15200.
10 1622.41 | 10334.35 | 2800. | 1£000.
11 1666.71 | 12001.06 | 3000. | 21000.
12 1763.37 | 13764.43 | 3000. | 24000.
13 1857.27 | 15621.70| 3000. | 27000.
14 1948.35| 17570.05 | 3000. | 30000.
15 2034.00| 19604.05| 3000. | 33000.
16 2121.33% | 21725.38 | 3000. | 36000.
17 2202.96 | 23928.34 | 3000. | 39000.
18 2281.23% | 26209.57 | 3000. | 42000.
19 2355.96 | 26565.53 | 3000. | 45000.
20 2427.06 | 30992.59 | 3000. | 48000.
21 2494.41| 33487.00| 3000. 51000.
22 2557.92 | 36044.92 | 3000. | 54000.
23 2617.50| 38662.42 | 3000. | 57000.
24 2673.03 | 41335.45 | 3000. | 60000.
25 2724 .42 | 44059.87 | 3000. | 63000.
26 2771.64 | 46831.51 | 3000. 66000.
27 2814.57 | 49646.08 | 3000. | 69000.
28 2853.18| 52499.26 | 3000. | 72000.
29 2887.35| 55386.61 | 3000. | 75000.
30 2917.11| 58%03.72 | 3000. | 78000.
31 2942.37| 61246.06 | 3000. | 81000.
32 2963 .07 | 64209.16 | 3000. £4000.,
33 2979.21 | 67188.37 | 3000. 87000.
34 2990.76 | 70179.13 | 3000. 90000.
35 2997.69 | 73176.€2 | 3000. | 93000.
56 3000.00| 76176.82 | 3000. | 96000.
37 3000.00| 79176.82 | 3000. | 99000.
38 3000.00| 82176.82 3000. }102000.
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istance of their solutions. For a general initial-value problem, such

a theory has not been available yet. However, for a properly posed
initial-value problem, if the governing PDEs are linear and homogeneous,
it is known (59,&1) that the corresponding FDAEs are convergent if and
only if they are consistent and stable; here a problem is characterized

as "properly posed” if a solution of governing PDE exists and depends
uniquely and continuously on the initial values. John (L43) has treated
the convergence of the solutions of FDAE (3.40). The result that con-
sistency and stability imply convergence also holds in this case. Douglas
(44) has studied the sufficient convergence conditions for the explicit

FDAE which approximates the following nonlinear parabolic PDE,

0 _ . 2 T
e =Ft, 9.3 55).

The convergence conditions for the implicit FDAE which corresponds to

the following nonlinear PDE,

29 _ 020 P
DX F(%'t’@’b%' Z)t)

were investigated by Douglas (L45) and Lees (46).

In the rest of the section, the sufficient conditions are derived
under which the solutions of FDAEs (3.35), (3.36) and (%.37) respectively
converge to the solutions of equations (3.29), (3.31) and (3.33) as AT,
AY and AX; approach zero. It is important to note that equations (5029)y
(3.31) and (3.33) are the exact finite difference representations of

PDEs (3.26), (3.27) and (3.28), respectively.
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~

“n+l +1
Now let U?’j, V? )3 be the solutions corresponding to the exact
n+l n+1
finite difference equations (%.29) and (3.33) and U 3 and Vi,j be the
J

solutions of FDAEs (%.35) and (3.37). Then FDAEs (3.35) and (3.37) are

called convergent if

» ~/
L U-“.H— U‘V\\H A
AT AY, AX>0 |+ L
and
Lo LR VALl TN
A’tlAY’AX_L-%O LlJ

for all space grid points (i,j) and at any time level 'n'

It is important to note that G and V are also the solutions of PDEs
(3.6) and (3.2). For a problem of physical significance, there is no
loss of generality by the assumption that the solution is a well-behaved
function. Therefore, it is assumed that

(1) The solutions U and V are uniformly bounded and their partial

derivatives with respect to T, X and Y exist and are also bounded uniformly.

Particularly,
277 ~3 1 3T T
L 1< 2k, ‘Uaxz <2k, v-g——; < 6K;,
)T *U
W éIZk;', ax_?—|<ZK47 W‘—éZKS’
BV AW |« 20 | ¢
X\%:{‘Z4K€~ x| <l 3y <L,

(2) The following two limits exist and are uniformly bounded:



B
AX‘[’O
Lo

AY>c

U]‘Yl\l jL} :\"i EI l
AX;

-h

TN
U\ \l el U \_|

2 (AY)

<"

¢, !

<\,

for all possible grid points (n,i,J).

Based on these assumptions and the assumptions made in the previous
section (except that AY and AXi are now allowed to approach zero), the
convergence conditions for FDAEs (3.%5) and (3.37) are stated in the

following theorem.

Theorem: The stability conditions given by equations (3.45) are the

sufficient conditions for the convergence of FDAEs (3.35) and (3.37).

Proof: Rewriting PDE (3.6) in the form,

jﬁ_._ Ardiargi e K o S

b”[ __'q[()(ij,tj,\f,[JX,TJ},[]Y*)
and

V=3 t0Sx ~UU = VU + Uy (3.50)
where

=20 §=23U, % _30

b= =ar Un=ov

the equations (%.29) and (%.33%), which are the exact finite difference
representations of PDEs (3.6) and (3.2), can respectively be transformed

into the following inequality forms:
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i 1!

SAMPATNRTN S [6'c T T RS

[N

m[K.(A‘r)%mxa+<K3+K;’)(Ax)1) (5.5

~

N+l m”‘” { YY /24nt Sdak HH 7l
LBy of AN o)

Ll L4t ~u| LJ 1,1

+AYL +K5(m+v<f,(m)) (5.52)

where

N _TI7 -

M= U= U (3.55.a)
L AX;

NN Nn —N\y‘

%n_i:_.g_]uﬂ_[jﬂd:l (5'53}3)
L 2(AY)

P ~n ~h ~n
" U 2Ut Ui Gsoose
u] (4Y)* 2eo0ee

Here it should be remarked that the first assumption was used during the
transformation from equations (%.29) and (3%.33) to inequalities (3.51)
and (3.52) respectively.

Similarly, FDAEs (3.35) and (3.37) can be written as follows:

"y T g en
Ub,j— ATu/ XL;TY\ LJ! ’j’y‘(,‘,’j’gi\,j)gi.j) (3.54)
h+ nel [ _p¥l N+ nt el
- +
Ve = Vo AX) Ui Unga " U Um] (3.55)
where

":=:{J33-113d
T(‘».j— AX; (3.56.a)
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-n TR
PH — Ul 1+ —QQ:|
éi,‘J“' Z(Al’) (3.56.b)

p —.n 7 i
AN G 2UN +UN

g J
W (4Y)? (3.56.c)

e

n+l
Defining ai

d 5n+l
., an . . as
,J l)J

’H‘!_—— ~~ H+| h+1

XK= Ui ; U (5.57.2)
Nt N ntd Vm-t

(Sf,jzvg,J‘ BREAEE (3.57.p)

and subtracting equation (3.54) from inequality (3.51) yield

07y < o5+ 8T (W) + 4T (K0 (X)) .5

where Vo and V¥, are the function V¥ evaluated at the points Ag,(Xi,Tn,

~n ~n ~n ~n ~n n n n n

Ui, 30 Vi,30 1,90 B,50 81,505 and Auy (Kg, 1 Ug g5 Vi g5 Mg, 50 &y g
n

Ci’j), respectively.

Using the mean values, the following equation is obtained:

V= GG v RS-V ) (T - )
PN, oon n VAR ErSA
+(E°:Y)(§‘d‘%“d)+@ )( tJ’CSJ)
- @ (f:n U h = = AL
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where all the quantities in the brackets ( ) are evaluated at some point

between A, and As. It follows, by the definitions given in equations

(3.53), (3.56) and (%.57), that

—_ ___7:_ o iﬁx‘dr\ =) um‘dzf
Y == - T 1 - O (B ) B
+[ Em_ié&;+qLLl} (3.59)

Inserting equation (3.59) into (3.58) yields

( T \ATS 4 1(1%)2 ]OM + [ AY)‘ ‘ﬁi&) o
) =y v T
+(l(f\#+( v) M}Y)))O(H'H )(AX] iy AT (T ot

- N (U P:J +A”[’ K 0+ G (4R;) + (Kt 3)(AYZJ (3.60)

n
If o and Bn are the lowest upper bounds of Q.

1,3 and Bi,j’ respec-

tively, then,

Max. SS‘EEE (3.61.a)
and
Max‘(j:’:‘“'_:_ Bw (3.61.1)

for all the grid points (i,Jj) under consideration. Furthermore, let

Y
ax. By, = By (5.62)

for k =0, 1, 2,..., n.
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Now if

\
_ >
) = AT:, (3.6%.a)

2
(0% A

2
——_—_—:——>
|(,.) l __.AJ/, (3.63.b)
\"
then, by the definitions given in equations (3.61) and (3.62), inequality
(3.60) can be expressed in the following form:

062 [ (142, WO ot t AT (o Bt 00+ K (8K H (K K3 (A

where

I| = Max. (3.6k.a)

(@)

&Fz;—' Max. l@l (%.64.0)

Since |(GX)| takes a value between Igi’j] and In?,j|, from equation
(%.5%.a) and the first assumption made in this section, it may easily
be seen that the maximum of ]E?,jl is uniformly bounded whether AX;
approaches to zero or not. Similarly, from equation (3.56.a) and the
second assumption, the maximum of in?,j| remains uniformly bounded in
the limit as AXj and AY approach zero. When AX; and AY are finite, the
conditions (3.63) imply that IU?’ji is uniformly bounded, and \n?’jl
still remains uniformly bounded. Consequently, jll is a finite positive
constant. The same is true With.jlg.

. nt+l
Since lai,jl has a lowest upper bound an+l,hence,

A (Ot AT, Bt KT KR + (Kt KAV (5 oy



55

Applying the above inequality successively until n = O gives

2

(1 : , .
, PEENCAN B - \!‘ / R T A ,
A Xec e T Par KD t e da It (3.66)

The detailed derivation of this inequality i1s given in Appendix I.

Since

f— O
§ = U

. )
sy

5= o 3= M 0, = Mo |0, 00,

I)I

in the limit as Ar, 4X, and AY approach zero, inequality (%.66) becomes

Lae T B (3.67)

, ] +1 .
Next the inequality for B?,j which was defined in equation (5.57.b)

is established. Subtracting equation (5.55) from inequality (5.52) results

in
TH-I Qisﬂ

~N o n g
g A _é {:) = (/AY) [(I,T( i‘}JFI,J‘)_(LLJ U\: l\ (L Ul J - |") {Ul = I_U' R '\
‘Ll RE A, AXy / \

AX; A_X_ ’I
+AY (K (a2 + Ks (A7) + K, (AY )

Then repeated use c¢f this inequality until j =

2 gives

~n

it nt ,.‘i. Lot ot n n
(?)r ‘s < (5 ‘__ iA‘]) \> [ '{,:;“t;Ug-} &)“/U; 4 DH{;) A 4l U s\ /Ll i~ Ui-Lﬁjn
S () TR S T NS R A W

) AT (K, (8) + KgldY) + Ko (AY)"

Nl
B <

(»ﬂ+|

AYL{H+,+I<4AX) S(AY)+K, (Y] (68)

where
s ~in§} i ,PH
fo = e [ZE) (U0

(3.69)
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for all the space grid points (i,j) under consideration.
Since
ntl__ oyl ooy -hﬂ SRR
(3 —Vul V (W),‘_ “(V-w); =0
and

( j"l) AY =Y:i SYb

therefore, in the limit as At, AX; and AY approach zero, inequality

(3.68) becomes

or

A’t AX; L 010 P Yo Yo o)

where

Lo = Mae (- ()1 5

AT AY; AY>0 “J

Applying mathematical induction to inequalities (3.67), (3.70)

and equation (3.71), and the use of

By = B, = Man | 23] = Mar |, i3 | = Mo ), - 00, | = ©

readily yields

Lim _
AT, A% AY>0 | Pnn=0

at any time level 'n'.

Xy =0

According to equations (3.61) and (3.57),it may therefore be concluded

~n+|
that n+i
l U"IJ

K[,AX,‘AY#O |\7LJ VYHI |—
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for any point (n,i,J).

The above proof of the convergence of FDAEs (3.35) and (3%.37) is
based on the assumptions given by inequalities (3.63). Hence, these
assumptions are the sufficient conditions for the convergence of FDAEs

(3.35) and (3.37). It should be noted that ZE; in inequality (3%.63.a)

~n n -
takes some value between Uj ; and Uy j, while (V) in inequality (3%.63.b)
~n
takes some value between Vi,j and Vl B Since the solution of any con-

vergent FDAE can be made considerably close to the solution of correspond-

ing PDE by choosing Art, AX; and AY sufficiently small, it may be assumed

then
SN n
Uy, =U;;
and
A AL
ol Vg

Accordingly, the convergence conditions given by inequalities (5.65) may

be approximately written as

|

:\ .z Z AT (3.72.a)

o2
l > AY (3.72.0)

IW
which are identical to those given by inequalities (%.45). Therefore,
the theorem is proved.

Similarly, it may be proved that the stability conditions given by
inequalities (3.46) are the approximate sufficient conditions for the

convergence of FDAE (3.36). This proof is omitted here.
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Figure 4 shows how the solutions of FDAEs (3.35) and (3.37) approach
the solutions of corresponding PDEs as the space grid size is refined.
The solid curve in Figure 4 represents the Blasius solution U versus the
similarity parameter Y/~fk. The broken curve no. 1 is the numerical
solution 28, 3 (for j = 1,2,...,41) which was computed in the previous
section and corresponds to the local velocity profile at X = 19604.05.
The relatively large deviation of 28,5 from the Blasius solution is due
to the local truncation errors. The broken curve no. 2 is the numerical
solution of the local velocity profile at the same location after the
size of AX; has been refined. The deviation of this numerical solution
from the Blasius solution is much smaller than that of the previous case.
It is reasonable to assume that as the grid size is further reduced,
the numerical solution of the Blasius flow converges to the Blasius so-

lution.

8. Singular Errors

During the computation of the numerical solution for the broken
curve no. 2 described in the previous section, a standard space domain
shown in Figure 2 is adopted. Its dimensions are specified by system
no. 2 in Table 1. The time step AT is taken to be 200, and the initial
values of U and V are assumed to be Blasius solution. The steady state
has been reached after 600 time steps. The numerical results of the
steady local velocity profiles at five different locations are shown in

Figure 5. At X = 55386.61, the numerical solution agrees very well
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with Blasius solution. However, as the values of X decreases, the devia-
tion of the numerical solution from the Blasius solution increases. Figure
6 shows that the above conclusion also holds for numerical solution of

the local skin friction. The numerical computation of the local skin
friction, (OU/dY)y-p, is based on the following three-point Lagrangian

interpolation formula (47):

WY Uy 30 +4UR-URS)
29 Wi 0 bad 7

Hereafter this formula is used for all numerical computations of the local
skin friction and the local temperature gradient.

There are two reasons for the deviations mentioned above. Firstly,
Blasius solution is not the exact solution of PDEs (3.26) and (3.28) at
and near the origin X = 0. Secondly, under the current system of the
grid size, FDAEs (5.55) and (5.57) are not valid near X = O where a
singularity exists. From the second reason, it is clear that the existance
of singularity causes an unacceptable local truncation error. Complete
elimination of these singular errors is impossible. However, by choosing
a system of nonuniform grid size as described in Section (B-l) of this
chapter, the singular errors due to the singularity at X = O can best
be compensated.

A close examination of Figures 5 and 6 shows that, under the present

space grid size the numerical solution of Blasius flow agrees quite well
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with Blasius solution for X > 1.96 x th.* However, for X < 1.9 x lOu,

the deviation from Blasius solution becomes considerable because of the
presence of the singular errors. Therefore, in the examples to be given
in Part (A) of Chapter IV, the numerical results in the domain that X <

L

1.96 x 10" are not used.

9. Local Rounding Errors

The procedure of the numerical computation described in Section
(B-4) of this chapter has been carried out on IBM 7090. Since IBM
7090 has only thirty-six binary bits in a single word, the aforementioned
rounding errors are inevitable during the numerical computation. The
only concern is that whether the rate of generation of the local round-
ing errors is higher than the rate of decay of the local errors or not.
If it is, then the numerical solution to be obtained from the computer
is meaningless even though FDAEs are stable and convergent. Thus be-
comes necessary to estimate the upper bounds of the local rounding

n+1 n+1 n+1
errors during the numerical computations of U e and V. . accord-

i)j’ i;j l)J
ing to FDAEs (3.35), (3.36) and (3.37), respectively. However, before
this estimate can be made, the maximum possible rounding error intro-

duced in a single floating-point arithematic operation must first be

studied.

In the floating-point computation, each number z is represented

*If the main stream velocity is assumed to be 20 fps and air to be the
medium of flow, the point X = 1.96 x lO2+ corresponds to a location about
1.9 inches from the leading edge of the plate.
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1

by an ordered pair 'a' and 'b' such that

where 'b' is called the exponent and takes an integer value, positive

or negative; 'a' is called the fractional part and satisfies
0.5 < lal <1.

In IBM 7090, the word bits are so allocated that 'b' has eight binary
bits and 'a' has twenty-seven binary bits. This gives an accuracy of
eight decimal digits for 'a' or, accordingly, for z. Meanwhile 'b' is

restricted by
b| < 127.

The above restriction on 'b' implies that IBM 7090 is only capable to
take a number whose absolute value is smaller than 2127.

Let f1 {B] denote the computer result of the arithematic operation
'B' according to the floating-point number system described in the

previous paragraph. It is not difficult then to derive the following

identities (L8):

iyt yL}E (1,£%) (11 Ey)

(3.7%.a)

( S v
L R R L I ERERS
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|Eel< 2 (%.74.2)
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(1-74) 1+, £ 02 2707, o k=230 L/f
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(=27 2 vy AR ) - (3.74.¢)

_ -27 - .
Since the number 2 21 is much smaller than unity, aZl the seccnd

Iolad

and higher order power terms of 2_2! may be neglected in all binomial

expansions in inequalities (3.74). Consequertly, 7.., 1. and n, can’

iJ’

be expressed as followvs:

N =(lri-0F, (3.75.8)

1= -0 E

= [ \ . , e )
H‘g—(wi—@a}’En for k=22 .1 J (3.75.5)
Similarly, it is easy to verify that
, 1] 12 . y . "
(@re"ENbtEEe) = ch+ (aB ]+ b’ D E, (5 76)
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where a" and b" are arbitrary constants.

The upper bounds of the local rounding errors introduced during the

n+l n+l n+l i
numerical computations of Ul )3 Gi j and Vi,j may now be estimated. Let
2
n+l +1 n+l
Ui 3, 6 j and Vi j be the exact solutions of FDAEs (3.35), (3.36) and
J

~n+l
(3.37), respectively, and the corresponding computer solutions be Ul 37

~n+1 ~n+1
;,; and Vi,j' Therefore, according to FDAEs (3.35), (3.36) and (3.37),

—~

=L

= e Q- (BT
—thﬁ-bt " ,)JW
(AY)*

=n ~n

__i7Y'(EE;?A;fn|D_F(

L?&

(3.77)

A

P 43)\\ A <N Q?}[
8- k(g o i By
L (B 2@.",+@LJ_L) ]} (5.78)
Fr (4Y)?

an+[_" [p 1+ (AY)
V= Vidq™ c(Ax()(

td-l 1,9+ t =1.d

o [Inﬂ \+t_[)n+.]} (5.79)

In above equations, we have assumed that the numerical values of AT,

n
Xy, AY,Pr, (3U,/oT)

; and (UOBUO/BX)? can exactly be read into the

computer and no rounding for these numbers is needed.

n+l n+l n+l
The local rounding errors of U; ., ©, , and V, . are defined as
i,J i,J 1,4
. ~n+l n+l ~n+1 n+l ~n+1 n+l
the differences (Ui,J - Ui,j)) (ei,j - @l)j) and (Vi,j - Vi,j) respect-

n
ively provided that Uy 39 or
)

n . .
i,j and Vi,j for all the space grid points

(1,J) can exactly be represented on the computer. In other words, assuming

N?Vl— n o _ "
Di.i-_U{ni ) 6 3 e

L N

=N _ .on
Omd Vi VC.J
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for all the space grid points (i,j), it is desired to study the upper

n+l’, I""n+l _ n+l|

~n+1 ~n+l n+l
bounds of IUi - Ul,J J
)

nd |V, 5 Vgl

According to equations (3.77), (3.35) and the floating-point arithe-

matic operation rules given by equations (3.73), (3.75) and (3.76),it

may be estimated that

U e @{ul f)@—g’)f* 2598 ”’lU ‘“z%“l),
g ot )
Similarly,
B ol < {1 vt (rfur o oy Gyl
REIAMER L) .lf‘”@ m']}
Pr (V)2 28
V-V < (a‘”){< DL+ “AYX—’)X [ 3-dy )

TR H U 1 HE H ) HM]} (582

n
where Hi 3 is defined as the quantity in the brackets { } on the right-
J

hand side of equation (3.80).



CHAPTER IV

NUMERICAL EXAMPLES

A. OSCILLATIONS IN BIASIUS FLOW
1. Statement of the Problem

Here a fluctuating boundary layer on a stationary semi-infinite
flat plate is considered. The fluctuations in the boundary layer are
introduced by an unsteady main stream which oscillates periodically about
a constant mean value. Let this mean value of the main stream velocity
be u _, and the corresponding amplitude and the frequency of the oscil-
lation be Auy and w, respectively. Hence, the free stream velocity u,

of the problem takes the following form:
Ue= UL+ AUs Sin(wt) (4.1)

Selecting u, as the characteristic velocity of the problem, equation

(4.1) may be rearranged in the dimensionless form,
Uy=1+ AU, Sin(WT) (4.2)

where AU, and W, defined as Au_/u, and w/(uiﬁv), respectively, are the
corresponding dimensionless amplitude and frequency of the free stream
oscillation.

With U_ specified in equation (4.2), the governing FDAEs of the
problem can easily be obtained from equations (3.35) and (3.37). The

boundary conditions are given by equations (%.38.a), (3.38.c), (3.38.4)

66
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and (3.38.f). Since neither blowing nor suction is present in the flow,
the value of Vy, in equation (%.38.4) is taken to be zerc. The initial
conditions are specified in equations (3.39.a) and (%.39.b) where Ug
and Vg are assumed to be the steady Blasius solution.

The analytical soluticns of the above problem were studied by many
authors. TIn general, they can be classified into three groups, namely,
high-frequency, intermediate-frequency and low-frequency solutions, ac-
cording tc the characteristic frequency parameter X.W.

For high-frequency case (X.W > 10), the problem was investigated
by Lin (31) with a method described in Part (F) of Chapter II. Ac-
cerding te Lin's result. the amplitude and the phase lag of the iccal
oscillations depend cnly on the combined variable YWJW72 and is in-
dependent of X. Hence, a single curve is sufficient to represent these
quantities for all frequencies.

In the intermediate-frequency range (10 > X.W. > 1), Hill and
Sfenning (49) studied the problem analytically and experimentally.

The analytical method which they used is actually the method of suc-
cessive approximations described in Part (D) of Chapter II. Lin's

(31) results were taken as the solutions of the first order approxi-
mation, and the solutions of the second order approximation were
computed. They found, in addition to variable YNGE?E, that the ampli-

tude and the phase lag of the lccal oscillations also vary with parameter

X.W.
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For low-frequency case (1 > X.W), the analytical investigations
were carried out by Lighthill (33) and Nickerson (50). Lighthill line-
arized the governing PDEs by using the series solution method which was
discussed in Part (C) of Chapter II. Only first two terms in the series
expansions of the local velocity were considered, hence, the validity
of the results are restricted to the small oscillations. The small
oscillation in Blasius flow was also studied by Ghosh (51) for all
frequency ranges. Again, only first two terms in the series expansions
of the local velocity were calculated. As pointed out by Schlichting
(22), the first two terms in the series solution are not sufficient to
reveal the net effect of the free stream oscillation on the local ve-

locities in the boundary layer.

2. Numerical Solution for High-Frequency Case

In this example, a standard space domain as shown in Figure
2 is adopted. The dimension of the space domain is specified by system
no. 2 in Table 1. According to this specification, the maximum value
of X is about 8.22 x lOu. Again the numerical solutions in the domain
that X < 1.96 x th are not used, because of the significance of the
singular errors introduced in this domain. The dimensionless frequency

W and amplitude AU  are chosen to be n x lO'u* and 0.05, respectively.

*If the mean value of the main stream velocity, u_,is chosen to be 20 fps
and air is the medium of the flow,W = 5 x 10" corresponds to a frequency
of 125 cps.
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Therefore, the characteristic frequency parameter X.W in this example
varies from 6.15 to 25.8 which covers most high-frequency range and the
upper half of the intermediate-frequency range.

The time step At is selected to be 200. According to the frequency
specified in the previous paragraph, 100 time steps are needed to complete
each cycle of the oscillation. The flow becomes approximately steady
periodic after five cycles of oscillation from the steady Blasius flow,

or equivalently, after 500 time steps. In fact,

T7400tN 300tN -
UT.,] —Ui,f < 65)(]03
(7¢oo+n -

LIJ

is satisfied for all grid points (i,j) in space domain and for any n
between O and 100. The above numerical computaticns are carried out on
IBM 7090 according to the program given in Appendix II-A. The total machine
execution time is about twenty-five minutes.

The numerical solutions shown in Figures 7 and 8 are drawn during
the computation of the local velocities at the sixth cycle. In order
to draw the necessary information about the local velocity at every
degree of the phase angle, the time step AT used in this cycle is changed
to 55.555556 and the computer program is modified slightly.

Figure 7 shows the numerical solutions of phase angle ® of the local
velocity component U for X.W = 25.8 and 9.0, A comparison is made with
Lin's (31) high-frequency solutions. The numerical solutions agree well
with Lin's solutions for X.W = 25.8. For X.W = 9.0, which corresponds

to a frequency a little lower than the lower limit of the high-frequency
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region, a slight deviation appears between the solutions, as expected.
The same conclusion can be extended to the local amplitude ratio AU/

AU, according to Figure 8.

5. Numerical Solution for Intermediate-Frequency Case

The dimension of the space domain used in this example is specified
by system no. 3 in Table 1. The numerical results bounded by the lines
X =2.1x%x lOh and X = 10.2 x lOu will later be used for discussion. The
frequency W and the amplitude AU, are chosen to be 5.8177641 x 10™2% ana
0.05, respectively. The corresponding characteristic frequency parameter
X.W varies from 1.22 to 5.94 which covers the lower half of the intermediate-
frequency region.

The time step At is chosen to be 300, 360 time steps are needed for
one cycle of the oscillation. In the fifth cycle, the flow is almost
steady periodic, in fact,

| U iI:f,?o'm U {08;o+n 3
I < |44-01-V\;v .<.4.5X|0

-~ .

W

for all grid points (i,j) in the space domain and for any n between O

and 360. The numerical results shown in Figures 9 through 16 are drawn
during the computations of U and V in this cycle. From the first cycle

to the fourth cycle, the program given in Appendix II-A is used. This

*If u, is taken to be 20 fps and air is the medium of the flow, W =
5.817764 x 10-5 corresponds to a frequency of 23.2 cps.
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program is slightly modified in the fifth cycle in order to print out
all the information needed for Figures 9 through 16. The total machine
execution time is about ninety minutes.

Figures 9 and 10 show the numerical solutions of the phase angle
® and the amplitude ratio AU/AUO, respectively, for the characteristic
frequency parameter X.W = 5.06. A comparison is made with Hill and
Stenning's (49) intermediate-frequency solutions and experimental measure-
ments. Both the numerical and the intermediate-frequency solutions
slightly deviate from experimental measurements.

The numerical solutions together with the intermediate-frequency
solutions and the experimental measurements of ® and AU/AUO for X.W =
2.45 are shown in the Figures 11 and 12, respectively. As far as
amplitude ratio AU/AUO is concerned, Figure 12 shows the agreement of
the numerical and intermediate-frequency solutions with experimental
data. However, for phase angle ©, Figure 11 shows numerical solutions
agree with experimental data better than the intermediate-frequency
solutions. For smaller values of the characteristic frequency parameter,
say X.W = 1.40, Figure 13 shows that the deviation of the intermediate-
frequency solution from the experimental data becomes more severe, while
the agreement with the numerical solution is still excellent.

Figure 1L shows that the numerical solutions of the maximum phase
lag have the same trend as the experimental measurements for the

complete intermediate-frequency range, while the intermediate-freguency
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solutions start to deviate from them at X.W = 3.0. Since Hill and
Stenning's intermediate-frequency solution is merely an improved Lin's
high-frequency solution by a second order successive approximation, the
deviation from the corresponding experimental data at small values of
the characteristic frequency parameter is not surprising.

It is worth noting that the existing literature (18,31) observes
the net streaming effects introduced due to the presence of the oscil-
lation in Blasius flow is of order of (AUO)z. Since AU, used here is
equal to 0.05, therefore, the difference between the time-averaged
local velocity U and the steady Blasius velocity profile must be negli-
gibly small. The numerical solution shown in Figure 15 confirms this
point. Furthermore, Figure 16 shows that the instantaneous local velocity
computed by the numerical method oscillates sinusoidally about its time-

averaged value.

B. IMPULSIVE START OF WEDGE FLOW
1. DNumerical Solution of the Transient Velocity Profile

The boundary-layer flow along a wedge of 45° half-angle is considered.
The wedge is initially at rest relative to a stationary fluid and sud-
denly moves with a constant speed along its center-line. After the motion
has started, the free stream velocity uy relative to a moving coordinate

system described in Part (A) of Chapter III takes the steady value,

Uo(%)=%%)% (14.3)
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where x, 1s an arbitrary characteristic length and u_ is the velocity

of the fluid particle on the center-line of the wedge at distance Xa

from the stagna ion point of the wedge as shown in Figure 17.

Figure 17. Wedge Flow

Selecting x, =-¢Vuc and arbitrarily setting u, = u./45, the di-

mensionless free stream velocity becomes
UX)= Vi (4.4)

The governing FDAEs and the corresponding boundary and initial
conditions of the problem can be obtained in the same way as described
in Section (A-1) of this chapter, provided that Ug and Vg are replaced
by Uy and O, respectively.

A standard space domain is adopted, its dimensions are specified
by system no.k in Table 1. The time step At is chosen to be 50, 100
and 110 for n = 1 to 100, 101 to 800 and 801 to 1050, respectively,

At n = 1050, the flow is considered to be steady, in fact,
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is satisfied for all the grid points (i,Jj) in the space domain. The

numerical computation of this example is carried out according to the
program given in Appendix II-B. The total machine execution time is

about forty-five minutes.

The numerical solutions of the transient local velocity profile
and local skin friction are shown in Figures 18 and 19, respectively.
Neither analytical nor experimental solutions are available for these
profiles. It is worth noting that the flow becomes fully developed in
a very short period, say T = 10.25 x 10%* Figure 20 shows the numerical
solutions of the fully developed velocity profile at two different
locations. For comparison, Hartree's (26) analytical solution versus
the similarity parameter I' is also plotted in this figure. The agre-

ement is excellent.

2. Numerical Solution of the Transient Temperature Profile

In this example, the velocity field is assumed to be fully developed,
the temperature of the fluid and the wedge is assumed to be uniform and
equal to zero initially. The transient temperature profiles due to
sudden raise of the surface temperature of the wedge from O to 1 will

be studied.

*If air is considered as the medium of the flow and the characteristic
velocity u. is assumed to be 10 fps, then the dimensionless time T =
10.25 x 107 corresponds to a physical time of 0.164 second.
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The governing FDAE is given in the equation (3.36) where Prandtl
number Pr is chosen to be 0.735. The boundary conditions are specified
by equations (3.38.b), (3.38.e) and (3.38.g) where 6, = O and &y = 1.
The initial condition is given by equation (3.39.c) where ©g = O. The
in equation (5.56) are assumed to be

velocity components U? and Vg
)

sJ J

the steady numerical solutions of the previous example. The space domain
is chosen to be the same as that used in the previous example.

The numerical computation of © has been carried out for 1400 time
steps. For the first 200 time steps, At is chosen to be 50; while for
the last 1200 time steps, At is equal to 88. At n = 1400, the temperature
profile is considered to be fully developed and the instantaneous local

temperature satisfies the following relation:

1400 1394
65;‘ - 65‘ I =
”@Moo == < 5.0x10

(TR

for all the space grid points (i,j). The computer program given in
Appendix II-C is used for the numerical computation of this example.
Approximately a total of thirty-nine minute machine time is required
for the entire calculation.

Figures 21 and 22 show the development of the local temperature

profile and the local Nusselt number Nu which is defined as

-(00/2Y )y=0
G%N - 6o

In this case, no analytical solution is available for comparison.
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CHAPTER V

CONCLUSION

In the preceeding chapters, a finite difference method for comput-
ing velocity and temperature profiles of an unsteady, incompressible,
laminar boundary layer around a two-dimensional cylinder of arbitrary
cross section is developed. Blowing or suction may be present on the
wall of the cylinder. The thermal boundary condition at the wall may
be either specified wall temperature or specified heat flux at the wall.
Two examples, one oscillation in Blasius flow and the other impulsive
start of wedge flow are given; the numerical results are compared with
the existing analytical and experimental results. From these, the fol-
lowing conclusions are drawn.

(1) The method can be used to compute, with high accuracy, the
velocity and temperature profiles of an unsteady boundary-layer flow of
the foregoing category up to separation point.

(2) The method can easily be extended to determine the velocity
and temperature profiles at the separation point, where a temporary
reverse flow may occur, provided that a forward FDA, instead of a
backward FDA, is used for the derivative in the second term on the
left-hand side of equation (3.26).

(3) At and near a singular point, the numerical solutions given

by the method are doubtful because of the singular errors.
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(4) For periodic flow problems, if the period of oscillation is
very long or the frequency is very low, a large number of time steps
are needed to complete one cycle of oscillation because of the limi-
tation on AT imposed by the stability criterion. Therefore, it may
not be advantageous to study oscillating flows of very low frequency
by the present method.

(5) For starting-ending flow problems, which are difficult to
investigate by analytical methods, the present ﬁethod is indispensable.
The method can also be used to study the starting-ending flow problems
for large values of time. In this case, the problem becomes pure
'ending' type and its solution approaches the steady solution of the

corresponding problem.



CHAPTER VI

HYDRODYNAMIC STABILITY

An attempt is made to simulate Schubauer and Skramstad's experiment
by the present numerical method. Disturbances are introduced at a distance
X, away from the leading edge, and they are investigated as they travel
downstream. Since the thickness of boundary layer is quite uniform at
the downstream of Blasius flow,a rectangular space domain bounded by

straight lines X = X, Xy and ¥ = 0, Yy as shown in Figure 23 is chosen.

a’
Space grids AX and AY are selected to be uniform. For small disturbances,
it is assumed that the disturbed velocity at Xy is equal to the velocity

of the base flow plus the disturbances introduced by the vibration of a

ribbon at Xa' Thus

Vx_zxf (VB)X=1: F(Y) Sim (WT) (6.1)

where subscript 'B' denotes the Blasius solution, function F(Y) the effect

of disturbances in the Y-direction and W the dimensionless frequency of

the vibration of ribbon. It readily follows from the equation of continuity

that

Uy ' (Us) gz, ¥ ( AU)HAS (W T) (6.22)
and

dF
(AU)X,X:‘ C (HT) (6.2Db)
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where C is a constant proporticnal to the width of the vibrating ribbon.
Following Schubauer and Skramstad (52) the distribution function F(Y)

and its derivative dF/dy are assumed to have the forms as indicated in
Figure 24. This figure is used as boundary condition at X = X;. The rest

of boundary conditions are

Y = 0: U=V=0 (6.3a)

=
It
o_,i-<i
(]
Il
H

(6.30)

where Yb is chosen to be reasonably greater than the maximum thickness
of the boundary layer in the region considered. Blasius solution is used
as initial condition. According to the boundary and initial conditions
mentioned above, the disturbances at downstream of Xa can be calculated
by the present numerical method.

Two cases are considered here. W is chosen to be 8.0 x 1072 in both

cases, For the first case,
X. = 1.95 x 109, X, = 2.65 x 107, Y, = 7.50 x 107,

AX = 5000, AY = 100, AT

785.39816;

and the distribution of AU at Xa is given in Table 3. According to
References (52,53,54), the foregoing case is in the unstable region.
However, the numerical results drawn from the computation of U and V

in the eleventh cycle of oscillation show, as indicated by Table L4, that

the disturbances are rapidly damped out when they travel downstream. For
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TABLE 3

DISTRIBUTION OF DISTURBANCES AT X,

J* AU 3 AU J AU J AU
1 .000 20 -.012 39 -.011 58 -.009
2 .010 21 -.013 Lo -.011 59 -.009
3 .020 22 -.01k 41 -.011 60 -.009
L .030 23 -.015 L2 -.011 61 -.009
5 .0Lko 2L -.01k4 L3 -.011 62 -.009
6 .050 25 -.013% Ly -.011 63 -.009
T 045 26 -.012 L5 -.011 6L -.,009
8 .0ko 27 -.012 L6 -.010 65 -.009
9 .035 28 -.012 L7 -.010 66 -.008

10 .030 29 -.012 L8 -.010 67 -.007
11 .025 30 -.012 49 -.010 68 -.006
12 .020 31 -.012 50 -.010 69 -.005
13 .015 32 -.012 51 -.010 70 - .00k
14 .010 33 -.012 52 -.010 TL -.003%
15 .005 i -.012 5% -.010 72 -.002
16 .000 35 -.012 54 -.010 73 -.001
17 -.005 36 -.011 55 -.010 T4 .000
18 -.008 37 -.011 56 -.009 (P) .000
19 -.010 38 -.011 57 -.009 76 .000
*Y = (j-1)AY.
Y
1 = Distance from ribbon to
the surface of the
flat plate
dF
dy
F, dF/dY
Figure 24. Function F(Y) and dF/ay.
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TABIE U4
DAMP OF DISTURBANCES INTRODUCED AT X = 1.95 x lO5
= AU AU [aU]
¥ TAUIX=1.95X109 | ]X=2.15x105 | Ixzz.u0xlo5 X=2.65%x107
—
100 1.00 x 1072 1.09 x 107 1.15 x 107 .50 x 1076
- - - -4
700 4.00 x 1072 1.05 x 107 L.55 x 10 1.60 x 10
the second case,
X = 14.00 x 10° X, = 5.00 x 10° Y. = 9.00 x 10°
a ’ ’ b T ) ’ b ’ ’
AX = 5000, AY = 120, At = T785.39816;
and the same distribution of AU at Xa used in the first case is adopted
here. According to References (52,53,54) the flow should be unstable.

However the numerical results corresponding to the fourteenth cycle of

oscillations (Table 5) indicate the stability of the flow.

TABIE 5
DAMP OF DISTURBANCES INTRODUCED AT X = 4.00 x 10
Y [aU| | AU | 5 | AU
X=k .00x10° X=k .30x10 X=k .65x10°
-2 -5 -5
120 1.00 x 10 0.30 x 10 0.2% x 10
600 5.00 x 1072 1.20 x 107% L5 x 1070

Since Prandtl's approximations are certainly valid in describing the

boundary layer flows, why the boundary layer equations yield stability
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for apparently unstable cases is an interesting question to answer. To
explore the point further, the classical small perturbation theory of

stabiljity is applied to the boundary layer formulation

Qu ou u on
7’”‘52’”/5"”4%’ (6.1)

., by
5y, +&7 0 . (6.5)

- Thus introducing

— /
Uz UtUu > Z)zﬂ/ (6.6)

into equations (6.4) and (6.5), and neglecting the higher order terms

gives

d*z -
dyr =0 > base flov (6.7)

y _ /
53:0/_,_ ;289:: <+ v/aa;‘ =2 V %l)% P) per#urém‘/bn (6.8)

clearly, a base flow that satisfies equation (6.7) and the boundary

conditions

“(0)=20 , ’7("’)8 U (6.9)

is not possible. Therefore equation (6.8) cannot be made a characteristic-
value problem whose first characteristic-value is the critical Reynolds
number. Thus the comparison of the inviscous Orr-Sommerfeld equations
based on the Navier-Stokes and boundary layer equations and expressed in

terms of the usual nomenclature
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(2-)(02ut) b - ()G -0
(Z-c) Dp- (D) =0
reveals the importance of the missing terms
_ (o)

in the latter equation. These terms are related to the terms

of the y-momentum.

(6.10)

(6.11)

(6.12)

(6.13)

It may then be concluded that, although the vertical velocity com-

ponent is a small quantity of order l/Re, it produces a momentum transfer

across the boundary layer where both the disturbance quantities and the

mean flow properties vary rapidly. Thus the net effect on the transport

process turns out to be much larger than the magnitude of the vertical

velocity which produces the process.



APPENDIX T

DERIVATICN OF INEQUALITY
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S~—

Rewriting inequality (3.65) in the form,

C&wé{ﬁ\‘l )‘O( {ﬂA’t\\ [—)4K;-’3‘+K L.AZ T K+ \\417

and rearranging it by the help of equaticn (3.62) gives

~

/
m( <ﬂ+\",§r >(+A (;fz‘h K,"";'LK AX. +{K+K Y (AT (z.1)

D > P

for any k < n.

Applying inequality (I.1) successively for k = n,n-1,...,0, yields

then
T R S e n- \
~Nj ¢ 3 ; } i S T i
N, = AT o TACHL AT H e AT 4
./f (' - ) ‘ .
* ~, o | ! H i v ¢ ES N ‘l‘\"l_xi
‘\ L Uy —%- (i: .l.)\, wt‘ Kz L‘EL‘. ¥ (A% \l/.:‘xgl. j!
cr ’
(Rt “;,l
Yo L+ PATY A~ A+ i) T
LR P RAT G AR T (ks
Since the time dcmain 7 is finite,
~ ¥ e
S(ﬂ“’”[ﬂré “b (I 3)
for any value of n. It follcws then
s )
) TN LT
(LA ) < !+——L—j\.. bY@ .
nH S = (I.b)
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Finally, by the use of inequalities (I.3) and (I.4), inequality

(I.2) may be rearranged to give
i{tb JJTL / . / 2
O, L0 E 4 T, €0, B 1 K AT+ K AR (Kt KAV

nt

which is the statement of inequality (3.66).



APPENDIX II

COMPUTER PROGRAMS
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A. CAICUIATION OF VELOCITY OF OSCILLATION IN BLASIUS FLOW

$ COMPILE MAD, PUNCH OBJECT

READ FORMAT VA,MA,MByN1,N2,T1,T2,T73,T4,Y1,Y2,DT,E4W,DX(2)cacDX(38)
VECTOR VALUES VA=$8I5/5F12.1/(10F6.2)=$%
PAUSE NO. 1
BACK SET HIGH DENSITY TAPE 9
REWIND TAPE 9
READ BCD TAPE 9,VRyTN(1).e.TN(T7)
VECTOR VALUES VR=$7C6=s
WHENEVER TN(3).NE.$%RCDEFG$
PRINT CCOMMENT $WRONG TAPES
PRINT ON LINE FORMAT WRONG
VECTOR VALUES WRONG=$H#WRONG TAPE MOUNTED PLEASE CORRECT##$
SKIP6.
UNLOAD TAPE 9
PAUSE NO. 77777
TRANSFER TO BACK
END OF CONDITIONAL
CEXECUTE SKIP.(T1,T72,9)
READ BINARY TAPE 9yNyU(ly1)eeeU(38,441),VI1y1l)eeaVi(38y41)

AA(1)=0.
AB(1)=0.
NA N=N+1

SINA=SIN.(W=N#DT)
COSA=COS.(Wa(N-1)=DT)
UDU=c#W#COSA
DY=Y1
DYP=DY.P.2
Dyv=2./DY
DYM=2.%DY
DYP2=2./DYP
THROUGH S1,F0OR J=2414J.6.41
Sl AA(J)=1.+E=*SINA
THROUGH S24FOR I=2,141.G.6
THROUGH S21,FOR J=241,J.6.20
WHENEVER «ABSeV(I4J)eGeDYDeORDTeGelaZ/(ULLLJ)/DX(TI)+DYP2)
1 0R.U(I,J)eL.0.
PRINT RESULTS T3JsNyUlL+J)sVII,J)oDTH4DX{I),DY
TRANSFER TG SE
OTHERWISE
AB(J)=U(TL,J)=-DT#{U(I,J)#{U(I,J)=UlI=1,J))/DX{I)+VII,J)el
1 UL J+1)-UlT4J=1))/DYM=(U(T9J+1)=2.#U(1,J)+U(1,J-1))/7DYP)
2 +DT*UDU
VIIJ)=VII,J-1)-{AB(J-1)-AA{J-1)+AB(J)-AA(J))/DYD/DXI(])
s21 END OF CONDITIONAL
THROUGH S24FOR J=241+J.0.20
UlI-1,J)=AA(J)
S2 AA(J)=AB(J)
THROUGH S3,FOR I=7,1,1.G.15
THROUGH S31,FOR J=241,J.6G.40
WHENEVER ABS.V(I3J)eGeDYDeOReDTaGale/{U(ILJ)/DX(1)+DYP2)
1 .0R.U(I,J)elO0.
PRINT RESULTS T,4JsNyU(1,J),V(I,J),DT,DX(I),DY
TRANSFER TO SE
OTHERWISE



S31

S3

S4

S5

S6 |

S7

S$81

S8
S9
S10

S11
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AB(J)=U(T,J)=DT#(U(I,J)#(U(I4J)=U(I=-14J))/DX(I)+V(I,J)=(
UG J+1)=U(I,J=1))/0YM=(U{1,J+1)=2.#U(1,J)+U(I,J-1))/DYP)
+DT#UDU
VIIpd)=V(I,3-1)-(AB(J-1)-AA(J-1)+AB(J)~-AA(J))/DYD/DX(I)
END OF CONDITIONAL

THROUGH S3,FOR J=2,14J.G.40

UlI-1,J)=AA(J)

AA(J)=ABLJ)

DY=Y2

DYP=DY.P.2

DYD=2./0Y

DYM=2,.%DY

DYP2=2./0YP

THROUGH S4,FOR J=1,1,J.6.21

AC(J)=AA(2%J-1)

U(15,J0)=U(15,2%J-1,

THROUGH S5,FOR J=22,19J.6.40

AC(J)=AA(41)

Ul15,J)=U115,21)

I=16

THROUGH S64y FOR J=2419J.G.40 e

WHENEVER «ABSoeV(I3J)eGeDYND.ORDTGeale/(U(I,J)/DX(I)+DYP2)
oOR-U(I,J).L-O-

PRINT RESULTS I,J9NyUlI4J)sVIIeJ)sDT,DX(1),0DY

TRANSFER TO SE

OTHERWISE
AB(J)=U(T4J)=DT#{U(I,J)%(U(I,J)=U(I-1,0))/DX(I)+VII,J)=(
U(I9J+1)=U(I5J=1))/DYM={U(T,J+1)=2.%U(L4J4)+U(I,J-1))/DYP)
+DT*UDU
VII53)=V{I,J=-1)-(AB({J-1)-AC(J-1)+AB(J)=-AC(J))/DYD/DX(I)
END OF CONDITIONAL

THROUGH SToFOR J=2,1,J.G.40

U(I-1,J)=AA(J)

AA(J)=AB(J)

THROUGH S8,FOR I=1741,1.G.38

THROUGH S81,FOR J=2,19J.G.40

WHENEVER «ABSeV(I4J)eGeDYDeORDTeGala/ (UL J)/DX(I)+DYP2)
«OR.U(I4d)eLlo0.

PRINT RESULTS I,JsNyU(I4J)sV(I4J),DT,0X(1),0DY

TRANSFER TO SE '

OTHERWISE ‘

AB(J)=U(T 4 J)=DT*(U(T9J)e(U(I,d)-UlI=1,J))/0X(I)+V(I,J)=(
U(T,J41)-U{1,J-1))/0YM-(U(1,J+1)-2.2U(1,J)+U(I,J-1))/DYP)
#FDT=UDU

V(I d)=VII,J=-1)-(AB(J-1)—-AA(J-1)+AB(J)-AA(J))/DYD/DX(I)
END OF CONDITIONAL

THROUGH S8,FOR J=2,1,J.6.40

U(I-1,J)=AA(J)

AA(J)=AB(J)

THROUGH S9,FOR J=2,1,J.6.40

U38,J)=AA(J)

THROUGH S10,FOR I=2,1,1.6G.6

Ull,21)=AA(41)

THROUGH S11,FOR I=7,1,1.G.38

UlI,41)=AA(41)

WHENEVER N.E.N1

PRINT RESULTS NyU(lpl)eo.U(38y41)

WHENEVER MA.E.O

EXECUTE SKIP.(T3,74,9)

OTHERWISE
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BACKSPACE RECORD OF TAPE 9

END OF CONDITIONAL

WRITE BINARY TAPE 94NyU(1y1).eaU(38y41)yVIlsl)eeaVI(38y41)
END OF FILE TAPE 9

TRANSFER TO SE

OR WHENEVER N/NZ2.E.MB

TRANSFER TGO NA

OR WHENEVER N/N2.G.M8B

MB=N/N2

PRINT RESULTS N,oU(25,1)e..Ul27,41),U(36451)...U(38,41)
TRANSFER TO NA

END OF CONDITIONAL

DIMENSION U(1558,VB),V(1558,VB),AA(41),AB(41),AC(41),0X(38),TNI(T)
VECTOR VALUES VB=2,41,41

INTEGER I,J9yNyN1yN2,TNyMA,MB,T1,T2,73,T4

UNLOAD TAPE 9

END OF PROGRAM
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B. CAICULATION OF VELOCITY OF IMPULSIVE START OF WEDGE FLOW
$ CGMPILE MAC, PUNCH OBJECT

READ FORMAT VAyMAMByNLyN2sT1oT2,T3,T4,3Y1lsY2,DTyDX(2)eeeDX(30)
VECTCR VALUES VA=$315,3F12.1/(10F6.2)#$
PAUSE NO. 1 i
BACK SET KIGH CENSITY TAPE 9
REWINC TAPE 93
READ BCD TAPE 9,VRyTN(1l)eaeTN(T)
VECTCR VALUES VR=$7C6*#$
WHENEVER TN(3).NE.$BCDEFGS
PRINT COMMENT $WRONG TAPES$
PRINT ON LINE FORMAT WRONG
VECTOR VALUES WRONG=$H*WRONG TAPE MOUNTEC PLEASE CORRECT##$
SKIP6.
UNLCAC TAPE §
PAUSE NO. 77777
TRANSFER TO BACK
END €F CONDITIONAL
EXECUTE SKIP.(T1,T72,9)
READ BINARY TAPE 9yNyU(1ly1)eaaU(30,45)yV(1,y1)ea.V{30,45),
1 Ubu(2)...UDU(30)
NA N=N+1
2ERO.(AA{1) . AA(22),AB(1))
DY=Y1
CYP=CY.P.2
CYD=2./DY
DYM=2.%DY
CYP2=2./DYP
e
THROUGH S11+FOR J=24319JeGa22
WHENEVER ABSeV(I3J)eGeDYDaORDToGela/(U(I,J)/DX(I)4DYP2)
1 0R.UIlTI,J)eL.0.
PRINT RESULTS T,JsNyU(TI4J)sV(I4J)yDT4DX(I),DY
TRANSFER YO SE
'UTHERWISE
ABLJI=U(TyJd)~DT#(U(I,4J)2(U(L,J)-UlI-14J))/DX{I)+VII,sJ)={
1 UCTyJd41)=U(T1,J=1))/DYM=(U(I4J+1)=2.#U(I,J)+Ul1,J=-1))/DYP)
2 +DT=UDUI(T)
VIIZJ)=VII,J=-1)=(AB(J-1)-AA(J-1)+AB(J)-AA(J))/DYD/DX(I)
S11 END CF CGNDITIONAL
THROUGH S1,FCR J=2419J+G.22"
UlI-1,Jd)=8A(J)
Sl AATJ)=AB(J)
SPRAY.{U(25,23),AA(23)...AA(45))
THRCUGH S2,FCOR [=3,141.G.7
THROUGH S214FOR J=2y1,4.G.44
WHENEVER o ABS.V(IyJ)«GDYDLORLDT.Gal/7(U(I,J)/0XIIV+DYP2)
1 «CR.UtI4J)el 0.
PRINT RESULTS T,JeN,U(I,J)eV(I,J),0T,DX(I),DY
TRANSFER TO SE
OTHERWISE
CAB(I)=UL Ty ) =DT#(U(T )% (ULT4J)=UlI-1,J))/DX(1)+V(I4J)#(
1 ULT4J41)-UlI,J=-1))/DYM=(U(L19J+1)=2.%U(14J)4U(I4J-1))/DYP)
2 +DT=UDUIT)
VIIeJ)=V(IsJ-1)=-(AB(J-1)-AA(J-1)+AB(J)-AA(J))/DYD/DX(I)
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ENC CF CCNDITIONAL

THROUGH S2, FOR J=2y19J.G.44

Ull-1,4)=8A(4)

AA(J)=AB(J)

cy=y2

CYP=CY.".2

LYD=2./0Y

CYM=2.+0Y

CYP2=2,/DYP

AA(45)=U(T,45)

THRCUGH S3,FCR J=1,19J.6.23

AC(LJd)=AA(2%0-1)

UlT,Jd)=U(T,2%J-1)

SPRAY 4 (U(7423)4AC(24) ¢« AC(45),U(T424)¢..U(T,45))

=8

THROUGH SS,FCR J=2414J.G.44

WHENEVER ABS.V(14J)eGeDYDeURDTGela/(U(IJ)/DXLI)+DYP2)
«ORUlIyJ) el 0. .

PRINT RESULTS [4JyNoU(I4d)yV(I4J)4OT,0X([),0VY

TRANSFER TO SE

CTHERWISE
AB(J)=U(T,J)-DT#(U(Tl,0)%(UlT,J)=-U(I=1,J))/0X(1)¢V(I,J)e(
UlTyJ+41)-U(T9J=1))/DYM=(U(l9J+1)=-2.4U(],J)+U(L,J-1))/DYP)
+CT=UDUI(T)

VI, 3=V, d-1)1=-(AB(J-1)-AC(J=-1)+AB(J)-AC(J))/DYD/DX(I])
END CF CONCITIONAL

THRCUGH S6,FCR J=241,J.GC.44

Ull-1,J)=AA(J)

AA(J)=AB(J)

THRCUGH S7,FOR [=9,1,1.6.30

THRCUGH STL1,FNR J=2,14JeGe44

WHENEVER JABS.V(I14J)eGeDYDaORDTGele/(U(ILJ)/DX(1)+DYP2)
«ORU(IyJ)el O,

PRINT RESULTS T9JeNeyUlILyJ)eVIIJ)yDT4DX(I),40DY

TRANSFER TO SE

CTHERWISE
AB(J)=UlT1,d)=DT#(U(T,d)%(ULI,J)-UlI=14J))/0X(1)¢V(I,J)(
UlT,J+41)-UlT1,yJ-1))/DYM=(U(T,4J¢1)=-2.2U(],J)+U(I,4-1))/0YP)
+DT=UDUI(T)

VL d)=VI1,J-1)-(AB(J-L)—-AA{J=-1)+AB(J)-AA(J))/DYD/DX(I)
ENC CF CCNCITIONAL

THROUCH ST7T,FCR J=2y14J.G.4%

UlI=-1,4)=A0A1J)

AA(J)=AB(J)

THROUGH S84FCOR J=2419J.G.44

Ul30,J)=AA1J)

WHENEVER NJEJNI1

PRINT RESULTS NyU(2y1l)eeeslU(30,45)

WHENEVER MA.E.OQ

EXECUTE SKIP.(T3,T4,9)

CTHERWISE

BACKSPACE RECURD OF TAPE 9

END CF CONDITIONAL

WRITE BINARY TAPE 9yNyU(1l,1)eealU(30,45),V(1y1l)acaV(30,45),
UCU(2)...UCU(30) .

END CF FILt TAPE 9

LR WHENEVER N/N2.E.MB

TRANSFER TO NA

CR WHENEVER N/N2.G.MB

¥B=N/N2
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PRINT RESULTS NyU{25,1)0..U(25,45),U(30,01)e..U(30,495)

TRANSFER TC NA

ENC CF CONCITIUNAL

CIVMENSIGN U(1350,VvB),Vv{1350,VB),DX(30),AA(45),AB(45) ,AC(45),TN(T),
ucut30)

velTuk YALUES VB=2,1,45

INTEGER [9JyNyNL,N2,TNyMA,MB,T1,T72,73,T74

UNLGAC TAPE 9

tNC CF PROGRAM
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CALCULATION OF TEMPERATURE OF WEDGE FLOW AFTER SUDDEN DROP OF WALL TEMPERATURE

$ COMPILE MAD, PUNCH OBJECT

BACK

NA

S11

S1

s21

S2

S3

Sa4l

FTRAP.

READ FORMAT VA,MA,MB,N1yN2,T1,T2,T73,T4,Q1,PR,Y1,Y2,DT,0X(2)
.o DX(30)

VECTOR VALUES VA=$815,5F6.1/(10F6.2)+$

PAUSE NO. 1

SET HIGH DENSITY TAPE 9

REWIND TAPE 9

READ BCD TAPE 94VRyTN(1)eaaTN(T)

VECTOR VALUES VR=$7C6*$

WHENEVER TN(3) .NE.$BCDEFG$

PRINT COMMENT $WRONG TAPES

PRINT ON LINE FORMAT WRONG )

VECTOR VALUES WRONG=$H#WRONG TAPE MOUNTED PLEASE CORRECT=#$
SKIP6.

UNLOAD TAPE 9

PAUSE NO. 77777

TRANSFER TO BACK

END OF CONDITIONAL

EXECUTE SKIP.(T1,72,9)

READ BINARY TAPE 94NyU(Lls1l)eealU(30,45)4V(141)e.eV(30445),
Qll,1).ee.Q(30,45)

N=N+1

SPRAY.(Ql4AA(2).e.AA(22))

NnY=Y1

DYP=DY.P.2#PR

DYM=2,.%DY

I=2

THROUGH S11,FOR J=2,414J.G.22
AB(J)=Q(I,J)-DT=(U(I4J)2(Q(I,J)=0Q(I=-1,J))/DX(1)4V(I,J)u(
QUIZJ+1)-Q(I,J-1))/DYM-(Q(I,J+1)-2.%Q(I,4)+Q(I,J-1))/DYP)
THROUGH S1,FOR J=2414J.6.22

QtI-1,J)=AA(J)

AA(J)=AB(J)

SPRAY.(Q1l,AA(23)...AA(45))

THROUGH S24FOR 1=3,1,1.G.7

THROUGH S21,F0OR J=2y19J.6.44
AB(J)=Q(I,J)-DT#(U(I,J)%(Q(I,J)-Q(I=-1,J))/DX{I)+V(I,J)#(
QUIHJ+1)-Q(I4J-1))/DYM=(Q(T,J+1)-2.#Q([,J)+Q(1,J-1))/DYP)
THROUGH S2, FOR J=2,1,).G.44

Q(I-1,J)=A0A(J)

AA(J)=AB(J)

DY=Y2

DYP=DY.P.2%PR

DYM=2,%DY

THROUGH S3,FOR J=1,1,J.6.23

Q(7,J)=Q(T7,2%J4-1)

SPRAY . (Q(7+423),Q(7924)e..Q(7,45))

THROUGH S4,FOR I=8,1,1.6.30

THROUGH S41,FOR J=2,1,J.6.44
AB(J)=Q(I4J)-0T*#(U(T,J)*#(Q(I,J)=Q(I-1,J))/0X(I)4V(I,J)(
QI d+1)=-Q(I4J=-1))/DYM=(Q(I,J+1)-2.2Q(1,J)+4Q(I,J-1))/0YP)
THROUGH S4,FOR J=24149J.6.44

Q(I-1,J)=AA(J)
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AA(J)=AR(J)

THROUGH S5,FOR J=2,1,J.G.44

Q(30,J)=AA(J)

WHENEVER NJ.E.N1

PRINT RESULTS NyQ(2y1)...Q(30,45)

WHENEVER MA.E.

EXECUTE SKIP.(T3,T74,9)

OTHERWISE

BACKSPACE RECORD OF TAPE 9

END OF CONDITIONAL

WRITE BINARY TAPE 9yNyU(141)eesU(30,45),VI1y1l)eaoV(30,45)
'Q(l)l)u-oo(30'45)

END OF FILE TAPE 9

TRANSFER TO SE

OR WHENEVER N/N2.E.MB

TRANSFER TO NA

OR WHENEVER N/N2.G.MB

MB=N/N2

PRINT RESULTS NsQ(25+1)¢eeQ(25445),G(3051)eeeQ(30,45)
TRANSFER TO NA

END OF CONDITIONAL

DIMENSION U(1350,VB),V(1350,VB),Q(1350,VB),DX(30),AA(45),AB(45),
TN(7)

VECTOR VALUES VB=2,1,45

INTEGER I,JsNyN1,N2,TNyMA,MB,T1,T2,T3,T4

UNLOAD TAPE 9

END OF PROGRAM
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