PRIMIBRACHIALS AND ARMS OF
ALLOPROSALLOCRINUS CONICUS CASSEDAV
AND LYON, A LOWER MISSISSIPPIAN
CAMERATE CRINOID

BY
ROBERT V. KESLING
CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY

Director: LEWIS B. KELLUM

The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan.

VOLUME XIX

1. Silicified Trilobites from the Devonian Jeffersonville Limestone at the Falls of the Ohio, by Erwin C. Stumm. Pages 1–14, with 3 plates.
5. Rare Crustaceans from the Upper Devonian Chagrin Shale in Northern Ohio, by Myron T. Sturgeon, William J. Hlavin, and Robert V. Kesling. Pages 47–64, with 5 plates.
7. A New Species of Melocrinites from the Middle Devonian Bell Shale of Michigan, by Robert V. Kesling. Pages 89–103, with 2 plates.
8. A New Spiraculate Blastoid, Pyramiblastus, from the Mississippian Hampton Formation of Iowa, by Donald B. Macurda, Jr. Pages 105–114, with 1 plate.
9. A Drastic Reappraisal of “Lepidasterella babcocki” Schuchert—as Helianthaster gyalinus Clarke, a Streptophiuran Auluroid, by Robert V. Kesling. Pages 115–133, with 4 plates.
10. Decadocrinus kushwingi, a New Middle Devonian Crinoid from the Silica Formation in Northwestern Ohio, by Robert V. Kesling. Pages 135–142, with 1 plate.
11. Two New Crinoids of the Family Periechocrinitidae from the Middle Devonian Thunder Bay Limestone of Michigan, by Robert V. Kesling. Pages 143–155, with 2 plates.
12. Two Unusually Well-preserved Simple Rugose Corals from the Jeffersonville Limestone (Devonian) of the Falls of Ohio, by Erwin C. Stumm. Pages 157–161, with 2 plates.
13. Two New Species of Trilobites from the Middle Devonian Silica Shale of Northwestern Ohio, by Erwin C. Stumm. Pages 163–166, with 1 plate.
PRIMIBRACHIALS AND ARMS OF
ALLOPROSALLOCRINUS CONICUS CASSEDAY AND LYON,
A LOWER MISSISSIPPIAN CAMERATE CRINOID

BY
ROBERT V. KESLING

ABSTRACT
Many specimens of Alloprosallocrinus conicus Casseday and Lyon contain rays with only one, or essentially one, PBr, as stressed by the original authors (1862), Wachsmuth and Springer (1897), and others. One specimen reported by Van Sant and Lane (1964) contains rays with two PBrBr, said to be abnormal. All four specimens of this species in the Museum of Paleontology of The University of Michigan have two PBrBr per ray, suggesting that such development is not unusual. Three of the Michigan specimens have 14 arms each, although the greatest number previously reported is 12. Variations in PBrBr in A. conicus is reminiscent of similar variations recently reported in species of Dolatocrinus.

CONTENTS

Introduction .. 257
Previous work .. 258
Museum of Paleontology specimens 259
Primibrachials .. 259
Arms ... 260
Conclusion .. 260
Literature cited .. 261
Plates ... (after) 261

INTRODUCTION

A survey of paleontological literature indicates that specimens of Alloprosallocrinus conicus having more than one primibrachial (PBr) per ray or more than ten arms are regarded as sufficiently rare to be called "abnormal." Yet the four specimens deposited in the Museum of Paleontology of The University of Michigan all have rays with PBrBr and three of them bear 14 arms each.

The deviation of these specimens from the descriptions was realized several years ago when studying crinoids collected nearly forty years ago in
Kentucky by Professor (now Emeritus) George M. Ehlers. The two specimens of *Alloprosallocrinus conicus* which he discovered near the former University of Michigan Department of Geology Summer Field Course camp at Mill Springs, Kentucky, were put aside for further investigation. Recent remarks on the species by Van Sant and Lane (1964, pp. 110–11) make the observations herein timely and prompt their publication.

I am grateful to Professor Lewis B. Kellum and Professor Chester A. Arnold for reading the manuscript, Mrs. Helen Mysyk for typing the final draft, and Mr. Karoly Kutasi for photography.

PREVIOUS WORK

The classic work on North American camerate crinoids by Wachsmuth and Springer (1897) still provides basic information and standard reference for many crinoids. Describing *Alloprosallocrinus*, Wachsmuth and Springer stated (1897, p. 406), "Costals 2, but generally so closely anchylosed that the line of union is invisible, and there is virtually but one plate."

In regard to *A. conicus*, the type species, they said (1897, p. 407), "Costals generally so closely anchylosed that a suture line cannot be traced, both together are pentangular, a little wider than the radials, and wider than long." The "costals" of their terminology are *PBrBr*, the primibrachials, by some called the IBrr, the first brachials, or the *IAxx*, if the plates are axillary.

The generic and specific character emphasized by Wachsmuth and Springer is the fusion of the two *PBrBr* in each ray to form essentially one plate, pentagonal and axillary, supporting the two *SBrBr*.

In their excellent study of the crinoids from Crawfordsville, Indiana, Van Sant and Lane (1964) direct attention to the variations of *PBrBr* in *Alloprosallocrinus*. As published, their account contains an instance of indecision as to what is normal for the type species: in the explanation of Figure 37B (p. 110), specimen UCWM 8972 is identified as an "abnormal specimen . . . with two primibrachs in each ray," but in the explanation of Plate 7, Figures 2–4, this same crinoid is called a "typical calyx." As they demonstrate in remarks about the species *A. conicus*, however, Van Sant and Lane recognize that most described specimens have only one *PBr* in each ray (1964, p. 111):

Wachsmuth & Springer, as well as others, have suggested that one feature of particular taxonomic importance is that the IBrr1 [*PBrBr1*] are fused with the IAxx [*PBrBr2*] so that only a single distinct pentagonal axillary plate is visible. One specimen examined, however, has 2 IBrr [*PBrBr*] developed in the A, B, and C rays and in the D and E rays this plate is reduced in size, so as not to extend the entire width of the RR.

Van Sant and Lane (1964, p. 110) place *Alloprosallocrinus gurleyi*
Miller with 11 arms as a junior synonym of *A. conicus* Casseday and Lyon, typically with 10 arms.

MUSEUM OF PALEONTOLOGY SPECIMENS

In the Museum of Paleontology of The University of Michigan are four specimens of *Alloprosallocrinus conicus* Casseday and Lyon. Two were obtained many years ago by exchange with Mr. Frank Springer, and two were collected by Professor George M. Ehlers near Mill Springs, Kentucky. Only the following information is available:

UMMP 1425, Warsaw Group, Little Barren, Kentucky. Specimen identified by Frank Springer. Calyx silicified, dorsal cup rather well preserved, sutures distinct.

UMMP S-5529, Keokuk Group, Whites Creek, Tennessee. Specimen identified by Frank Springer. Calyx poorly preserved, dorsal cup cracked and disrupted by siliceous veinlets, sutures fairly distinct except in D ray.

UMMP 30506, Fort Payne Chert, near Mill Springs, Kentucky. Found and identified by G. M. Ehlers. Specimen picked up on slope, lying on New Providence Shale but probably rolled downhill from the Fort Payne Chert, to judge from the preservation. Calyx smaller than others but excellently preserved, evenly silicified, dorsal cup with sutures well defined.

UMMP 30507, Fort Payne Chert, near Mill Springs, Kentucky. Found and identified by G. M. Ehlers. Specimen picked up on slope, lying on New Providence Shale but probably rolled downhill from overlying Fort Payne Chert. Calyx large, dorsal cup poorly preserved, secondary siliceous deposits obliterating sutures in many areas.

PRIMIBRACHIALS

Development of *PBrBr* does not conform to a regular pattern in the four specimens. The arrangement of *PBrBr* in each ray is reflected in the shape of *PBr*. Three kinds of *PBrBr* can be distinguished: (1) triangular, with convex sides, present in rays where *PBr* does not completely separate R from *PBr* but is inserted wedgelike on one side of the *R/PBr* suture, (2) subquadrate, varying from nearly rectangular to distinctly trapezoidal, present in rays where *PBr* completely separates R from *PBr*, and (3) pentagonal, present in rays where *PBr* fails to completely separate *PBr* from *SBr* but is offset to one side.

In UMMP 1425 (Pl. II, Fig. 5), the *PBrBr* of the A, B, and E rays are quadrate and those of the C and D rays are triangular. In UMMP S-5529 (Pl. I, Fig. 2), the *PBrBr* of the A and B rays are quadrate, that of the E ray is triangular, and the sutures are too indefinite in the C and D rays to distinguish the *PBrBr*. In UMMP 30506 (Pl. I, Figs. 5–6), the *PBrBr* of the A, B, D, and E rays are quadrate, whereas that of the C ray is pentagonal. In UMMP 30507 (Pl. II, Fig. 2), the *PBrBr* of the A and B rays are quadrate and the others cannot be distinguished.
The irregularity of arrangement is emphasized in the two posterior (C and D) rays, which include triangular (UMMP 1425), quadrate (UMMP 30506), and pentagonal $PBrBr_1$ (UMMP 30506). Of the quadrate $PBrBr_1$, some are about as large as the adjacent PBr_2 (A ray of UMMP 1425), some are intermediate (B ray of UMMP 30507, D ray of UMMP 30506), and some are very narrow (A ray of UMMP 30506, E ray of UMMP 1425).

ARMS

One of the specimens, UMMP S-5529 (Pl. I, Fig. 2), appears to have 12 arms: two each in the A, B, and E rays and three each in the C and D rays. The other three specimens have 14 arms each: two in the A ray and three in each of the other rays.

An unusual feature for camerate crinoids is the manner in which the three arms originate in a ray in *Alloprosallocrinus conicus*. One arm develops from the series of plates on the outer margin of each SBr and the middle arm develops from a series beginning with a plate in contact with both $SBrBr$ (as shown in the B, C, D, and E rays of UMMP 30506, Pl. I, Fig. 6). In this distribution, it is impossible to determine whether the third arm comes from the left or the right SBr—actually, it comes from both, in what would in other crinoids be an $ISBrBr$ (intersecundibrachial) position. Except in the posterior (CD) interray, the plates of each ray reach contact with those of the adjacent ray, enclosing a large, many-sided (commonly 10-sided) IBr plate.

CONCLUSION

Review of descriptions of *Alloprosallocrinus conicus* shows that many specimens have only one discernible PBr in each ray rather than two, as in the specimens used in this study. Apparently, the number or form of the $PBrBr$ has no value as a generic or specific character. The variations are reminiscent of the occurrence of one or two $PBrBr$ in the rays of certain species of *Dolatocrinus*, and the recent revelation that *Stereocrinus* (originally differentiated for having one PBr) was actually a junior synonym of *Dolatocrinus* (originally described as having two $PBrBr$), the identity being certain when in the same specimen some rays had one and some had two $PBrBr$. In the case of *Dolatocrinus*, the oldest known species had invariably two $PBrBr$ in each ray and the younger species had a mixture of one and two $PBrBr$ in their rays; enough of the history of the genus is known to indicate that evolution involved the elimination of $PBrBr$ in the rays, but the genus became extinct before all specimens were reduced to one PBr per ray.
Little is known of the history of *Alloprosallocrinus*. In the absence of older representatives of the genus, it may be only suggested that the variations in *PBrBr* are evidence of evolutionary reduction.

LITERATURE CITED

Submitted for publication November 17, 1964
EXPLANATION OF PLATE I
(All figures $\times 2$)

Alloprosallocrinus conicus Casseday and Lyon 259

Figs. 1–2. Lateral and basal views of poorly preserved calyx. UMMP S-5529, Keokuk Group, Whites Creek, Tennessee. Figure 1 centered on BC interray; Figure 2 with A ray uppermost. $PBrBr$ fairly distinct in anterior three rays.

Figs. 3–6. Tegminal, lateral, and two basal views of silicified calyx. UMMP 30506, Fort Payne Chert, near Mill Springs, Kentucky. CD interray lowermost in Figure 1, forward in Figure 2, and uppermost in Figures 5–6. Figure 6 photographed with specimen immersed in xylol and sutures drawn on print.
EXPLANATION OF PLATE II
(All figures × 2)

Alloprosallocrinus conicus Casseday and Lyon 259

Figs. 1–2. Lateral and basal views of poorly preserved calyx. UMMP 30507, Fort
Payne Chert, near Mill Springs, Kentucky. CD interray uppermost in Figure 2.

Fig. 3. Lateral view of silicified calyx, centered on DE interray. UMMP 30506.
Other views on Plate I, Figures 3–6.

Figs. 4–5. Lateral and basal views of silicified calyx. UMMP 1425, Warsaw
Group, Little Barren, Kentucky. CD interray uppermost in Figure 5.