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ABSTRACT

In the first part of this paper (Fassois and Lee, 1990) the main and guaranteed-stability
forms of a linear multi-stage method for the estimation of parameters in multivariate ARMAX
processes represented in the fully-parametrized pseudo-canonical form were introduced. In
this second part the case of unknown model structure is considered, and a novel structure and
parameter estimation procedure that avoids numerically sensitive structure estimation tech-
niques, while using exclusively linear operations and overcoming the enormous computational
requirements that render alternative approaches unrealistic for many practical problems, de-

veloped.

The proposed estimation procedure is based on the BIC criterion, the fully-parametrized
pseudo-canonical form, and a very fast correlation-type form of the parameter estimator that
uses the second-order moments of the measured data as a pseudo sufficient statistic. This
yields remarkably low computational and memory storage requirements, since the original
data need not be stored, and only a portion of the estimation calculations has to be repeated as
the model order is varied in search of a statistically adequate representation. The performance
characteristics of the proposed linear multi-stage method are finally evaluated via numerical

simulations.
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1. INTRODUCTION

In the first part (Fassois and Lee, 1990) of this paper the main and guaranteed-stability forms
of a linear multi-stage method for the estimation of parameters in multivariate ARMAX processes
represented in the fully-parametrized pseudo-canonical form were introduced.

The main form of the method is based on the replacement of the original nonquadratic Prediction
Error (PE) estimation problem by an appropriate sequence of simpler quadratic PE and/or linear
subproblems, for which closed-form solutions can be obtained. By achieving low computational
complexity, requiring no initial guess parameter valu(;s, and overcoming the local extrema/wrong
convergence problems associated with nonlinear (such as the PE) techniques, this linear multi-stage
method overcomes some of the main drawbacks associated with multivariate ARMAX process
identification. In addition, the guaranteed-stability form of the estimator overcomes the often
encountered instability problems of alternative techniques, and allows for the estimation of all
types of multivariate ARMAX processes, including those characterized by MA roots close to the
unit circle. |

In this second part of the paper the practically important problem in which both the parameters
and structure of an appropriate (or statistically adequate) multivariate ARMAX representation are
unknown and need to be estimated from input/output observations, is considered.

The problem of structure/parameter estimation is clearly far from being trivial, as, in addition
to the difficulties encountered within the context of standard parameter estimation techniques
(excessive computational complexity, algorithmic instabilities, local extrema/wrong convergence,
and the need for initial guess parameter values), one also faces the problem of estimating the process
Kronecker indices (in case of a canonical process representation) or the autoregressive (AR ), moving
average (MA), and exogeneous (X) orders (in case of a pseudo-canonical representation).

In early identification methods the structure and parameter estimation problems were tackled
separately, with the former preceding the latter. The appropriate ARMAX structure was deter-
mined by first estimating the structure of a Matrix Fraction Description (MFD) of the process
based on rank tests of covariance matrices or linear dependence tests on the rows of the estimated
process Hankel matrix, and then transforming that into the corresponding ARMAX representation
(Tse and Weinert, 1975; Guidorzi, 1981). As is however well-known (Gevers and Wertz, 1987), the
estimation of the Kronecker indices based on these approaches is not only time-consuming, but also
involves numerically sensitive procedures, and its resulting accuracy is of critical importance for
the consistent estimation of the process parameters, as inconsistent estimates are obtained if the
indices are not correctly determined (Caines and Rissanen, 1974). In addition, problems may exist
with the transformation of the MFD to the ARMAX representation, as it is known that some of
the structural properties of the process may be thus lost (Gevers and Wertz, 1987).

More recently, however, combined structure and parameter estimation methods that are pri-



marily based on the Maximum Likelihood concept and involve the extension of the identification
criterion with a penalty term that is a function of model complexity, have been introduced. Based
on such ideas the Final Prediction Error (FPE) and Akaike’s Information Criterion (AIC) have been
introduced by Akaike (1974), but are known to yield inconsistent estimates of the process structure
(Shibata, 1976). This problem has been overcome by the introduction of the BIC criterion (Akaike,
1977), which allows for consistent structure and parameter estimation under mild assumptions
(Hannan and Kavalieris, 1984). The solution of the combined structure and parameter estimation
problem for multivariate ARMAX processes however requires the successive fitting of a (possi-
bly large) number of models to the input/output observations, is characterized by a tremendous
computational complexity, and therefore renders itself unrealistic for many practical applications.
This problem has been recognized by a numbers of researchers, and in an effort to alleviate it, a
combined approach that uses canonical and generic ARMAX forms has been proposed by Hannan
and Kavalieris (1984). This approach uses a relatively simple, but statistically inefficient, scheme
inspired by Durbin’s method (Durbin, 1960) and the BIC criterion for the estimation of the Kro-
necker indices, and finally the nonlinear Maximum Likelihood method for obtaining statistically
efficient parameter estimates within the selected model.

In this part of the paper a novel and computationally very efficient procedure for structure
and parameter estimation is proposed. The proposed procedure uses exclusively linear techniques,
and in addition to overcoming the well-known difficulties associated with parameter estimation in
multivariate processes, it circumvents the numerical sensitivity, possible parameter inconsistency,
and the tremendous computational complexity problems of alternative approaches.

The proposed method is based on a very fast correlation-type form of the linear multi-stage pa-
rameter estimator that uses the second-order moments of the observations as a (pseudo) sufficient
statistic, the fully-parametrized pseudo-canonical form that reduces the structure estimation prob-
lem into the problem of estimating three (AR, MA, and X) process orders, and the BIC criterion.
The computational and memory storage requirements of the proposed procedure are remarkably
low, as the original observations need not be stored in the memory, exclusively linear techniques are
used, and only a relatively small portion of the total estimation calculations needs to be repeated
as the model order is varied in search of a statistically adequate representation.

The performance characteristics of the proposed linear multi-stage identification method are
finally evaluated via numerical simulations, and issues such as the achievable accuracy with different
noise-to-signal (N/S) ratios and data lengths, as well as the effectiveness of the structure estimation
procedure, examined.

This part of the paper is organized as follows: The structure and parameter estimation procedure
for multivariate ARMAX processes is developed in Section 2, the performance characteristics of the

identification method examined in Section 3, and the conclusions finally summarized in Section 4.



2. EFFICIENT STRUCTURE AND PARAMETER ESTIMATION

As already mentioned the proposed structure and parameter estimation procedure is based on
a very fast correlation-type form of the linear multi-stage parameter estimation method introduced
in Part I (Fassois and Lee, 1990) and the BIC criterion in conjunction with the fully-parametrized
pseudo-canonical form. The fast correlation-type form of the parameter estimator offers tremen-
dously reduced computational and memory storage requirements, and leads to a computationally
very efficient structure and parameter estimation procedure that does not need to store the original
data or repeat the full estimation calculations as the model order is varied.

2.1 Exact Problem Statement

Recapitulating from the first part of the paper, the structure and parameter estimation problem
of concern may be stated as follows:

“Given a set of N observations of the m-dimensional input {x[t]} and s-dimensional noise-
corrupted output {y[t]} vectors assumed to be generated by the multivariate ARMAX system
St

S A°(B)-y[t] = B%(B)-x[t] + C°(B)- w[i] (1)

identify a model of the form:
M: A(B,6)-yl] = B(B,0)-xl] + C(B,6)-¢t/6]  E{elt/6]-<[t/6]} =5(6) (2)

that best fits the data.”

In the system of Eq.(1) {w[t]} represents an unobservable s-dimensional zero-mean white noise
(innovations) process with covariance matrix £°, A°(B),B°(B), and C°(B) polynomial matrices
in the backshift operator B (defined such that B - y[t] = y[t — 1]), that are refered to as the

Autoregressive, Ezogeneous, and Mouving Average matrices, respectively, and are of the form:

A°(B) & I, +A°1)-B+-+Ana)- B [s X s] (3)
B°(B) £ B°(1)-B+ .- +B°(nb)- B™ [s x m] (4)
C°(B) £ 1,+C°(1) B+ +C(nc)- B™ [ X s] (5)

where I, stands for the identity matrix of order s, A°(j), B°(j), C°(j) are coefficient matrices,
and the quantities in the brackets indicate vector/matrix dimensions. The nonnegative integers
na,nb, and nc represent the autoregressive (AR), exogeneous (X), and moving average (MA) orders,
respectively.

In addition the system S is assumed to satisfy the following standard assumptions:

Al. The sequence {w(t]} is an s-dimensional, zero-mean and uncorrelated (white) process that is

wide-sense stationary and second-order ergodic with a positive-definite covariance matrix X°.

The superscript o is used to indicate the actual system and distinguish it from any given model.



A2. The observable input {x[t]} is an m-dimensional, zero-mean, wide-sense stationary and second-
order ergodic process with a positive-definite covariance matrix, and is persistently exciting

of sufficiently high order.
A3. The input {x[t]} and the white noise {w[t]} are mutually independent.
A4. All zeros of the determinant of A°(B) lie outside the unit circle ( “stationarity assumption”).
A5. All zeros of the determinant of C°(B) lie outside the unit circle ( “invertibility assumption”).

A6. The Smith form of [A°(B),B°(B),C°(B)] is [I,0], or, equivalently, the greatest common
left factor of A°(B),B°(B) and C°(B) is a unimodular matrix (i.e. a matrix with nonzero

constant determinant).
A7. Rank[A°(na) B°(nb) C°(nc)]=s

A8. Theinput and output processes {x[t]} and {y[t]} are jointly wide-sense stationary and second-

order ergodic.

The last assumption A8 is introduced presently as it is needed in the development of the structure
and parameter estimation procedure.

The model structure M of Eq.(2) is in the fully-parametrized pseudo-canonical form, which
implies that the polynomial matrices A(B, @), B(B,8), C(B,#), and the covariance X(0) are full.
In these expressions 6 denotes the 4-tuple 6 2 (A, B, C,X) that includes all parameter matrices to
be estimated, and e[t/6] the one-step-ahead prediction error corresponding to the model structure.
2.2 The Structure and Parameter Estimation Procedure

The structure and parameter estimation procedure consists of the following stages:

Stage 1: Calculation of the data covariance matrix.

(s+m)x1

The joint input/output observation vector z[t] € & is introduced as:

i) 2 [y T =l wl il el zald] 6)

and its sample autocovariance function R,(k, j) € R(s+m)x(s+m) computed as follows for 1 < j,k <

:
—~(k—7 . A . .
AoVl 2"+ k-] 2 Ruak-g) (K 24)
Rzz(kaj) = (7)
N—-(j—k : A . .
¥ Va4 - ka7l S Ru(k-g) (k<)
This function is used as a (pseudo) sufficient statistic, and the original input/output observations
need not be retained for the subsequent stages of the estimation procedure. o



For each particular model (characterized by fixed AR, MA, and X orders) the following Stages 2
through 5 are performed, and the model yielding the smallest value of the BIC criterion (calculated
in Stage 5) is selected as statistically adequate:

Stage 2: Estimation of a truncated ARX representation.
By introducing the matrix Mgy € R¥?(+™) and the vector uy[t] € RP(E+™)X1 55

e

Hy & [SHO B -B@BE) - - ) K] ®)

e

T
R R B e O P IS R R ) IO

uzt]

which are permutations of the quantities Hy and uy[t], respectively, used in Part I of the paper,

the truncated ARX model structure:

M SHG)-vi-dl= ZH lt = 7]+ €t/ Ha] (10)

§=0

with H,(0) = I, and €[t/Hy] representing the associated one-step-ahead prediction error, which
serves as an approximate representation of the original ARMAX structure M, may be equivalently

expressed as:
M : yit] =(1, ® ult]) - ha + eft/Ho] [sx1] (11)

with the parameter vector ho defined as:

T
ha @H4mnmm£4mmmmag-mmnwﬂ}

{12

[0F) nf@ - b ] lsp(s+m)x1] (12)

and the p(s + m)-dimensional vector hT( ) representing the i-th row of the matrix H,.

Then, similarly to Stage 1 of the main form of the method, the problem of estimating a model
within the structure M; according to the Conditional Maximum Likelihood (or Prediction Error in
the non-Gaussian case) method may be decomposed into a set of s scalar estimation subproblems

that can be independently solved. By decomposing the ha(1) vector as:
T
hy(l) 2 [h?}g‘n-hf] [p(s +m) x 1] (13)

with the (s + m)-dimensional vector hi¥ representing the first row of the matrix [—H, (i) Hx(7)],

the first scalar equation of (11) may be expressed as:

nlt] = ZZT[t — 4]+ b + et/ Ha) (14)

j=1



and the parameter vector h’ obtained by minimizing the quadratic criterion:

V(Hy) = —zelt/wz = —}:(yl ijo[t—j]'h;-) (w4 YTl g ;) (15)

j=1
which leads to the following estimator expressions:

L Yalt- kT -l =y Teli- Kol k=1 ()

j=1t

By letting t vary from —oo to +00, assuming that z[t] = 0 outside the observation interval (that
is for t < 0 and ¢t > N), and using the sample autocovariance function of the joint input/output
observation vector z[t] defined in (7), as well as the sample cross-covariance between z[t] and y[t]
defined as:

1 N-k
ran (k) = 2ft] - ylt + K [(s+m) x 1] (17)

t=1

the above estimator expressions may be rewritten as:
p ~
ZRZZ(k'j)'h;' = Tay (k) (k=1,--,p) (18)

or in matrix form:

Rzz(o) Rzz(_l) e Rzz("'p + 1) :Il I'zyl(l)
Rzz(]-) Rzz(o) tee RZZ("p + 2) I2 Tzyy (2)
: R Il N
Rzz(p - 1) Rzz(p - 2) te RZZ(O) fl;, T2y (p)
& R, hy(l) =ry,, (19)

where the matrix R,, is block symmetric and Toeplitz since R,,(—k) = RL (k), and r,,, a vector
consisting of the sample cross-covariances at lags k = 1,2, -+, p between z[t] and y, [t].
By considering all scalar component equations of the model structure M, and following proce-

dures similar to the above, the following set of estimator equations may be derived:
R, ha(i) = 7oy (i=1,--,8) (20)

where 7,,, is a vector consisting of the sample cross-covariances at lags k = 1,2,---, p between z[t]
and y;[t]. By defining as R, (k) the sample cross-covariance function between z[t] and y(t], and

decomposing it as:

A

Ry (k) = [r2y, (k) 2y (k) -+ Tag, (F)] [(s +m) x 5] (21)



the set of estimator expressions given by (20) may be compactly rewritten as:

[ -HI(1) ]
ag
R..(0) R,.(-1) -+ Ry (-p+1) _};IT((% R.,y(1)
Rzz(l) Rzz(O) Rzz(_p+2) HT(2) - RZ!I(2) (22)
Ru(p-1) Ru(p-2) - Ru(0) i) R.y(p)
X HT() |

Based on Egs.(6), (7), (17) and (21), it may be verified that R,,(k) consists of the first s columns
of R,,(k), so that no calculations beyond those needed for obtaining R.,,(k) for £ = 0,1,---,p are
required, and the matrix H; is thus estimated by using the estimator of Eq.(22). O
Stage 3: Initial estimation of the MA polynomial matrix C°(B).

This stage of the procedure is identical to Stage 2 of the main form of the method presented in
Section 3 of Part I, or, alternatively, the guaranteed-stability form of Section 4 of Part I, and will
not be repeated here. o
Stage 4: Estimation of the AR and X matrices.

For the estimation of the AR and X matrices the model structure M defined as 2:
My:  yr[t] = ZXF[t — j] - col[B(4,63)] - ZYF [t — j]- col[A(5,03)] + €'[t/63] (23)
j=1 j=1
where 03 represents the vector of all entries of the AR and X coefficient matrices defined as (and

being a permutation of 8, used in the main form of the method):
03 = col| —A(1) B(1): —A(2) B(2):---i-A(n) B(n)] (24)

¢'[t/03] the one-step-ahead prediction error associated with this model structure, and yp[t], Xp[t —
4], and Yg[t — 7] the following functions of the input and output vectors:

yel] 2 [y7[]® C(B)]- collL,] [s % 1] (25)
Yr(t-7] £ yT[t- ]9 CY(B) [s X 5°] (26)
Xrlt-47] £ x"[t-j]1® CY(B) [s X m o] (27)

with C(B) being the estimate of C°(B) obtained in Stage 3 of the procedure, is rewritten as:
M, : yrlt] = Ugpt] - 03 + €[t/ 65] (28)

In this expression the filtered data matrix sequence {U,p[t]} € R**sn(s+m) is a permutation of

{Uyr[t]} of the main form of the method and is defined as:

Urlt] £ [Yrlt-1] Xplt—1 Yr[t-2) Xplt- 2 Yplt—n] Xplt - n] | (29)

?For the sake of simplicity in this model structure it has been assumed that n 2 na = nb.



By rewritting the parameter vector 63 as:
(30)

0s 4 [v{vg---vg]T [sn(s +m) x 1]

where v; € R(s+m)X1 denotes col[ —A(j) B(J) ], and defining the joint input/output filtered

observations matrix:
(31)

zrlt] = [ Yrlf] Xelt)] [s X 5(s +m)]

the model structure M; may be further expressed as

Z Zrlt —j]-vj + €[t/03] (32)

[s x 1]

M2 .
) may be then estimated by using a Prediction Error

The parameter vectors v; (j = 1,2

criterion of the form:
A 1 / T
J = trace (7\[— Et ¢[t/03] - €[t/ 03] ) (33)

which leads to the following estimator expressions
- z;;z’-”t—k] Zelt - 5] 45 = —Eth— vl (k=10m)  (39)
J—
By letting ¢ vary from —oo to +00, assuming that the joint input/output filtered observations
0 fort < 0andt > N, and defining the

are zero outside the observation interval, that is Zg(t]
sample covariance functions of the joint input/output filtered observations matrix Zp[t] as

k- A & . ,
. ‘lﬁZt— )z}, Flt] - Zrlt+k-3] = Re(k-17) (k2>7)
Rzz(kyj) = (35)
. A = . .
Yot V245K Zel) 2 Ra(k-5) (k<))
and the sample cross-covariance function between Zp(t] and the filtered output yp[t]
(36)

Fu(h) = — Z Z5(0]- yrlt + K]

Iy € Ro(s+m)x1 and 1 < j,k < n, the above estimator expressions

where R, € Re(s+m)xs(s+m)

[Eq.(34)] may be put in matrix form as:
R.(0) R (-1 - Ru(-n+1) ][ % Foy(1)

Rzz:(l) ( ) e Rzz(_.n+2) {’.2 _ i'zy.(2) (37)
Rz;(o) Vn f'zy.(n)

f{,zz(n -1) f{u(n -2)
= RT (k), as it may be

with the leftmost matrix being block symmetric and Toeplitz, since R,,(—k)
easily verified. The solution of this matrix equation yields the desired AR and X matrix estimates,



but before this can be accomplished the sample covariances {R.,,(k)}" , and {F,y(k)}7=; need

k——n+
to be computed.

Within the context of the proposed procedure this is accomplished as follows: By using the
definition of Zr[t] [Eq.(31)], the definitions of Yr[t] and X¢[t] [Eqs.(26) and (27), respectively], as
well as Kronecker product properties (Magnus and Neudecker, 1988), the following expression may

be derived:

1

[Yrl]  Xpl]] = [y7H®C(B)  xT{]@ C(B)]
[y «T[) e €7 (B) 2t ® CI(B)
] & ¢'(B) (38)

Zr(t]

= |alfl 2] - Zeml]

in which C(B) represents the estimate of C°(B) obtained in Stage 3 of the algorithm. Based on this,
the earlier made assumption of Zp(t] being zero outside the observation interval, and Kronecker

product properties, Rzz(k) may be expressed as:

R..(k) = NZZ [t] - ZF[t + k]
1 Zl[t] ) )
= 2| ¢ e BI [ alt+ k- zunlt + K] ©CTI(B)  (39)
Zs+m[t]

In a similar fashion ¥,,(k) may be expressed as follows:

z[t]
) = 5| | @l B mlt+ Heult+ K] ©67(B) - coll
Zs+m[t]
= R, (k) - col[L,] (40)

Based on expressions (39) and (40), the filtered sample covariance sequences {R.,(k) Z;ln +1

and {f,,(k)}"_, may be computed. Towards this end consider the (u,v)-th block element of R,,(k),
] k=1

Fuy(k) € R°**, which may be expressed as:

Fuo(k) = 2( zlt])-(aft + 4] - €71(B)) (41)
and by introducing the matrix operator D(B):
D(B)2 &'(B) = iD(i) . B (42)
1=0

with D(0) = I,, Eq.(41) may be written as:

Fuo(k) = NZ[ZDT zu[t—z']izu[uk—j]-D(j)]

t  1=0 7=0

10



= ZZDT( ) Tw(t+ k= J)

=0 j=0

= ZDT(z) -D(5) - o k)+ZZDT D(i+ ) rus(k = 5) +

=0 J=11=0

ZZDTW (5) - runl(k + 5)

D(0) - rus(k) + if)(j) “Tun(k - J) + iﬁT(j) “Tu(k +7) (43)

=1 j=1

e

where:

)23 D7(0)-D(i + ) (44)

1=0
and 7,,(k) represents the (u,v)-th scalar element of the sample covariance matrix R,(k) [Eq.(7)].

Because of the invertibility assumption A5 Eq.(44) may be approximated as:

ZDT D(i + §) (45)

1=0

with an appropriately selected value of r. By further assuming that:

rus(l) % 0 (l>q) (46)

for some appropriately selected value of ¢ (an assumption reasonable for a large value of g and
stationary processes), the values of the sample covariance {#,,(k)} can be computed. By repeating
this procedure for each block element ¥,,(k) (u,v = 1, ---, s+ m ) the whole filtered covariance
sequence {R.,(k)} can be computed from the sample covariance R.,,(k). Finally, by observing that
R, (k) in Eq.(40) is included in the first s column blocks of R..(k), the required values of F,,(k)
are already available and do not need to be separately calculated. o
Stage 5: Estimation of the MA matrices, the innovations covariance, and the BIC criterion.

The MA parameter estimates are updated as in Stage 4 of the basic form of the method discussed
in Part I of the paper, and the procedure is therefore not repeated here. On the other hand a
procedure for the estimation of the innovations covariance and the BIC criterion based on the
second-order moments of the observations is now derived.

Towards this end consider the system § of Eq.(1):

2A° yit—i = EB° i) -x[t—1] + ZC°(1 w(t — 1] (47)
1=0
By postmultiplying by y7[t] and taking expectation the following expression is obtained:
ZA° ) ZB" 2,(1) + Y C°()- Ry, (4) (48)

1=0

11



in which {Rj, (i)} represents the theoretical autocovariance of the output sequence (Rj,(7) =

E{ y[t -4 -yT[t] }), {R2,(4)} the the theoretical cross-covariance between input and output
(Rz,(9) = E{x[t—1]-yT[t]}), and {R4,,(7)} the theoretical cross-covariance between the innova-
tions and the output (Ry, (%) = E{ w[t — 4] - yT[t] }). Based on the stationarity assumption A4,

the output vector y[t] may be also expressed as:

y[t] = K°(B) - xt] + L°(B) - wlt] (49)

with:
K°(B) £ [A°(B)™-B(B ZK°(] [s x m] (50)
L°(B) & [A°<B>1—1-C°(B)=gL"(j)-Bf [s x 5] (51)

where L°(0) = I, and by using (49) and assumption A3, the cross-covariance Ry, (1) is written as:

Ry (i) = ZE{ [t = d-w't-351}-L°7(j) = =°-L7() (52)
7=0

Based on this, Eq.(48) gives:

ZA° ) ZB° R, (5) + §C°(i) 20 LT (4) (53)
=0 1=0

and by using Kronecker product properties the following relations are obtained:

collA°(i) - R3,(1)] = [L,® A°()] - collR3, (0)] (59
collB°(3) - R, ()] = (I, ® B°(0)] - col[R2, ()] (55)
ollC°(i) - 2° LT = [L°()® C°(i)] - o3 (56)

and (53) rewritten as:

na

I, ® A%i)] - col[RS, ()] = Z[I ® B°(i)] - col[RZ, (i)] + f}[xﬁ(i) ® C°(3)] - col[Z°]  (57)

1=0 i=1 1=0

By replacing the theoretical auto and cross-covariance matrices {Rg,(i)}72, and {Rg,(:) m

by their estimates {Ry,(¢)}7%, and {Ry, (i)}, respectively, that have been already computed as
part of {R,y(¢)} given by Eq.(21) (since R,y (i) = [Rg'y( R ( )1T), and {L°(3)}2¢, by {L(z) o

obtained from the estimator expression:

ZA = C(i) i=0,1,2,--+,n¢ (58)
7=0

12



which is derived based on Eq.(51) and in which A(:) 20fori> na, and replacing the AR, MA,
and X matrices by their respective estimates, the following s? X s? dimensional matrix equation is

obtained from (57):

nc na nb
[Z L) e C(i)]] - col[E] = Z: [1 ® A()] - col[Ryy (i) - Zj [L ® B(3)] - collRay(i)]  (59)

which can be solved for the elements of the innovations covariance.

Finally, the BIC criterion is evaluated as:

- A 1 N
BIC(B) = log det|(8)| + d x OJgV (60)
where det|-| denotes determinant, 0 the estimated parameter vector, d the number of estimated
process (AR, MA, X) parameters, and N the available number of observations. 0
Remarks:

(a). For the evaluation of the estimator expressions (22) and (37) in which the leftmost matrix is
block symmetric, the computationally efficient Levinson-Whittle algorithm (Whittle, 1963)

may be used.

(b). The fast correlation-type parameter estimator of the proposed procedure may be valuable
also in applications where the structure is known but the parameters need to be obtained
from available observations, and a very fast scheme is required. Indeed, the computational
savings (in terms of the required multiplication/division operations) of this over the main
form of the estimator are very significant for observation records that are not too short, and
for long records (N large), in particular, they approach:

(s+m)?-(p+1)

(s+m)2-p2+s(32.na+3.m.nb)2 T (5+m)- s -ne X 100%

In addition, of course, the memory storage requirements are also significantly reduced.

(c). Finally notice that for long data records (for which the computational complexity problem is
most severe) a major portion of the calculations (the only that is proportional to the number
of observations) is that associated with Stage 1 of the procedure, which, however, does not

need to be repeated as the model order is changed.
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3. PERFORMANCE EVALUATION

In this section the performance of the proposed method is evaluated through a number of nu-
merical experiments. In all cases the process response is generated by using mutually independent,
pseudo-random sequences characterized by zero mean and approximately flat spectra as the input
and innovations signals, and the estimation is carried out by using the basic forms of the method as
needed. The emphasis is on assessing: (a) the achievable estimation accuracy at different noise-to-
signal (N/S) ratios, (b) the effects of the selected ARX model order p on accuracy, (c) estimation
accuracy with different data lengths, (d) the effects c;f the iterative parameter estimation procedure
on the achievable estimation accuracy, (e) the convergence of the (optional) iterative parameter
estimation procedure, and, (f) the effectiveness of the model structure estimation procedure.

In this context the signal-to-noise ratio in the i-th output channel [N/S(i)] is defined as the
standard deviation of the corrupting noise over that of the uncorrupted response in that channel

(see Figure 1):

x 100% (61)
and is maintained the same in all output channels. The convergence of the iterative parameter
estimation procedure is monitored through the index:

Ji = Héli _él(i—l)HH

¢

(62)

”él(i—-l)”H

where || -||;r denotes octahedric vector norm, y; the estimate of the theoretical process parameter
(AR, MA, and X) vector 65 at iteration i, and convergence is assumed as soon as J; decreases beyond
a prespecified threshold value. Identification accuracy is then judged in terms of the normalized

parametric error E,, defined as:

_ 16— billy '001”” x 100% (63)
1621112

and also by the trace of the estimated innovations covariance:

Ep

trace [ 3] = ize?[t/él] (64)

i=1 t

The finally estimated model is validated by comparing the actual process output with the

model-based one-step-ahead predictions within a portion of the data set that was not used in

the estimation procedure (cross-validation). In addition, the uncorrelatedness of the estimated

innovations (residual error) sequence is examined by using the normalized scalar sample auto and
cross-correlations defined as:

pii(k) = 2 &ilt] — &)(&[t - k] - &) (65)

V&l - &) - Tu@lh - &)
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with {é;[t]} representing the estimated i-th scalar component of the innovations sequence and é; its
sample mean, and subsequently checking their statistical significance for k£ # 0 (Pandit and Wu,
1983).

In the numerical experiments that follow, the order p of the truncated ARX model used in the
method is selected in the range (2.5 ~ 5) X na, and the parameter estimator is allowed to iterate
until convergence is achieved, with the result corresponding to the minimal value of trace [ 3 ]

selected as best.

Identification Results

Test Case I: The parameter estimation problem for the bivariate ARMAX(2,1,1) process of Table
1 from data records consisting of 1000 samples and corrupted at two (1% and 10%) N/S ratios is
considered. The estimation algorithm was allowed to iterate until convergence was achieved, and
as Figure 2 indicates, that happened in the third iteration in the 10% N/S ratio case, with the
improvement over the first iteration being minimal.

The model thus estimated was subsequently validated, and the normalized auto and cross-
correlations of the model residual errors (shown in Figure 3 for the 10% N/S ratio case) are within
the theoretical band that indicates statistically insignificant values. The estimated model-based
one-step-ahead predictions for both output signals are compared to the actually observed outputs
in Figure 4 for the 10% N/S ratio case, where very good accuracy is observed.

The full estimation results for both N /S ratio cases are shown in Table 1, and are in excellent
agreement with the theoretical values, with the normalized parametric errors being less than 0.04
% for the autoregressive and exogeneous parameters, and less than of 0.2% for the moving average
parameters. The estimated frequency response curves of the eight scalar transfer functions corre-
sponding to this system are compared to their theoretical counterparts in Figure 5, where excellent
agreement is once again observed in both the 1% and 10% N/S ratio cases. a
Test Case II: Parameter estimation of the bivariate ARMAX(2,2,1) process of Table 2 is now con-
sidered based on data records of lengths N=250, 500, and 1000, corrupted at 10% N/S ratio. As
the estimation results of the table indicate, the proposed method achieves high accuracy even with
the data record consisting of only 250 samples. The maximum normalized parametric error in this
case is about 1.3%, and naturally decreases to less than 0.08% as the data length increases to 1000
samples. O
Test Case III: In this case the problem of structure and parameter estimation for the bivariate
ARMAX(3,2,2) process with theoretical parameters given in Table 3 is considered based on data
records consisting of 1000 samples and corrupted at two (1% and 10%) N/S ratios. The model
order was succesfully estimated by successively fitting ARMAX(k,k-1,k-1) models and using the

BIC criterion, as Figure 6 indicates for the 10% N/S ratio case. The full estimation results are
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shown in Table 3, where very good accuracy is observed, with normalized parametric errors of
less than 0.03% for the autoregressive and exogeneous parameters, and less than 2.3% for the
moving average parameters. Since algorithmic instability problems were encountered for £ > 3,
the guaranteed-stability form (Approximation 1) of the estimator was exclusively used in this test
case. o
Test Case IV: In this final case parameter estimation of the bivariate ARMAX(4,2,3) process of
Table 4 is considered based on data records consisting of 1000 samples and corrupted at two
different (1% and 10%) N/S ratios. The effects of the iterative parameter estimation procedure on
the achievable accuracy in the 10% N/S ratio case are examined, and the trace of the estimated
innovations covariance is shown as a function of the iteration number in Figure 7. From this plot
some (small) improvement is observed from the first to the second iteration, but convergence is
then achieved.

The estimated models are subsequently validated, with the validation results shown in Figures
8 and 9 for the 10% N/S ratio case. Figure 8 shows the normalized auto and cross-correlations of
the model residual errors, which deviate from the theoretical band for some lags, but are overall
considered to be fine. The model-based one-step-ahead predictions of the two output signals are
compared to the actual outputs in Figure 9, where excellent agreement is observed. The complete
estimation results for both N /S ratio cases are shown in Table 4, where very small (less than 0.05%)
normalized parametric errors are associated with the autoregressive and exogeneous parameters,

and errors smaller than 1.2% are associated with the moving average ones. o

Remarks:

Based on the numerical experiments presented, the following remarks may be made:

(a). The proposed method offers high estimation accuracy with both “long” and “short” data

records and at different N/S ratios.

(b). The truncated ARX model order p used in the method does not seem to significantly affect
estimation accuracy as long as a sufficiently high order has been selected. In particular, the
rule of thumb used [p = (2.5 ~ 5) X na] was found to work quite satisfactorily in all test cases

examined.

(c). The iterative parameter estimation procedure converges fast, and may offer some refinement
of the ARMAX model parameter estimates. Although the improvement may be small, this

procedure may be a desirable option for cases where maximum accuracy is sought.

(d). As expected, instability problems are often encountered during the estimation of multivariate
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ARMAX models, in particular when higher order models are fitted. The use of the guaranteed-

stability form of the method therefore seems to be necessary in practice.

(e). The structure estimation procedure has been found to be quite effective in determining the

correct model order.

4. CONCLUSION

In this paper the very important problem of structure and parameter estimation in multivari-
ate ARMAX processes was addressed, and a novel and computationally very efficient estimation
procedure proposed. The proposed procedure is based on a very fast correlation-type form of the
linear multi-stage parameter estimator that uses the second-order moments of the data as a pseudo
sufficient statistic, the BIC criterion, and the fully-parametrized pseudo-canonical form. In ad-
dition to overcoming the limitations of the currently available parameter estimation schemes, the
proposed procedure avoids numerically sensitive structure estimation techniques, while also offering
remarkably low computational and memory storage requirements, as the original data need not be
stored and only a portion of the estimation calculations has to be repeated as the model order is
varied in search of a statistically adequate representation.

The very good performance characteristics of the proposed linear multi-stage identification
method were finally verified via numerical simulationé with a number of multivariate ARMAX
processes, by using short and long data records and different N/S ratios.

By offering low computational complexity and guaranteed algorithmic stability, circumventing
local extrema/wrong convergence problems, requiring no initial guess parameter values, achieving
high accuracy, and providing an effective structure and parameter estimation procedure, the pro-
posed linear multi-stage method overcomes the severe drawbacks that have rendered multivariate
ARMAX process identification unrealistic in many practical applications, and provides a pragmatic

and effective approach for the solution of this important problem.
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PARAMETER | PROCESS ESTIMATED PARAMETERS
MATRIX . | PARAMETERS [ N/S=1% N/S=10%
AQ) 04 0.1 03999 0.1050 | 0.4079  0.0927

0.2 0.5 | 0.1991  0.5046 | 0.1984  0.4959
AQ2) 0.6 0.2 | 0.6038 0.1942 | 0.6048  0.1884
0.3 0.4 | 0.3025 0.3963 | 0.2966  0.4057
B(0) 12 05| 1.1968 -0.5071 | 1.1945 -0.5026
0.6 0.3 | 05976  0.2090 | 0.6019  0.2936
c() 0.6 025 | 0.6104 0.2411 | 0.6173  0.2291
0.2 0.55 | 0.1785  0.5629 | 0.1780  0.5538
EX(%) —— 0.01051 0.03034
EZ(%) — 0.00508 0.00198
EC(%) — 0.10685 0.16142

Table 1: Estimation results for a bivariate ARMAX(2,1,1) process at two N/S ratios (Test Case I).

PARAMETER | PROCESS ESTIMATED PARAMETERS
MATRIX | PARAMETERS N = 250 N = 500 N = 1000
AQD) 04 01| 03885 0.1120 | 0.3971 0.1013 | 0.3948 0.1023
0.2 0.5| 0.1933 0.4765 | 0.2050 0.4999 | 0.2008  0.5019
AQ2) 0.6 02| 06047 02002 | 0.5984 0.2016 | 0.5981 0.1995
0.3 04| 02860 0.3962 | 0.3051 0.3996 | 0.2887  0.4034
B(1) 0244 -0.093 | -0.2447 -0.0060 | -0.2408 -0.0994 | -0.2445 -0.0932
0454  -0.470 | -0.4541 -0.4686 | -0.4505 -0.4657 | -0.4510 -0.4706
B(2) 0502 -0.023 | 0.5038 -0.0337 | 0.4990 -0.0265 | 0.5026 -0.0198
0416  -0.923 | 04182 -0.9144 | 0.4169 -0.9325 [ 0.4144 -0.9235
c() 014 03 |-0.1211 -0.1779 | -0.1830 -0.3447 | -0.1214 -0.3075
0.65 1.0 | 0.6384 -1.0434 | 0.6725 -0.9830 | 0.6647 -0.9788
EA(%) — 0.09950 0.00589 0.00227
EZ(%) — 0.01534 0.01100 0.00011
EC(%) — 1.12885 0.42796 0.07119

Table 2: Estimation results for a bivariate ARMAX(2,2,1) process from data records of various

lengths (Test Case II; N/S=10%).
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PARAMETER | PROCESS ESTIMATED PARAMETERS
MATRIX .| PARAMETERS [ N/S=1% N/S = 10 %
A(D) 0.5 0.0 | 05045 0.0001 | 0.5100 -0.0014
0.0  -05| 00028 -0.4999 | 0.0032 -0.4986
AQQ) 0.0 0.0 | 0.0048 0.0014 | 0.0087  0.0006
1.0 -0.25 | -0.9967 -0.2489 | -0.9917 -0.2522
AQ3) 0.0 0.0 | 0.0032 -0.0017 | 0.0035 -0.0013
05  0.1925|-04972 0.1236 | -0.4954  0.1251
B(1) 0244 0.093 | 0.2395 0.0998 | 0.2394 0.0993
0454  0.470 | 0.4537 0.4698 | 0.4557  0.4693
B(2) 0502 0.023 | -0.4999 0.0230 | -0.4987  0.0258
0416  0.923 | -0.4143  0.9288 | -0.4100  0.9228
cQ) 0.4 01| 04145 0.0812 | 0.4211 0.0804
0.2 0.5| 0.352 0.5001 | 0.1366 0.5016
C2) 0.6 02| 05922 0.1333 | 0.5962 0.1317
0.3 04| 01349 0.3362 | 0.1415 0.3348
EX(%) — 0.01075 0.02091
EZ(%) — 0.00092 0.00477
EC(%) — 2.28898 2.18361

Table 3: Estimation results for a bivariate ARMAX(3,2,2) process at two N/S ratios
(Test Case III).
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PARAMETER | PROCESS ESTIMATED PARAMETERS
MATRIX | PARAMETERS [ N/S=1% N/S=10%
AQD) 0.1 080 | 0.1114 -0.7996 | 0.1184 -0.8021
0.03  0.64 ] 0.0304 0.6401| 0.0316 0.6371
A(2) 025 -1.28 | -0.2468 -1.2817 | -0.2392 -1.2917
002 -0.11 | -0.0177 -0.1109 | -0.0116 -0.1164
A(3) 002 0.39 | 0.0208 0.3850 | 0.0222 0.3686
-0.02  0.01]-0.0192 0.0070 | -0.0170 -0.0008
A(d) 019 005 -0.1905 0.0461 | -0.1898  0.0381
0.01  0.04] 00093 0.0369 | 0.0082 0.0252
B(1) 0244 0.093 | 0.2399 0.0995 | 0.2400 0.0996
0454 0470 | 0.4541 0.4699 | 0.4567  0.4692
B(2) 0502 0.023 | -0.5010  0.0239 | -0.5007 _ 0.0269
-0416  0.923 | -0.4156  0.9229 | -0.4162  0.9211
cO) 02 -0.2| 0.2203 -0.2203 | 0.2254 -0.2324
08  -06] 0.7726 -0.5858 | 0.7724 -0.5887
c@) 046 003 | 04842 -0.0344 | 0.4910 -0.0359
0.32  045| 0.3603 0.3634 | 0.3644 0.3635
Ci) 021 -0.16 | -0.1939 -0.1716 | -0.1902 -0.1739
0.03  -0.32| 0.0629 -0.3641| 0.0624 -0.3658
EX(%) — 0.00277 0.04735
EZ(%) — 0.00013 0.00161
ES(%) — 1.10154 1.19040

Table 4: Estimation results for a bivariate ARMAX(4,2,3) process at two N/S ratios
(Test Case IV).
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