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‘ABSTRACT

Despite its importance and the undisputable significance of stochastic effects, the problem of multiple-
excitation multiple-response Experimental Modal Analysis has thus far been almost exclusively considered within
a deterministic framework. In this paper a novel, comprehensive, and effective stockastic approach, that, unlike
alternative schemes can also operate on vibration displacement, velocity, or acceleration vibration data, is intro-
duced. The proposed approach is capable of effectively dealing with noise-corrupted vibration data, while also
being characterized by unique features that enable it to overcome major drawbacks of current modal analysis
methods and achieve high performance characteristics by employing: (a) proper and mutually compatible force
excitation signal type and stochastic model forms, (b) an estimation scheme that circumvents problems such as
algorithmic instability, wrong convergence, and high computational complexity, while requiring no initial guess
parameter values, (c) effective model structure estimation and model validation procedures, and, (d) appropriate

model transformation and reduction and analysis procedures based on a novel Dispersion Analysis methodology.

The Dispersion Analysis methodology introduced as part of the proposed approach is a physically meaningful
way of assessing the relative importance of the estimated vibrational modes based on their contributions (“dis-
persions”) to the vibration signal energy. The effects of modal cross-correlations are fully accounted for, physical
interpretations are provided in both the correlation and spectral domains, and the phenomenon of negative dis-
sersion modes is investigated and physically interpreted. The effectiveness of the proposed approach is finally
verified via numerical and laboratory experiments, as well as comparisons with the classical Frequency Domain

Method and the deterministic Eigensystem Realization Algorithm.

The paper is divided into two parts: The proposed Dispersion Analysis methodology is introduced in the first

one, whereas the complete stochastic experimental modal analysis approach is presented in the second [23].
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1. INTRODUCTION

Time-domain Experimental Modal Analysis approaches may be classified as either deterministic
or stochastic. Deterministic approaches [1-6] are often simpler and computationally attractive, but
they face significant difficulties in dealing with noise-corrupted experimental data. Indeed, it is well-
known [7-10] that the quality of modal parameters identified via deterministic methods decreases
drastically as the noise-to-signal (N/S) ratio ceases to be negligible, and a number of modes may
be even completely impossible to estimate. As a consequence, émphasis has been recently placed
on stochastic approaches that can effectively account for the presence of noise in experimental data
[7-18].

Most of the available stochastic approaches however are of the single-output type, and are
therefore restricted to one vibration measurement location. This is a rather severe limitation for
practical applications where multiple-ezcitation multiple-response [also referred to as Multiple-Input
Multiple-Output (MIMO)] methods are in demand because of a number of advantages that they can
offer, including significantly reduced total data acquisition and processing time requirements, the
use of more consistent data sets, more uniform distribution of the excitation signal energy within
the structure, more “consistent” modal parameter estimates due to the larger number of data used,
effective separation of multiple or closely-coupled modes, and significantly reduced probability of
missing vibrational modes.

Despite these potential advantages, very few stochastic MIMO approaches are currently avail-
able. Hu et al. [17] discussed an approach based on multivariate AutoRegressive Moving Average
(ARMA) models with parameters obtained through the Modified Yule-Walker estimator. The per-
formance of this estimator is however known to vary greatly and result in significant identification
scatter and reduced accuracy [19]. In addition, an unnecessarily high number of parameters is
estimated, the noise dynamics are not identified, and a number of issues (such as model structure
estimation, estimation of the actual number of structural degrees of freedom/model reduction, ap-
propriate selection of the excitation signal type and the required ARMA forms, as well as model
validation) are neglected. The approach proposed by Bonnecase et al. [20] for the case of unobserv-
able force excitation is also based on the Modified Yule-Walker estimator (or its overdetermined
form) and is of a very similar nature.

Part of the reason for the lack of stochastic MIMO experimental modal analysis approaches
is due to difficulties related to the discrete estimation stage (algorithmic instability occurrence,
wrong convergence, the need for initial guess parameter values, high computational complexity),

inappropriate selection of the triple of model structure, excitation signal type, and discrete-to-



continuous model transformation, the lack of an effective model structure estimation procedure, and
the lack of a methodology for assessing the relative importance of the estimated vibrational modes
(necessary for model analysis, reduction, and distinction between “structural” and “extraneous”
modes). Although most of these issues (except for the last one) were recently addressed and .
effectively resolved for the special single-output case [18], those results are not directly extendable
to the more general MIMO problem.

Indeed, it is a well-known fact that the extension from the single to the multiple-output case is
far from being trivial, as stochastic multivariate models have a structure that is much more com-
plicated than that of their univariate cduﬁterpa.rts and gives rise to.deep identifiability questions
that necessitate the use of identifiable parametrizations and special model structure estimation
techniques [21]. Additional problems are also encountered as parameter estimation in multivariate
models is much more complicated and prone to difficulties related to local extrema/wrong con-
vergence and algorithmicv instabilities, so that the availability of good initial parameter values is
of critical importance [22]. The computational complexity of multivariate estimation algorithms is
also excessive, to the point that it is often considered as prohibitive for many practical applications.

Regarding the issue of quantitative assessment of the relative importance of a structure’s esti-
mated vibrational modes, very little has been done (8,9,18]. This is so despite the issue’s apparent
significance in model analysis, reduction, and the distinction between actual “structural” and “ex-
traneous” vibrational modes in an estimated structural model. Such extraneous modes primarily
appear in conjunction with deterministic methods and are mainly due to the latters’ inability to
cope with noise-corrupted data. They are, however, encountered in the results of stochastic methods
as well (although in drastically reduced numbers); in that case they are due to the dynamics of im-
perfect instruments and/or statistical errors and estimator inaccuracies. Although some techniques
(such as the Modal Amplitude Coherence used in conjunction with the Eigensystem Realization
Algorithm [4]) have been suggested for distinguishing structural from extraneous modes in a deter-
ministic setting, those neither address the aforementioned general problem nor work effectively in
environments in which the noise is not negligible [10,18].

It is thus the goal of this work to develop an appropriate methodology for the quantitative
assessment of the relative importance of a structural system’s modes, and also overcome the afore-
mentioned difficulties and develop an effective and realistic stochastic MIMO Experimental Modal
Analysis approach.

The problem of quantitative assessment of the relative importance of a structural model’s vi-

brational modes is studied first, and a novel and physically meaningful methodology, referred to



as Dispersion Analysis, that assesses the significance of each mode by determining its contribution
to the total vibration signal energy under broad-band excitation conditions, is developed. This
methodology fully accounts for all cross-correlation effects (second-order statistical interactions)
among the various modes, and provides a definite and objective answer to the question of mode.
importance. Physical interpretations are also provided, and the important phenomenon of modes
characterized by negative contributions considered, existence conditions derived, and clear and
meaningful interpretations offered.

The complete stochastic MIMO Experimental Modal Analysis problem is considered next, and
a novel and effective approach that, unlike alternative schemes is capable of operating om either
displacement, velocity, or acceleration vibration data records, and utilizes the Dispersion Analysis
methodology for model reduction and analysis, is developed. The performance characteristics of the
proposed approach are examined via numerical and laboratory experiments and comparisons with
the classical Frequency Domain Method (FDM) and the deterministic Eigensystem Realization
Algorithm (ERA) [4].

This paper consists of two parts: The problem of quantitative assessment of the relative im-
portance of a structure’s vibrational modes and the proposed Dispersion Analysis methodology
are discussed in Part I, whereas the formulation and testing of the MIMO Experimental Modal
Analysis approach is presented in Part II [23]. The presentation in Part I is organized as follows:
The basic formulation of the proposed Dispersion Analysis methodology is outlined in Section 2,-
and the existence of modes characterized by negative contributions discussed in Section 3. Vari-
ous interpretations of the proposed methodology, with emphasis on negative dispersion modes and
their physical significance, are discussed in Section 4, and the conclusions of the study are finally

summarized in Section 5.

2. ANALYSIS OF DISPERSION FOR CONTINUOUS-TIME STRUCTURAL
SYSTEMS
Consider a general, linear, viscously-damped n degree-of-freedom structural system described

by the differential equation:
M-v(t)+ C-v(t) + K- v(t) = 1() (1)

in which M, C,K represent the real and symmetric » X n mass, viscous damping, and stiffness
matrices, respectively, {f(t)} the n-dimensional force excitation signal, and {v(t)} the resulting

n-dimensional vibration displacement signal. This system is characterized by n vibrational modes,



and hence n pairs of complex conjugate eigenvalues of the form:

8§y 8] = —(iwn; £ jwn, \ 1- sz = —(iwn,; £ Jwy; (t=1,--- yT) (2)

where wy; represents the : — th damped natural frequency wy; = wp;y/1 = ¢? and j the imaginary
unit. Corresponding to these eigenvalues are n pairs of complex éonjugate eigenvectors (mode

shapes) of the form:

b1 1i
b2 5

By=1{ " ery=¢ (i=1,-,n) (3)
Pni ni

The problem of interest here is that of quantitatively assessing the relative importance of each
vibrational mode in the system of Eq.(1), and for its solution a novel and physically-meaningful
Dispersion Analysis methodology, according to which the relative imbortance of a given vibrational
mode is judged by its contribution to the vibration energy of the structure under broad-band
(uncorrelated) stochastic excitation conditions, is currently proposed. The key idea behind this
methodology is in the appropriate decomposition of the vibration energy into modal contributions
that will be referred to as (modal) dispersions. The excitation signal is selected as uncorrelated
stochastic because it is then characterized by a perfectly flat spectrum that warrants that all
frequencies are excited at the same level with no particular weight being assigned to any frequency
or frequency range.

The foundation of this proposed methodology may be traced to the notion of dispersion used
in conjunction with discrete Time Series models [24], which, in turn, has its roots in the statistical
Analysis of Variance. The first use of Dispersion Analysis in Structural Dynamics was based on
approximate discrete-time models and may be found in the papers by Ben Mrad and Fassois [8,9],
Fassois et al. [16], and Lee and Fassois [18]. These earlier attempts to address the problem however

suffer from two major drawbacks:

They are all based on discrete-time models and are therefore approzimate and sub ject to errors
relating to the fact that actual structural systems are inherently continuous and not discrete-
time. These errors are known to be functions of various factors, including the excitation signal
type [8,9], and are very difficult to assess. Furthermore, the utilization of discrete models does
not allow for physical insight and a clear understanding of the role of the global and local

modal characteristics in determining the contribution of each vibrational mode.



The frequently occurring phenomenon of negative dispersion modes has yet to be addressed.
As a consequence a clear understanding of the role of such modes and their physical signifi-

cance is currently lacking.

It is thus the objective of this chapter to develop a proper and ezact Dispersion Analysis method- -
ology based on continuous-time structural models, explicitly relate the relative contribution of each
vibrational mode to physical quantities of interest (such as natural frequencies, damping factors,
and mode shapes), and also provide clear physical interpretations of the notion of modal dispersion

and the phenomenon of negative dispersion modes.

The Notion of Modal Dispersion

The key idea of the proposed methodology is in the proper decomposition of the vibration
displacement energy and the introduction of the notion of modal dispersion. Broadly speaking
the modal dispersion is the part of the vibration response energy associated with a given mode
under broad-band stochastic excitation conditions. For a precise definition the vibration signal
varié.nce for a general viscously-damped structural system needs to be computed and appropriately
decomposed.

Towards this end the solution of the general structural system equation (1) for a given vector
excitation f(¢) = [f1(2) - fa(®))T is expressed in the form [25]:

n

v(t) = Z [d),- kz::l (% /_:o hi(t — r)fk(r)d‘r)

+¢:i(?—’$ [ h:(t—r)fk(r)dr)] @

k=1 -0
with:
hi(t) S enit= e~ 4“nit(coswy,t + jsinwy,t) (5)
hi(t) 2 elt= e~%iwnit(coswg,t — jsinwg,t) (6)

and the constants a; and a} (which are the coefficients of the derivative term in the i-th uncoupled

state equation using normal coordinates) are given as:

a; £ 2s; - . TM¢; + ¢,TCo; (7)

af £ 257 ¢1TMo + ¢;TCo; 8)

The contribution of each vibrational mode will be defined separately for each one of the system’s

transfer functions. As a consequence, and without any loss of generality, the mi-th transfer function



relating the force fi(t) to the vibration displacement response v, (t) will be considered in the sequel.

Based on Eq.(4) the autocorrelation function of the vibration signal {vm(t)} may be computed as:
R, (r)=E [vm B)vm(t+ r)]

- ZZE [<¢"“¢" / fit = m)hi(mi)dy + =2 ’% / fi(t =)k} (n)dn)

i=1 k=1

<¢mk¢"= [ttt 7= hatrayar, + e Loslly / flt+7 =) Z(Tz)d‘fz)] (9)

where E[-] denotes statistical expectation. The first term in this expression may be rewritten as:

l-st term = E [("éﬂfSﬁ /O°° filt = Tl)hi(Tl)dﬁ) : (¢Mk¢lk / [t +T1- Tz)hk(TZ)dT2>]

= Smitudmedu / / EUA(t = m) filt + 7 — 12)]hi(ry )i (r2)dry
aiag 0 0

= Smitulmid / / Ry(r+ 11 — ) hi(ry)hi(m2)dridry (10)
a;Qp 0 0

with Ry(-) representing the autocorrelation function of the force excitation signal {fi(t)}. In the

case of uncorrelated stochastic excitation R;(:) is of the form:
Ri(tr+mn —m) =Ry, -6(t+ 711 —T2) (11)

where §(-) represents the Dirac’s delta function, and Ry, its intensity. The substitution of (11) into
(10) then yields for 7 > 0:

 Pmidlidmi Dik

1-st term = Ry, wa
iGk

/ h;(rl)hk(r + 1‘1)d7‘1
0
 $midiimi bk

a;ia

/0 ” h,-(Tl)hk(‘rl)drl] (12)

= e~ (coswy, T + jsinwg, T) {Rfo

By similarly computing the remaining three product terms within the square bracket of Eq.(9),

the autocorrelation function R, (7) may be finally expressed in the following decomposition form:

R, (1) = Z Di(r) = E [exp(—(kwnkr) (ng ) ©COSWq, T + n( ) sinwdkr)] (13)

k=1

with Dy () obviously defined and:

® = R, Z<¢m:¢lt¢mk¢lk /°° h,.(t)hk(t)dt+£'w———i-"ﬁ/m hi(t)h}(t)dt
0 0

a;ax
+ —————m"iﬁi’;"“’i”‘ /0 h;(t)hk(t)dt+—""¢" mi Pl / b t)hk(t)dt> (14)
¢mt¢ l¢m ¢ 0 ¢mi¢i m ¢ -
ngk) = j-Ry, Z( ;‘akk lk/ hi(t)hk(t)dt———ﬁiu/o hi(@)hy(t)dt
¢ma¢h¢mk¢1k . _ Omi®libmi®le [T pa iy
+ Sdideutn /0 b )0 - SoiZilonlle /0 h,(t)h,,(t)dt) (15)



Observe that both n(k) and ngk) (k =1,2,...,n) are real-valued since their first and fourth, as well
as their second and third, terms are complex conjugate.

From Eq.(13) it is evident that the autocorrelation function R, (7) has been decomposed into
n decaying trigonometric terms Di(7) (k = 1,2,...,n), each one of which is associated with each .
one of the system’s vibrational modes and represents that mode’s contribution to R, (7).

The energy associated with the vibration displacement signal {vn,(¢)} may be then evaluated

from (13) by setting 7 = 0, and is therefore expressed as:

¢m1¢lz¢mk¢lk b . ¢mi¢li¢:nk¢?k *° . *
R, (0) = 2[212, S Re (———-— /0 (i) (1) + PPkl /0 hi(t) k(t)dt)}

i=1 aiQj
(16)
with Re(-) denoting the real part of the indicated quantity. Since:
(oo} (o]
/ hi(t)hi(t)dt / e~ (Guni+wni)t [cog(wg, 4+ wg, )t + J sin(wy; + wa, )t] dt
0 0
— (Ciwn,- + Ckwnk) + j(wd.' + wdk)
W2, + W2, + 2(iCen;ny, + 2mitong /(1= ()1 = CB)
A 1
= (17)
and:
(oo} . y —
| homiar = (Coomg o Chtmy) + (g, = 0a,)
W2, + W2, + 2iCkwn tn, — Wnitny /(1 = CB)(1 = CF)
A ik

R,,,(0) may be rewritten in the decomposition form:

R,.(0) 2 ZDk(O Z [QRfo ZR (¢m:¢h¢mk¢lk (k) | PmiPi Oy, 1 Pl (:k)} (19)

= = a;ag a;aj,

Based on this the k-th modal dispersion is now defined as follows:

Definition: The k-th modal dispersion is defined as the k-th mode’s contribution to the vibration

signal energy given by the expression:

Dk(O) é 2Rf° . zn:Re (

=1

Pmiti Ok Pik i) 4 Pmi B1i Oy Pl e k)) (20)

a;ay a;af
In addition, the dispersion percentage (or normalized dispersion) of the k-th mode is defined as the

dispersion of that mode normalized by the total vibration signal energy, that is:

a _ Di(0)

5 2 =l 100%  (k=1,2,-, 21
k=5 Do) < 00% ™) (21)



Note that expressions (20) and (21) represent the k-th modal dispersion and dispersion percent-
age, respectively, for the mi-th transfer function. The additional subscripts indicating this have
been dropped for the sake of simplicity, but should be used in cases of potential ambiguity.

The dispersion percentage of a given mode within a particular transfer function therefore is
a “measure” of that mode’s relative significance within that particular transfer function. For
an n degree-of-freedom structural system characterized by n modes, an n X n transfer matrix
incorporating all transfer functions may be defined, and the dispersion percentages of a given mode

may be correspondingly written in the form of a dispersion percentage matriz.

Ezample: Consider the two degree-of-freedom proportionally-damped system of Figure 1 with phys-

ical parameters:

1.0 0.0 2.5 —-0.8 110.0 -11.0
M= [ 0.0 1.0 ] C= [ -0.8 25 ] K= [ -11.0 110.0 }

The modal parameters and complete Dispersion Analysis results, indicating the importance of each
vibrational mode in each one of the system’s transfer functions, are given in Table 1 in the form of
dispersion percentage matrices.

As it is evident from these results, mode 1 is a heavier contributor to the vibration energy, and
hence of higher importance than mode 2 for this particular system. Another interesting observation
is that the dispersion of mode 2 is negative in both transfer receptance cases (transfer functions
v1/ f2 and v2/ f1), a phenomenon that deserves further attention and will be therefore discussed in

detail in the sequel.

3. MODES CHARACTERIZED BY NEGATIVE DISPERSIONS: THE CASE
OF PROPORTIONALLY-DAMPED SYSTEMS

The definition of a structural mode’s dispersion, and its interpretation as the mode’s contribu-
tion to the vibration response energy under broad-band stochastic excitation conditions, provides an
objective and physically meaningful approach for assessing the relative importance of vibrational
modes within a given structural system. As it has been, however, already observed, a problem
arises in that the dispersioné of some modes become negative for certain structural systems, and
this creates difficulties, as it is not immediately evident either how negative contributions can be
interpreted within this context, or what their exact physical significance and role are. As a conse-
quence, and in order for the relative importance of such modes to be properly judged, satisfactory

answers to these questions have to be provided.
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In achieving this objective alternative interpretations of the notion of modal dispersion and
the Dispersion Analysis methodology, allowing for additional insight into the underlying physical
mechanisms, will be sought in the rest of this paper. In this section our attention will be focused
on the special, but interesting, case of proportionally-damped systems, for which somewhat simpler
and easier to interpret expressions can be derived. The more general non-proportionally-damped
case will be examined in Section 4.

Based on expression (20) the contribution D (0) of the k-th mode in the vibration signal energy

may be decomposed as follows:

Di(0) = Brk + Br (22)
where:
. 204 12
B 2 2Ry, - Re (¢>mk¢u¢ (k) o |¢mr‘l Ilfzkl ik k)) (23)
aj
A n
Be = D B (24)
i=1,i£k
ﬁik é 2Rfo . Re <¢m:¢11¢mk¢1k (,k) + ¢mz¢lt¢mk¢lk (1 k)) (25)
a;ag a,ak

The term [k in this decomposition depends upon the k-th modal parameters and will be therefore
referred to as the k-th modal autocorrelation, whereas the term depends upon the remaining
modal parameters as well, and will be referred to as the k-th modal cross-correlation. This latter
term represents the part of the energy due to the interactions between the k-th mode and the rest
of the modes present in the system.

It is interesting, as well as instructive, to consider the special case of proportionally-damped
structural systems first. In that case the above expressions for the k-th modal auto and cross-

correlations reduce to:

R A2 42
Brk = —%"{ﬂ (26)
_ - 2R;, « Pmidti PmkPik(Ciwn; + (kwny)
P = i=§ék (W2, — w2 )? + 4 iCkwn,wn, (W2, + w2, ) + (¢ + (FIwi wi, ] (27)

where {¢;} represents the i-th mass-normalized eigenvector, and the fact that the a;’s of Egs.(7)-
(8) can, in this case, be simply expressed as a; = j2wq; (¢ = 1,2,...,n), was used. Based on these
expressions the following corollaries follow:

Corollary 1: The modal autocorrelation is nonnegative for any mode of a proportionally-damped

system. The dispersion of any particular mode will thus be negative if and only if the mode’s modal

11



cross-correlation is negative and of magnitude larger than that of its modal autocorrelation. O
Corollary 2: In a proportionally-damped system no negative dispersion modes can occur within
a point receptance transfer function (that is a transfer function relating identical excitation { and
response m coordinates). Negative dispersion modes can be, however, encountered in transfer
receptance cases, in which the excitation and response coordinates are different (! # m). a
Corollary 3: A necessary condition for the k-th mode to be characterized by negative dispersion
within the mi-th (m # ) transfer function of a proportionally-damped system, is that at least one
of the products of mode shape elements @miP1;Pmidix for i = 1,2,---,n be negative. a

As it will be later shown, the validity of Corollary 1 can be extended to the case of non-
proportionally-damped systems as well.

In order to gain further insight into this problem, the natural frequency ratio between two modes
is defined as:

a @n

Cwip = (28)

W,
Then, the k-th modal cross-correlation §i of the proportionally-damped structural system [Eq.(27)]

may be rewritten as:

_ v 2R, - dmidtiPmi ik (Ci€win + Ck)
O e T = F GGk, + )+ (@ T D) 29

(M) (i)

It is interesting to observe that both the modal autocorrelation Skx [Eq.(26)] and cross-correlation Sy
[Eq.(29)] have the term w3, as a common factor in their denominators. By using appropriate natural
frequency ratios, the quantity wgk may be thus made a multiplicative factor in the total vibration
signal energy expression, and, as a consequence, the dispersion percentages 6x (k = 1,2,---,n)
calculated from (21) will be independent of it, and, in fact, of any one of the exact natural frequency
values. This observation is organized into the following corollary:

Corollary 4: The k-th mode dispersion percentage 6 of a proportionally-damped structural system
does not depend upon the exact value of any one of the system’s natural frequencies wy,; (i =

1,--+,n), but only on the natural frequency ratios ¢, (¢ =1,---,n). a

For the rest of this section we will further limit our analysis to the case of proportionally-damped

systems satisfying the following assumptions:

A1l. The structural system is lightly-damped ({; < 1,V i)

A2. The mass-normalized mode shape elements are all of the same order of magnitude.

12



Apart from being of obvious practical importance, this case allows for some additional calcula-
tions that provide insight into the physical conditions under which negative dispersion modes may
appear. Towards this end let us now examine the dispersion percentage 6, as a function of the
natural frequency ratios ey, (¢ = 1,2,---,n).

I ey > 1, Vi, i # k, the terms (i) and (ii) in expression (29) may be approximately expressed
as:

(i) ~ €5, (ii) = 4¢iCrel,, (30)

and thus (i) > (ii); a fact further strengthened by the light damping assumption A1l.
If, on the other hand, €,,, < 1, by neglecting terms of order higher than two we have:

i)y=1 (ii) = 4CiCkEw;x (31)

and (i) > (ii) in this case as well.

As a consequence, if the lightly-damped structural system has well-separated modes (e, > 1
or €y, < 1, Vi,i # k), the term (i) is dominant to (ii), and the k-th mode dispersion Di(0) may
be thus approximated as [see (26), (27)]:

Dk(o) = ﬂkk + ﬁk wgk 42¢1k + —12¢k 2¢mi¢hqz?:‘flk—(i‘.)€zwik + Ck) (32)

N~

(111) (iv)

with the denominator of (iv) approximated as e, (if €w;, > 1) or 1 (if £4,, < 1). In both cases,
however, and under the assumptions Al and A2, the term (iii) will be dominant, in magnitude,
to (iv). Due to the difference in magnitude between these two terms, and for reasonably small
number of degrees of freedom n, (iii) will be dominant when compared to the sum of the terms
(iv) as well. That is, the modal autocorrelation will be significantly larger, in magnitude, than the
modal cross-correlation, and we, therefore, arrive at the following corollary:
Corollary 5: For a proportionally-damped system satisfying A1 and A2, and characterized by well-
separated modes (g, > 1 or €, < 1, Vi,i # k), the modal autocorrelation terms dominate,
in magnitude, the corresponding modal cross-correlations, and thus, by virtue of Corollary 1, no
negative dispersion modes exist. o
Based on this result, it is evident that a necessary condition for the k-th mode of a proportionally-
damped structural system satisfying A1l and A2 to be characterized by negative dispersion is that,
at least, one additional natural frequency be close to wp,, so that the term (ii) in Eq.(29) can

dominate (i), and the modal autocorrelation Sii not necessarily dominate (in magnitude) in (32).

13



This is a somewhat expected result, since for 6; to be negative the k-th modal cross-correlation
needs to be negative and of magnitude larger than that of its modal autocorrelation (Corollary
1), with the former (modal cross-correlation) becoming maximum as another damped natural fre-
quency approaches wg, (wg; — wq, ) (see last remark in subsection 4.1); a fact that, in the case of
1ight1y-damped systems, occurs only when w,; approaches wy,.

In order to investigate how closely two modes should be in order for the term (i) not to be
necessarily dominant in the denominator of expression (29), the case of a two degree-of-freedom

system is now considered. By defining the quantity A through the expression:
A
Ewp, =14+ A AK1 (33)

and substituting it into the terms (i) and (ii) of Eq. (29) we obtain:

0 = (@+a7-1)°
= 4A? +4A% + AY ’ (34)
(i) = 4{4142(1+A)[(1+A)2+1]+(c,~2+<§)(1+A)2

A(C + )2 + Gl(AA + 4A% + A% + (2 + ¢3)(2A + AY)] (35)

By neglecting terms involving orders of A higher than two, and also, in view of Al, the terms

16¢1¢2A? and 4(¢? + (3)A?, we have:

(i) ~ 4A? (36)
(i) ~ 4(G+()*+16GGA +4(¢G + (G)A? (37)

In order for term (ii) to be dominant:

4A% < 4G+ Q)1+ 160 GLA + 4G + DA? =
= A?-2G+GL)PA-(G+&)? <0 (38)

or, equivalently:

A= (GG =G+ G+ G <A< G+ + G+ (G + Q)P = A (39)

where, obviously, A; > 0 and A; < 0. By approximating the quantity under the square root as

(¢4 + (2)?, and neglecting terms of order higher than two, (39) may be simplified as:

Al < G+ G (40)
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Expression (39), or its approximate version (40), therefore composes a necessary condition for
a negative dispersion mode to appear in a two degree-of-freedom proportionally-damped system
satisfying Al and A2. As is evident from this condition, the lighter the damping of the system the
smaller the magnitude of A (and thus the smaller the distance between the two natural frequencies).
that is necessary for a negative dispersion mode to appear. These facts are illustrated in the example
that follows:

Ezample (Continued): Consider the two degree-of-freedom structural system of Figure 1. With

mode shapes fixed (same as in Table 1), the dispersion percentages of the transfer function v/ f;
are shown in Figure 2 as functions of the natural frequency ratio €,,,, for four cases, as follows: (a)
€1 =0.35, (2 = 0.5, (b) (1 =0.07, {2 = 0.1, (c) (1 = 0.007, {3 = 0.01, and (d) ¢; = 0.0007, (; =
0.001. As is evident from this Figure, the lighter the damping of the system the closer the two
natural frequencies should be in order for a negative dispersion mode to occur. Although condition
(40) is, of course, not applicable to the high damping case (a), it is easy to verify that it is satisfied
in all of the remaining cases for the intervals of A for which a negative dispersion mode occurs.
Indeed, in case (b) mode 2 has negative dispersion for 0.9 < ¢,,, < 1.05 (0.1 < A < 0.5), whereas
¢1 + ¢2 = 0.17. Similarly in case (c), mode 2 has negative dispersion for 0.993 < ¢£,,, < 1.006
(=0.007 < A < 0.006), and ¢; + ¢2 = 0.017, and in case (d), mode 2 has negative dispersion for
0.9994 < ¢, < 1.0006 (—0.0006 < A < 0.0006) and (; + (2 = 0.0017. .o

4. INTERPRETATIONS AND PHYSICAL S IFICANC F DISPERSION
ANALYSIS: THE GENERAL NON-PROPORTIONALLY-DAMPED SYSTEM CASE

In this Section the non-proportionally-damped system case is considered, and various interpre-
tations of the notion of modal dispersion that offer additional physical insight into the proposed
Dispersion Analysis methodology and also clarify the issue of negative dispersion modes are derived.

4.1 Interpretation in terms of Modal Impulse Response Functions

A key interpretation in this context is based on the currently introduced notion of the modal im-
pulse response function for general viscously-damped structural systems. For this purpose consider
the function z(t) defined as:

n * *
A IR Pl 1 x
z(t) = Z Mhi(t) + -—"-‘%b-lih,-(t) (41)
From the examination of the response equation (4) of a non-proportionally-damped structural

system it can be shown that z(¢) may be interpreted as the impulse response function of the mi-th
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transfer function and be decomposed as:

n n

2t) & Sla() + 0] = 52 Re[s(t)] 2 3 ai(t) (42)

i=1 i=1 i=1

with obvious definitions for z;(¢) and z;(¢) (i = 1,2,...,n). From these expressions it is evident that
z;(t) is real-valued and represents that part of the impulse response function z(¢) that is associated
with the i-th vibrational mode, and will be thus referred to as the i-th modal impulse response
function within the mi-th transfer function.

Based on this, the vibration signal energy given by Eq.(16) may be rewritten as:

WE

Run® = 3 [2R.-3 /0°°Re[z,~(t>-zk(t)+z.-(t>-z;(t>1dt]
L i=1

x
1
-

Il
NE

4Ry, - g | Relai(o)]- Relir(o)] dt]

=
Il
-

Il
NE

Ry, 3 [” x,-(t)zk(t)dt} (43)

i=1

x>
Il
—

and the contribution Dy (0) of the k-th vibrational mode to the total vibration signal energy ex-

pressed as:

N a 0 = ©
DO) & B+ & B [ okt + Ryo 3 [Taimiar (44)
i=1,i%k

From this form it is evident that the k-th modal autocorrelation (i) is proportional to the
deterministic autocorrelation function of the k-th modal impulse response {z(t)} evaluated at lag
7 = 0, and the k-th modal cross-correlation (i is proportional to the sum of the deterministic
cross-correlation functions between {zk(t)} and {z;(¢)} (i = 1,2,...,n;1 # k) also evaluated at lag
7 = 0. The coefficient of proportionality is, in both cases, equal to the intensity of the uncorrelated
stochastic excitation signal. Based on these observations the following corollary (that is an extension

of Corollary 1 to the case of non-proportionally-damped structures) follows:
Corollary 6: All modal autocorrelations are necessarily nonnegative. As a consequence, in order
for the k-th vibrational mode to have negative dispersion, its modal cross-correlation has to be
negative and of magnitude larger than that of its modal autocorrelation. O
Based on Eq.(44) the dispersion of the k-th mode to the vibration signal energy may be alter-

natively expressed as:

Dy(0) =Ry, - fow 2i(t) - oa(t) - dt = Ry, - /0 " 2(t) - za(t) - dt (45)

=1
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and the corresponding dispersion percentage rewritten in the form:

o _ fa) ) di
Joo z¥(t)-dt

x 100% (46)

The following interpretations in terms of deterministic correlation functions are now immediate:
Corollary 7: The contribution (dispersion) of the k-th mode to the vibration signal energy is equal
to the product of the uncorrelated stochastic excitation intensity and the deterministic cross-
correlation between the total impulse response {z(¢)} and the modﬂ impulse response {zy(t)}
evaluated at lag 7 = 0. The corresponding dispersion percentage is hence equal to the cross-
correlation between {z(t)} and {z(t)} at lag zero normalized by the autocorrelation of {z(t)} at
that same lag. o
Corollary 8: A mode characterized by negative dispersion has an associated modal impulse response
function {zx(t)} that is negatively correlated with the total impulse response {z(¢)} in the time in-
terval [0,00). This means that the k-th mode is, in average, acting in a way that opposes {z(t)},
and therefore reduces its magnitude. a
Remark: The degree of cross-correlatedness between {z(¢)} and {zx(¢)} that determines the k-th
modal dispersion may be also assessed in terms of the normalized quantity:
o RRe() mu) e

TR e ) -

Due to the Cauchy-Buniakovski inequality [26], px is indeed normalized in the interval [-1,1]. O

(47)

These ideas are now illustrated through an example:

Ezample (continued): Consider the two degree-of-freedom proportionally-damped system of Figure

1 with modal parameters and Dispersion Analysis results presented in Table 1. As it may be
observed, and in accordance with Corollary 2, the dispersion percentages are both positive in the
point receptance cases (transfer functions v1/f; and vy/ f2), but of opposite signs in the transfer
receptance cases (transfer functions v/ f; and v;/f2). The transfer receptance case vy/ fy is further
examined in Figure 3. The modal impulse responses z1(t) and z,(t) are shown in part (a) of the
Figure and are apparently negatively correlated in the observation time interval. Indeed, the 2nd
modal cross-correlation is (assuming Ry, = 1): |

Big = /0 * 21(8)ea(t)dt = /0 ? e (B)aa(t)dt + /t ? r(t)aa(t)dt + /t ® e (B)za(t)dt+- -

1

o

m Y2 3
In the first time interval [0,;] the modal cross-correlation is negative (7; < 0), then (time interval

[t1,t2]) positive (72 > 0), and so on. As time grows, the impulse responses decay, and their overall
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(in the time interval [0,00)) cross-correlation is negative. This is also illustrated in part (b) of
the Figure, where the curves z1(t) - z2(t) and z%(t) are shown. The area between the former
curve and the time axis represents the modal cross-correlation term (82 = 12), whereas the area
between the latter curve and the time axis represents the 2nd modal autocorrelation term (8;2).
It is apparent that 82 + 322 < 0, so that the second mode is characterized by negative dispersion.
Similar observations may be made from parts (c) and (d) of the Figure that depict the impulse
responses z(t), z2(t), and the product z(t) - z(t), respectively. Indeed, it is evident that the two
responses are negatively correlated, so that on average (in the time interval [0,00)) z3(t) tends to

suppress z(t). a

Remark: The case of systems with closely-spaced frequencies

Based on the discussion thus far and the above example, it is evident that for general (non-
proportionally-damped) structural systems with adjacent damped natural frequencies (wq, = wy,),
one mode will necessarily have negative contribution (dispersion) provided that the modal impulse
responses {z1(t)} and {z2(t)} start out in opposite directions. In addition, it is also evident that

the modal cross-correlation has maximum effects when wq, = wyq,. a

4.2 Interpretation in terms of Modal Responses due to Uncorrelated Stochastic Excitation

Due to the duality between the deterministic delta function and uncorrelated stochastic signals,
it is expected that the foregoing results and interpretations should be (appropriately) extendable
to the case of stochastic force excitation by considering corresponding modal responses. That is
indeed the case, and may be shown as follows:

Consider a structural system excited by an uncorrelated stochastic excitation {fi(t)} and define
the part of the response associated with mode k, referred to as the k-th modal response, by the

following convolution integral:

()2 [zt =) fr)ar (49)

The total system response may be similarly expressed as:

t
v (t) = / z(t — ) fi(r)dr (49)
and the cross-correlation between the signals {v,x(t)} and {vm,(t)} at lag 7 = 0 then is:
Blon@oma@] = [ [ et = n)estt - ) Bl A(r)ldndr,

t
= / x(t - Tl)xk(t - T]) . RfodTl

-0
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- R, /O  2(\)zr(A)dA (50)

By comparing this expression to (45), the following interpretation in terms of stochastic cross-
correlation functions is obtained:

Corollary 9: The contribution (dispersion) of the k-th mode to the vibration signal energy is equal
to the cross-correlation between the corresponding total vibration response and the k-th modal

response evaluated at lag zero, that is:
Dy (0) = Efvm(t)om, (1)) (51)

In case that mode k is characterized by negative dispersion E(vy,(t)vm,(t)] will be negative, so that
at every time ¢ the k-th mode is, in an ensemble average sense, acting in a way that opposes the

total response {v,,(t)}, and therefore reduces its magnitude. O

4.3 Spectral Interpretation

The notion of modal dispersion is now examined in the spectral domain. Towards this end
define as Fy(jw) the Fourier Transform of the part of the output autocovariance associated with

the k-th vibrational mode:
. A 1 > —iwT
Fr(jw) = '2;'/ Dy(7)e™?“"dr (k=1,2,---,n) (52)

The spectrum of the vibration signal {v,,(t)} may be then expréssed in the following decomposition

form:

Sun@) = 5= [ Rup(rle™Tdr = - Filjw) =

k=1
= Sun(w) = D Sk(w) (53)
k=1
where Si(w) is defined as the real part of Fi(jw):
Sk(w) = Re[Fi(jw)] (54)

Based on these expressions it is evident that Si(w) represents the contribution of the k-th
vibrational mode to the vibration signal energy at each particular frequency w, and will be thus
referred to as the spectral contribution of the k-th mode. The relationship between the modal
dispersion and Si(w) may be readily established by considering the inverse Fourier Transform of
(52) for r = 0:

D) = [ Su(w) - do (55)
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The dispersion of the k-th vibrational mode is thus equal to the integral of its spectral contribution,
that is the area between the latter curve and the frequency axis. Dg(0) will therefore be negative
exactly when the integral of Sg(w) is negative, and the following interpretation of negative dispersion
modes follows:
Corollary 10: A mode is characterized by negative dispersion if and only if its overall [in the
frequency range (—o0, 00)] contribution to the power spectrum of the vibration signal produced by
an uncorrelated stochastic excitation is negative. This result is complementary to the time-domain
results of Corollaries 8 and 9, and indicates that a negative dispersion mode acts in a way that
suppresses the spectrum of the vibration signal, and therefore its energy, in the frequency range
(—00,00). a

For the computation of the spectral contribution Sk(w) of the k-th mode to the vibration
signal energy in the ‘general case of a non-proportionally-damped structural system we proceed as
follows: Rewrite the modal contribution Dg(7) to the vibration signal autocovariance in the form
[see Egs.(9), (10), and (13)]:

Di(r) = Zn: (Mﬂ /oo /00 Rs(m + 11 = m2)hi(n)hi(me)dmidm,
—o00 J—00

=1 aidk

+ ¢mi¢li mk¢lk / / Rf(T + 71— T2)hi(T1)h;(T2)d7'1dT2
xR J =00

aiay, -

* Ak 00 oo
+ _——d)m'(ﬁ;;q;’:k‘ﬁlk/ / Ry(T + 11 — m2)hi(11)hi(m2)dm1dT2
miPLiPmi®lc [ [ — R OR (70 dT d 56
+  Dmilitmk7lk Ry(1 + 11 — 12)h}(r1)hi(r2)dr1dm, (56)
a;a; —-00 J=00

The Fourier transform of the first term in this expression may be written as:

Omidtibm btk / / hi(T1)hi(T2)dr1dTs - i/ Ry(T + 7 —mp)e i Tdr
a{Qj —00 J—00 27 —00
- ¢m:¢1:¢mk¢lk / h,’(T1)6’wﬂ dry - / hk(Tg)e—']wnde . __1_ / Rf(/\)e—Jw’\d/\
a'ak —00 —-00 27(‘ —-_00

where the substitution A = 7 + 1, — 7, was made. Next notice that:

1o . 1 foo . Ry, &
L —jwA gy — & ) -y = =L 2 57
- /_ " RWedA = o /_ "R 6(Neay = R 2 g, (57)

where the constant Sy, represents the spectrum of the uncorrelated stochastic excitation. Also, by

using Eqgs.(5), (6):

—
1]>2

/_ * hi(r)e=ndr, = Hi(jw) (58)

8i — jw

p—t
i

Hi(jw) : (59)

(S .
hi(r)endr = ——
4/;00 (Tl)e n S + Jw
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1
ST — jw
1
8T+ Jw

I

/ hi(my)e™?“dn = H;(jw) (60)

>

[ wmyetman = H7(je) (61
based on which [as well as (53) and (54)] Sk(w) may be finally expressed as:
Sk(w) = Re[Fi(jw)]

= Re [sfo ) [M”ﬂ’i Hi(jw)Hy(jeo) + Lmi®iCme®le 1 o) fre o)

i=1 @ik o
v Loililmkdik g o) (o) + EmifliPmi i pre (j‘”)ﬁ’:“‘")” )
atar : a;ay

Remark: The case of proportionally-damped systems

In the special case of proportionally-damped systems the above expression for Si(w) reduces to:

n

Sk(w) = Re[Fr(jw)] = Sy, D dmidtidmrdik - Re[GF(jw) - Gr(jw)] (63)
=1
with: ~
s (EGe) | ErGe)) 1
Giljw) = ( P a; ) T w2 —w? - 2iwnw (64)

representing the complex frequency response function for the i-th normal coordinate system [25].

O

FEzample (continued): Consider again the two degree-of-freedom proportionally dam- ped system of

Figure 1, and more specifically the point receptance v/ f; and transfer receptance vy/f; transfer
functions. The point receptance case is examined in Figure 4a, where the decomposition of the
impulse response z(t) in terms of the modal impulse responses z;(t) and z,(t) is shown, along with
the decomposition of the vibration response spectrum Sy, (w) in terms of S;(w) and S3(w). As it
may be readily observed both modal impulse responses are positively correlated with z(t), and are
therefore characterized by positive dispersions (a result which is in agreement with the dispersion
analysis results for this system and also Corollary 2). The same conclusion may be reached by
examining the spectral results, from which it is evident that both modes contribute positively to
the vibration signal spectrum (in this case, in particular, they contribute positively at each and
every frequency w) and therefore add to the vibration signal energy. The particular contribution of
each mode to the vibration energy can be computed as the area between the corresponding Si(w)
and the frequency axis.

In the transfer receptance case, however, the modal impulse response z4(t) is negatively cor-

related with the overall impulse response z(t), as Figure 4b indicates, and the second mode is
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therefore characterized by negative dispersion. This is in agreement with the dispersion analysis
results of the system (see the discussion in the previous subsection) and also the spectral results, as
it is evident that S3(w) has a negative overall contribution to the vibration signal spectrum S(w)

(although for a particular frequency range the contribution of the second mode to the spectrum is

in fact positive). a
5. CONCLUSIONS

In this paper the problem of quantitatively assessing the relative importance of a structural sys-
tem’s vibrational modes was addressed, and an appropriate and novel Dispersion Analysis method-
ology introduced. The proposed methodology assesses the significance of each mode in an ob jective
and physically meaningful way by determining the mode’s contribution (modal dispersion) to the
total vibration signal energy under broad-band stochastic excitation conditions and fully accounting
for all cross-correlation (interaction) effects among the various modes.

Physical interpretations of the modal dispersion have been derived in both the correlation and
Vspec'tral domains based on the notion of modal response functions, and the dispersion of a mode has
been shown to be equal to the deterministic (stochastic) cross-correlation between the correspond-
ing modal and the total vibration responses due to a deterministic delta function (uncorrelated
stochastic signal). The modal dispersion may be thus clearly interpreted as a measure of the
mode’s influence in shabing the total vibration response.

Explicit and physically significant expressions that relate the modal dispersion to the structure’s
global and local characteristics have been also derived, and the phenomenon of modes characterized
by negative dispersions investigated. Conditions for the existence of such modes were derived, and
physical interpretations provided. Negative dispersion modes were thus shown to be encountered
in cases of strong modal interference, specifically in cases where the modal cross-correlation effects
dominate over those of the modal autocorrelation; something that can happen in cases of structural
systems characterized by closely-spaced modes. Once encountered, negative dispersion modes have
a negative overall contribution to the vibration response power spectrum, and act in a way that
tends to suppress the structural system’s total response.

In the second part of the paper [23] the problem of stochastic MIMO Experimental Modal
Analysis will be considered, and a realistic and effective approach that uses the Dispersion Anal-
ysis methodology for model analysis and reduction/distinction between structural and extraneous

modes, developed.
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APPENDIX: NOMENCLATURE

C viscous damping matrix

Dy() part of R, (7) associated with the k-th mode
Di(0) k-th modal dispersion

HE) (vector) force excitation

Fi(jw)  Fourier Transform of Di(7)

Gi(jw)  frequency response on the i-th normal coordinate system

J imaginary unit (if not an index)

K stiffness matrix

M mass matrix

n number of degrees of freedom

z(t) impulse response of a scalar receptance transfer function
z;(t) i-th modal impulse response function [part of z(t)]

Rg(T) autocorrelation of the excitation {f;(¢)}

inteﬁsity of an uncorrelated force excitation signal

Ry, (T)  autocovariance of the m-th vibration displacement signal
i system eigenvalue

Sfs

Sk(w) k-th mode spectral contribution [real part of Fj(jw)]
Svm(w)  spectrum of {vn,(t)}

uncorrelated stochastic force excitation spectrum

v(t) (vector) vibration displacement

Um(t) the m-th component of the vibration displacement vector
U, (1) k-th modal response due to uncorrelated force excitation [part of vy, (t)]
Brk k-th modal autocorrelation

B k-th modal cross-correlation

O k-th mode dispersion percentage (normalized dispersion)
A quantity equal to 1 — €,12

€wir natural frequency ratio: wp;/wni

Ck k-th damping factor

Wn, k-th natural frequency

Wq, k-th damped natural frequency

bk k-th mode shape

bik ‘ the i-th element of the k-th mode shape

Conventions

E{} denotes expectation

Re(-) denotes real part
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z; the i-th scalar component of the vector x

x(1) the value at time t of the analog signal x
{x(t)} the signal x

* (superscript) denotes complex conjugate
T (superscript) denotes transpose

capital bold-face denotes matrix quantity

lower-case bold-face denotes vector quantity

Abbreviations

ARMA Autoregressive Moving-Average

ERA Eigensystem Realization Algorithm

FDM Frequency Domain Method

MIMO Multiple-Input Multiple-Output

N/S noise-to-signal
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Mode 1 Mode 2
wn, (Hz) 1.5836 1.7507
Ck 0.08543 0.15000
a1 f1 1 1
P ﬁ{ 1 } 73\ -1
Dispersion
Percentage 61.61 132.28 38.39 —-32.28
Matrices 132.28 61.61 -32.28  38.39
(%)

Table 1. Modal parameters and Dispersion Analysis results for the two degree-of-freedom

proportionally-damped system.
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Figure 1.
Figure 2.

Figure 3.

Figure 4.

Two degree-of-freedom structural system.

The dispersion pércentages of a proportionally-damped system as a function of
the natural frequency ratio €,,, = Wn, /wp,. —: mode 1, - - -: mode 2.

(a) (1 = 0.35 2 = 0.50; (b) ¢1 = 0.07 {2 = 0.10; (c) ¢1 = 0.007 ¢z = 0.01;

(d) 1= 0;0007 (2 = 0.001. (Two degree-of-freedom system; transfer function vz/ f;).
(a) The first [z1(t)] and second [z2(t)] modal impulse response functions;

(b) the products z1(t) - z2(t) and z3(t); (c) the total [z(2)]

and second modal [z2(t)] impulse response functions; (d) the product z(t) - z2(t).
(Two degree-of-freedom system; transfer function v/ f1).

(a) The first [z1(t)], second [z2(t)], and total [z(t)] impulse response

functions of the transfer function vi/ fi; (b) the decomposition of the

vibration signal spectrum S,;(w) into the modal components 5 (w)

and S2(w) for the transfer function v/ f1; (c) The first [z4(¢)],

second [z,(t)], and total [z(¢)] impulse response functions of the transfer
function v,/ f1; (d) the decomposition of the vibration signal spectrum Sy,;(w)
into the modal components 53 (w) and S2(w) for the transfer function v,/ fi.

(Two degree-of-freedom system).
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Figure 2. The dispersion percentages of a proportionally-damped system as a function of
the natural frequency ratio €,,, = wn, /wn,. ——: mode 1, - - -: mode 2.
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(a) The first [z1(t)] and second [z2(t)] modal impulse response functions;

(b) the products z;(t) - z2(t) and z3(2); (c) the total [z(2)]

and second modal [z2(t)] impulse response functions; (d) the product z(t) - z(t).

(Two degree-of-freedom system; transfer function v2/ f1).
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(a) The first [z,(t)], second [z2(t)], and total [z(t)] impulse response

functions of the transfer function v,/ f;; (b) the decomposition of the

vibration signal spectrum Syy(w) into the modal components S;(w)

and S(w) for the transfer function vy/ f;; (c) The first [z1(2)),

second [z,(t)], and total {z()] impulse response functions of the transfer

function v/ fi1; (d) the decomposition of the vibration signal spectrum Sy;(w)

into the modal components Sy(w) and S3(w) for the transfer function v2/ f1.

(Two degree-of-freedom system).
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