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I, TINTRODUCTION AND SUMMARY

The -problem treated here 1is that of homing with a
point mass. It is assumed that all action takes place in an
isoleted system sucq that there are no adjacent bodies to
"oush" egainst, no serodynamic forces, etc.; the only outside
forces are body forces, such as gravity. The homing perticle,
a rocket, heresfter celled the craft, will be sub jected to en
extra force, celled thrust, geined by emitting pert of its own
mass. The impulse, the time integral of the magnitude of the
thrust, is essumed to be proportional to the mass of the con-
sumed partl, called the fuel.

A second point mass, henceforth called the target,
is sssumed to be in the neighborhood of the first, near enough
so that the body forces ere the same on each. By homing is

meant the application of thrust to the creft in such & manner

that its position shell at some time, celled the homing time,

lThis éssumption is not necessary to most of the esrgument which
follows; r.ost of the discussion holds under more zenersl condi-

tions. Since the above case 1s the important one for rocketry,
we limit ourselves to it.
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coincide with the position of the target. The motion of the
creft during homing will describe a curve called the homing
path.

The homing problem srises in the following menner.
Information will be received that o missile, the target, is on
its way and apprbximate information as to its psth will be
given. The creft will be launched to go to some point on the
anticipated path. As subsequent, more accurate informetion 1is
received, 1t will be seen that the craft 1s going to miss the
target.

The quegtion then arises: 1s it possible to apply
the available thrust of the creft in such g manner that homing
can be effected? We would like to know the answer to the fol=-
lowing questlons:

1. At what times (if any) is homing possible?

2. For a chosen homing time, whet is the fuel
requirement?

3. What i1s the best wey to apply thrust to
cause homing ot a given time?

4, What is the least amount of fuel required
to cause homing?

The first two questions esre treated in detail in g
second reportl. The last questions ere lmportant because hom-

ing will probebly be effected not in a single stage, but as a

lUMM-19, issued simultaneously with this report.
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series of corrections, each based on more accurste informetion
than the previous. Only a limited amount of fuel will be avail-
able, and we wish to gain the utmost in correction from it.

The study of the sbove questions brings up the prob-
lems of minimum peths. In this report we define: a minimum
path is a homing path thet requires less fuel then eny other

allowable1

homing path. In general, paths in the neighborhood
of minimum paths require but little more fuel than the minimum
paths.

Let r be the burned fuel retio, thet is, the ratio of

the weight of fuel burned to the initisl gross weight. Let gﬁ

be the upper critical fuel ratioz, defined ss the amount of

fuel necessary to accelerate the creft from rest to the initial
relative velocity. If r can exceed gﬂ, then homing 1s always
possible for e sultebly chosen path.

But if r < r", then homing is possible only for mini-
mum paths end for paths near the minimum path. This is en
extremely important property. For project Wizard the burned

fuel retio in the homing stage is less than the probeble upper

1An allowable path is a peth which the creft 1s sble to follow.
This path must not, for example, require greater thrust than
the craft can exert.

2There is also e lower critical burned fuel ratio to be taken
up later. These quantities are defined more explicitly in the
text, '
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criticel ratiol; hence we are required to use paths near mini-
mum paths, The proof of this property falls naturally into a
later report snd is not given here.

It may also be esked: what is the information needed
to completely specify the homing problem? The problem is com=-
pletely determined 1f one knows:

1. The relative position of the target with
respect to the creft initislly.

2. The relative velocity of the target with
respect to the craft initiallyz.

3. The performence of the creft; thet is, its
thrust-to-weight rotio, its rate of fuel
consumption per unlt weight, and the amount
of fuel available per unit weightS.

The first two of these will sometimes be referred to as the

initial conditions. Homing mey in many cases be echieved with

less information, but the problem is indeterminete in general.
Because of the importance of minimum paths and the fact that a
minimum path is possible only for incoming targets, emphasis
will be pléced on incoming targets. A target is ssid to be in-

coming if the distsnce between target and craft is decreasing

1The upper critical fuel retio 1is a function of the situstion
with which the craft is confronted.

2Tt should be noted that the actusl velocity of the craft (and
the terget) are not required. This is in contrast to the usual
homing problem in oir.

SNote that these are all ratios,
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initially. The analysis of homing holds for 21l terget situ-
ations except where specifically mentioned.

Insofar as 1s possible, dimensionless terms have been
used. For example, the mass of a rocket is unimportant in it-
self. The significant quantity 1s the ratio of the mass of fuel
to the mass of the craft. This reduces the number of variebles
requlred to state a problem.

Before starting on the problem of homing, some for-
mulas of rocket motion are developed. It 1s snown glso that

the integral

is monotonic with respect to fuel consumption; i is the thrust
vector end M is the mass of the creft. This result ellows a
simple attack on the problem of minimizing fuel consumption.
The difference between the problem taken up in this
report and the one in UMM-2 is this: in UMM-2 the finel speci-
fications of the craft sre assumed. The ettack here 1s the one
which must be treated in the design of equipment for the field
where it is necessary to consider the craft es 1t exists st the
instent thet homing sterts; the initiel creft, not the final

craft, 1s specified.
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In general, the problem is simpler for this case:
it is easler to solve the equations when all values are given
initially than when some are given initially, and some are given
at the (unknown) time corresponding to end of burning.

The coordinate system is chosen éo that the origin
describes the path that the craft would follow with respect to
the earth if no correction were applied. In this coordinate
set the target travels in a straight line with constent speed,
and the entire motion of the craft is due to the thrust. This,
in effect, achieves a separation of variables; the initial con-
ditions determine the target peth, and the thrust determines
the craft path.

This choice of coordinates makes most of the theorems
on minimum paths "obvious"., An appendix is included to show
that the results are independent of the choice of coordinate
system, and to show how to transform from one system to another.
To eliminate Coriolis forces and centrifugal forces, we consider
only coordinate sets whose sxes ere not roteting in inertlal
spacel. That i1s, they are fixed in direction like the axis of
a free gyroscope. Strictly spesking, the earth does not afford

such a system naturally because of its rotstion.

lFor a more detailed discussion of coordinste systems see

G. Joos, Theoretical Physics, particulerly Chepter 10. He
calls a coordinate set such as thet above sn inertiel freme,
thet is, one in which the Law of Inertia (Newton's Law) holds.
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The outstending characteristic of the entire problem
is its simplicity. It is entirely e problem in reletive motion,
since gravity, etc., act alike on target and craft.

In this memorandum we have not takeh up the problem
of finding minimum paths. Fortunately they can be determined
easily and quickly. The method of solution has so many other
interesting and useful properties that it is put out es a sep-
arate report.

As a finel word I would say that the philosophy of
this report is that expressed by von Neumann end Morgensternli
"Econonists frequently point to much larger, more 'burning'
questions, end brush aside everything which prevents them from
making stetements about these. The experience of more edvanced
sciences, for exsmple physics, indicates that this impetience
merely delays progress, including thet of the treetment of the
'burning' questions."”

It is our hope then an sxect and paeinsteking enelysis
of the component problems will be valuable in treating the
overall problem. For this reason, this report 1s somewhat more
detalled than mey seem necessery. Tb simplify the resding, the

most important conclusions sre drawn up es theorems and those

1J. von Neumenn and O, Morgenstern, The'Theory of Gemes snd
Economic Behavior, 2nd Edition (1947), 7.
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theorems vital to the arguments which follow are indicated by

an asterisk ().

Conclusions

1. For the most efficient use of fuel, the
thrust must be fixed in direction during
homing. This direction depends only upon
the initial conditions and the homing time.
Any.component of thrust not in this direc-
tion is wasteful of fuel.

2. For the most efficient use of fuel 1n hom-
ing, ohe should apply full thrust in the
proper direction as soon as the error is
known until the error i1s reduced to zero,

then cogst in to interception. An im]gulse:L

represents the ideal way to burn fuel. Any
delay in starting wastes fuel.

3., The problem of homing, and particularly

‘the problem of minimum paths, can be reduced

1An impulse is understood to be similar to thet defined by

H, Lamb, Hydrodynamics, Article 11, as the product of force
and time, Ft where F —e 0, t — 0, and the product remains
finite, giving & jump in velocity. Account must be taken of
the verietion of mass of e rocket during the impulse. Physi-
cally an impulse is not possible, but certain properties of
the case of an impulse are approximated very closely if burn=-
ing time t, << tp the homing time.
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to a two-dimensional problem by a proper
choice of coordinate systems. For minimum
paths, it can be reduced to a one-dimen-
sional problem as & result of conclusion (1).

4, The lower bound to fuel consumptionl would

be obtalned by applying thrust as an impulse
at 90° to the initial line of sight if the
terget is incoming. This is an immediate
consequence of conclusions (1), (2), (3),
and the equations of homing. There is no
possible way for any rocket (with the same
specific impulse) to home with less fuel.
5. There are three types of initial target
conditions for a given rocket:
a. Definitely incoming: here the target
is incoming, the reletive velocity is
small enough, the initiel reletive range
is gfeat enough, and the accelerstion
due to thrust of the creft is grest

enough that a minimum path 1s possible.

1This is the lower criticel burned fuel ratio referred to
in en eerlier footnote.
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b. Essentially outgoing: 1in this case the
terget is either outgoing, or is incom-
ing but is so close in when homing sterts
that the creft cannot move to cause in-
terception before the target overshoots.

c. Impossible: where the given craft cen-
not intercept the terget (when r < r'
ond & minimum path does not exist). By
delaying the start of homing or by poor

“maneuvering, a type (a) terget may be-
.Ecome a type (b) or a type (c) target.

6. For a definitely incoming terget (and a
finite burning time) the minimum path sat-
isfies the following relestions:

a. The fuél cOnsumption:is less than thet
required to accelerste the creft to the
initial relstive velocity.

b. The direction of application of thrust
is greater than 90° from the initiel
line of sight.

7. TFor an essentially outgoing terget there 1is
no minimum path. The lower bound to fuel
)consumption is given by the quahtity of fuei-

necessary to accelerate the craft to a
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velocity equal to the initiel reletive veloc-
ity. This lower bound corresponds to an infin-
ite thing time; more fuel is needed for the
practical case.
8. The necessary and sufficient conditions for a
given homing path to be a minimum path are these:
a. Thrust must be applied as indicated in
conclusions (1) end (2).

b. The burning time t, must be less than
the homing time ts.

c. The thrust vector must be perpendiculer
“to the vector of relative position at the
end of burning.

9. The necessary and sufficient conditions for hom-
ing to occur without further thrust, sre that
thé vector of relstive position be persllel to
the vector of relstive velocity and opposite in
sense.

10, here are other ceses of minimum fuel consump-
tion. If the acceleration is constant during
homing, the constant beling chqsen a function of
tg to cause homing, the lowest fuel consumption
occurs if thrust is applied ot 90° from the ini-
tial liné of sight. The seme is true if thrust

is a constant 211 during the homing flight, the
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constant value being properly chosen to effect
homing and we heve seen (conclusion 4) thet it
is also true if the thrust is applied as an im-
pulse. These are all examples of a2 more general
cases 1f the velocity due to thrust can be ex-
pressed in the form v = £(A,t/ty) where £ is an
increasing function of A for any fixed velue of
EZEE’ then minimum fuel consumption is attalned
when thrust is epplied at 90° from the initial
line of sight, It is shown that the impulse
corresponds to the case in which f(A,t/tz) = A,
constant acceleration to the case in which
f(A,t/tz) = At/t, and constant thrust to the case
in which £(A,t/tz) = -¢ 1n(l - At/ts). In gen-
eral these are not true minima but represent
relrtive minima subject to the sbove restrictions.
The minimum referred to in paragraph 8 gbove 1is a rel-
ative minimum., There are some cases when there are two reletive
minima; the smeller of these is 2lso an sbsolute minimum. In
one other case there is a single isolated peth which requires
less fuel than the reletive minimum. With these exceptions the
reletive minimum is also en sbsolute minimum; there 1s no pos-
sible way that the given craft cen home with less fuel in the

given situationl.

1See TMM-19, p 20.
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IT. THE BASIC EQUATIONS AND FORMULAS

A. General Formulss

In this section most of the basic formulas and equa-
tions needed later are developed, including the equaetions for
velocity snd distance, and the fundemental equations expressing
fuel consumption in terms of acceleration due to thrust.

The equation of motion of a rocket with no outside

forces, derived from Newton's second law, 1is
3 y

(2.1) M(t) % = T,

where M is the mass, U is the velocity vector, and i is the
thrust force, of magnitude T, The thrust 1s geined by the
rocket by the ejection of part of its own mess, the fuel, and
if ¢ is the effective velocity of the emitted perticles, here

considered constantl, then

(2.2) T = =Mc .

ITne effective gas velocity ¢ 1s ectuelly a function of many |
varisbles including rate of burning end outside or "atmospheric
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We shall use the dot over a variable to indicate its time deriv-
stive. We shall use subscripts 05 15 25 to denote values of
variables at time t, = 0, t;, tg Where ty = ty = tga.

Let m be the mass of fuel consumed m = My - M(t)

and define the burned fuel ratio, r,

_ m
r - - .
Mo
Then it follows that
T = Myer
and
M = Mg(l-r).

We can now write equation (2.1) in the form

(2.3) a = cr_7F

Here a is the acceleration vector, end 7 is the unit orienta-
tion vector of the thrust. We see that only the rstios of
masses appesr in this equetion. It has the scalar form

pressure. Enzineers frequently use the term "specific impulse",

denoted by "I", defined by the relation
I = -

It follows from the definitions that
Ig = ¢ .

Page 14



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN .

Report’No ﬁMM 18

(2*4) |%% = L = a = V5X2,+ ayz + a,%

where ay, EX’ a, are the components of the vector of acceler-
ation due to thrust along thfee mutually perpendicular axes,
Xy, I» Zs

We can integrate equation (2.4) with respect to

time to obtain

t

(2.5) J%XZ + ayz + 8, dt = -cln (1 -1) .

This is the basicwequation coﬁnectingbthe_burnsd fuel ratio
with the acceleration due to thrust. Since r is the ratio
of the mass of fuel consumed to the initiel mess end 1ln (1 - r)
is a monotonic function of ;; the problém of determining paths
of minimum fuel consumption may be reduced to an equivalent
problem of minimizing the integral in equation (2.5).

Because of its importance we state this as a

theorem.

THEOREM I. To minimize the fuel consumption required for hom-
ing it is necessary and sufficient to follow s peth such that

Te

the integral a dt is a minimum, where tp 1s the homing time.
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Equations of particuler interest are those for veloc-
ity and for distance. These are obtained from equation (2.3)

by integration.

t t
(2.6) T = T dt = T O 34
l-r
0 0
and
t t T
(2.7) s = udt = ale) de drT
0 0 0

if the rocket starts at the origin with zero velocity. The

last equation can also be written

t
(2.8") 5§ = (¢t = 71) a(r) dr
0
t t
= a(r) dr - Ta(r) dr ,
0 0
or
(2.8) 5§ = Wt -8",

obtained by changing the order of integration and integreting.
This defines §'. Equation (2.8') is useful since it expresses

distance as a single integral.
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An important case 1s the one when thrust is fixed in
direction. Equetion (2.6) can then be integrated to give the

velocity, whose magnitude 1is

(2.9) g = -c¢ln (1 -1) .

This equstion allows a second expression of Theorem I. We
shell make frequent use of this form so we state it es a second

theorem.

#THEOREM II. If one consideres only paths for which thrust is
fixed in direction, then to minimize fuel consumption it is
necessery and sufficient to minimize the velocity acquired from

thrust.

This follows from reletions (2.5) snd (2.9)

-cln (1 - r)

Q
I

te

= a dt .

We see that the velocity in this case depends only
on the emount of fuel burned and not on the rate of burning.
The relation for distance (2.7) has severel forms, among them

T

(2.10) s = =-c In (1 - r) dt ,
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and

(t - 1) r(r) dr .
1 - r(T)

these expressions, however, cannot be integrated until r is

specified as a function of time,

B. Thrust Constant end Fixed in Direction

The case when the thrust vector is constent (fixed
in direction snd in magnitude) is of particulsr interest for
two reasonér'

1. It affords a godd approximation to many rocket

problems.

2. It is frequently the simplest from the engineer-

ing and design viewpoint.
This case 1s cheracterized by a constant rate of burning;

thet is,

.

constant = r

H
il

o

(2.11) A .
r = rqgt .

The formula for velocity (2.9) becomes
(2.12) q = -c¢ln (1 - rot)

during burning. Let us define the burning time t; by
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the relations

r = r, = constant for t < t; ,
(2.13)

r = 0 for t > t, .
Then we have
(2.14) q = =-c¢ln (1 - ryty)

for all time t such that t 2 t .
Since r is now a specified function of time, we can

integrate equation (2.10) to get distance,

(2.15) s = [+ Q-7 1 @-2)],

Hefo

0

while burning is continuing. This has the alternate form

1

2.16 s = ct |1+ (=
(2.16) | [+ G5

- 1) 1n (1 - Tot)] .

If t; is the burning time defined by the relation

(2.13), the formula for distence hes the form

(2.17) s(t,t1) = (t - t1)ay + s

= q1bt - s
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for time t 2 t,, where

dz = q(tl)
sy = s(ty)
si' = g1ty - sy .

We can combine relations (2.11), (2.14), end (2.16) snd sub-

stitute into equation (2.17) to get

1

1n(1 - Toby)]

(2.18)  s(t,ty) = =-ct In(l - roby) + oty [1 +
If we teke t, = t-during burning, then equation (2,18) includes
equation (2.16). Equations (2.16) end (2.18) completely de-
scribe the one-dimensional motion of o rocket whose motion is

due to prescribed constant thrust for a specifiled time.
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III. THE CONDITION OF HOMING®

Let us denote the position vector of the creft by
X, Whosercomponents will be X, ¥y, and z; the position vector
of the terget by X = (X,Y,Z); end the vector of reletive posi-
tion by'g = (£,n,f) = X - X. We shall consider only rectan-
gular certeslan ooordiﬁéte sets whose axes ere not roteting
in inertiel speceqexcept where it is specifically steted .

otherwise,

It is shown in the appendix that
(3.1) £ = €, +6é,¢ - 3 dt® .

The vector & is the acceleration of the creft due to thrust,

- Tl T
z = T/M. By fft g dt® 1is meant ff Z(oc) do drT;
0 JO

we shall use this notation throughout when no confusion 1s

likely to erise.

1In the introduction we defined homing: by homing is meant

the epplication of thrust to the creft in such a menner thet
1ts position will st some time coincide with thet of the terget.

Page 21




AERONAUTIGAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
Report No UMM 18

We can interchange the order of integrstion in
equation (3.1) to get

t t

(3.2) g dt® (t =7) a(sr) dr

F(t) = X'(t) .

We mey consider U as the velocity due to thrusts; X' =| t 3 dt

has the dimensions of a displecement.

Mathematically, the definition of homing is the

following:
(3.31) € (tz) = 0, for some tg; 2 0 ;
that 1is,
(3.3) zo + Zotz - tglg * Xg' = 0, for some ty 20 ,
where U, = u(tg), etc.
Since a = lal is zero for time t > t,, the burning

time, we heve the relstions

u; = u(t) = Uz = constant ,
(3.4)

X' = X'(t) = Xg' = 'constent, for t,=t=t, .,
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From equations (3.1), (3.2), and (3.4) we get the

relation

A
pors
A
ct
1]
-

E(t) = zo - U, = -constent, for t;

the relative velocity is constent for time greaster than t;.

In the same way we can prove the lemma.

LEMMA. The reletive velocity § is constent during sny time

interval durin: which thrust is zero.

We can now prove the Theorem of Homing.

#*THEOREM III. The necessary and sufficient conditions that
homing occur without further corrective thrust are these:
At the end of burning, either
(1) the vector &, of reletive position must be
perallel to and opposite in sense to the
vector E; of relative veloclty; or
(2) the vector of reletive position must be the

zero vector. .
Proof. We can write E; in the form
(3.5) &1 o= = két A

where X 1s a vector perpendiculer to Z; end k is e constant

with the dimension of time.
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Now

(3.6) ‘i = %, for t 2 t, ,
by the lemma above. Hence we can integrete to get

(3.7) Z -7 = (t-1t)f , fort 2t ,
or, combining equations (3.5), (3.6), and (3.7),

(3.8) T = (b -ty -k) &L+ X,

It 1s necessary and sufficient for z to be zero at some time

tz é_tl, that:

A = 0,
(3.91)

k 2 0 ;
that is, that

Zl = "ké‘l:
(3.9)

kK = tg =-t1 2 0

the theorem is proved.

COROLLARY III. The vector of relative velocity 1s perallel
and opposite in sense to the vector of relative position for
all times t greater than the burning time t; and less than the

homing time tg if the creft 1s on a homing course.
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Proof. Substitute relation (3.9!') into equation (3.7).

Expressions (2.9) are called the conditions of homingl.

From them we see that the conditions k > 0 end k = 0 correspond
respectively to Cases (1) and (2) of the theorem when burning
time is greater than homing time end when homing equels burn-
ing time., The Case (2) 1s an extreme case, and we shell be
primarily concerned with Case (1) when tg > ty .
We can write the conditions of homing as
Xo + Uty = upty + x1' Yo + Vty = vyty + yu!

(3.10) = _
U-U.l V_vl

Zo -+ ‘Ntl e Wltl + Zl'

= tl-tz

A
(@]
»

W"Wl

Here (Xg, Yo, Zg) is the initiel vector of relative position,
W) is the initial vector of relastive veloclty; the
ofher terms have been defined. We preclude terms in (3.10)
which heve zero as both numerator snd denominator. By sub-
tracting t; from all terms in reletion (3.10), we obtain

another form

(3.11) Fotxm' - Yortwa' o Zot oz

-t.2<-t1.

U';ul V"Vl XN"W’l

1Relation (2,3) is sometimes called the condition of homing,
but it seems desireble to consider it a8 the definition of
homing.
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It is shown in the appendix that by a proper choice

of orientetion of axes, we can always choose our coordinate

set so that

YO = ZO = 0
(3.12)

W = 0
or so that

Zo = 0
(5012')

g = w = 0.

There 1is no real loés of genersglity 1f we consilder
the plane problem; for three dimensions, equetions sre replaced
by systems of equations, and the algebra becomes laborious.

In the next sections we shall see that the most important cases
are the plane c ases. Hence, we shall be concerned almost
entirely with the plane problem,

The conditions of homing then become [?elations

(3.10) and (3.11)]

(5 13) XO + (U - ul) tl + Xl’ _ (V - Vl)tl + YI' _ <
* - - tl - tz - O
U - L‘Ll V - Vl
: X + x.1 1
(3.14:) ’ 0 1 = yl = - t2 é - t]_ .
U-u V-v
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The conditions of homing always consist of two perts,
an equality which stetes that the two vectors Zl and zl are
. parallel and an inequality which stetes they are opposite in

sense. The equality of expression (3.14) becomes
(3.15) (Xg + x1.') (V= vy) = y2' (U =uy) = 03

this 1s called the equetion of homing.

A case of particular interest i1s the case when thrust

is fixed in direction at an aengle 8 with the x-axis. If we let

t
q = .adt = =-c¢cln (1 - 1),
0
(3.16)
t
s!' = Ta(T) dT
0
then
u = g cos © , v = q sin € ,
(3.17)
x!' = g'!' cos 6 , y' = s' sin 0 .

The equation of homing (3.15) then has the form

(3.18) XV + 8.1 V cos 8 - qiXosin & - Usy! sin @ = O .
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Other forms of the conditions of homing: it seems

worthwhile to point out some other forms of the conditions of
homing.
If we denote the direction cosines of &, by (A,u,v),

we get the conditions of homing as

al€l <0,
at ¢ - ty
(3,19)

()"/u.”’) = (Al,/“l,ul)’ for ¢ ; tl .

In two dimensions we can write thils es

(3.19")

1\

a = ap for ¢ t1 3

here a = arctan (Y - y)/(X - x).

They can also be expressed as

(3.20)

where the symbol / denotes the vector product.
Still another form is the following: 1if we denote

by ¢ the angle between g; and z;, the conditions of homing
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become
(%.21) ¢ = .

Numerous other expressions can be found, but they can
all be reduced to expression (3.9). As stated previously, they
always consist of two parts: an expréssion of the equation of
homing and inequality. In equation (3.21) the inequality is

implicit in the definition of @ .
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IV. THE FIRST FUNDAMENTAL PRINCIPLE OF HOMING WITH MINIMUM
FUEL CONSUMPTION

Consider the homing problem in the following form,
Let the creft stert at the origin end move only under its own
thrust. Let the terget be originslly on the x-axis at a dis-
tance Xg frqm the craft and let it move with constent velocilty
whose components are U, V, 0 (zero). It is shown in the appen-
dix how the coordinate set can elways be chosen to put the
problem into this form.

The position of the creft is gziven by

t 5

(4.1) X = 8 dt°~ = (¢t -7)a (r)ar ,

where a = T/M is the scceleration vector resulting from thrust.

The position of the terget 1s given by

X = X, + Ut
(402) Y = Vt
Zz = 0.
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The following analysis could be carried out for any coordinate
system, but the above choice makes the results and the inter-
pretation clear.

By definition, homing is achieved if there 1s a time

E& such that

(tg - t) ax dt = Xo + Uty ,

I

(4:.5) (tz - t) a'y dt Vt2 Iy

The first fundemental principle of homing with mini-
mum fuel consumption 1s that thrust must be fixed in direction.

We prove thils as a theorem.

#THEOREM IV. If one is given any homing path for which direc-
tion of thrust is varied, one can find a better path, and in

this better path, thrust is fixed in direction,

By a better path is meant o path such thet homing 1s

achieved at the same time, hence the seme plece, such that less

fuel is required and such thet neither the thrust nor the
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acceleration required exceeds that required by the given path
at corresponding times.

Proof. Assume that a homing path be given for which
angle of thrust varies. The homing time t; will be specified,

and the functions ag, ays 8z» which describe the path, They-

will satisfy equations (4.3).

Given craft path

Its projection on the
xy - plane

Better path to cause
homing at the same
fime

U

o .

Craft (X,,0,0)
Target position
z time =0

Figure I. Homing paths

Let us rotete coordinates threugh the angle

Vi,

® = garctan ————m—m—
Xo + Uty
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so thet the point of interception is on the new x"-axis
(see Figure I).

The result is now apparent from Figure I. It is
required that the creft move fr@m 0 to Py under its own thrust.
If thrust is epplied with e component not elong OPg, the craft
will move off the line QP, and more thrust will be required
later to bring it back onto the line. Both components were
wasted; since thrust represents fuel, fuel was wested. The
straight line represents a better path.

The analytic proof follows. e have

x" = xcos & + 7y sin @
(4.5) y" = - x sin @ + y cos ©
z" = =z,

with corresponding expressions for X, Y, Z and ax, 28y, 8z.

The conditions of homing (4.3) then become

te
(b - ) ax" db = X" = W(Xo * Utg)? + (VEg)2
0
te
(bz - t) ay" at = 0,
(4.6) |
0
te
(tg - t) 8," dt = 0,
0




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
- Report No UMM 18

and ay" and ag"

are not both identically zero since thrust is
not fixed in direction.
Now consider thrust epplied so thet the ecceleretions

are as follows:

“X" — v%an ¥ aynz + aznz
(407) C(;y" = 0
G’Z" — 0 .

This set of accelerations satisfies the last two of equations
(4.6) but not the first, since
tz ° tf"

(4.8) (tg - t) ax" dt > (tg - t) ax" dt = X" .

Now let us reduce the burning time as follows:
choose the burning time t," to setisfy the ecuetion
tln

(4.9) (te - t) ax" dx = X" .

The accelerations (ay", ay",~az") setisfy the conditions of
homing with burning time t." < t1 the orizinel burning time.
But tne thrust is identicel in mejnitude for the two

cases for t < t,"; therefore the asccelerstions are the same’
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in magnitude at corresponding times. We have decreesed the
fuel consumption by decréasing the burning time.

T'herefore we have found o better peth, and in this
better path, thrust is fixed in direction.

Many conclusions can be drawn from this; let us

sunmmerize some of the more important ones.

COROLLARY IV.1l. For a minimum path, the angle of thrust is

fixed.
COROLLARY IV.2. The study of minimum paths is e plene problem.

By our choice of coordinates the target motion is
constrained to a plenel. By the theorem above end by Corollary
IV.1, a; = 0 for a minimum peth. Therefore the creft jwotion

is also confined to the xy-plene.

COROLLARY IV.3. The study of minimum paths cen be treated as

a linear problem.

By Corollery IV.1l, thrust is fixed in direction for

a minimum path. In the coordinete set used 1in this section

lThe plene 1s moving with respect to the earth under the accel-
eration of the earth's gravitetionel field. The plene also
rotetes with respect to the earth with en ensuler velocity equal
to the negative of the earth's enguler Vveloclity in inertiel
space.,
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a minimum path is a straight line. Hence we can drop sub-

scripts in equation (4.9) and write the equation of homing as

(4.10) (tg - t) a dt = (tg - t) a dt = X5 ;
0 0

we treat ty as a perameter and X; 1s a function of ts.

#COROLLARY IV.4. By a proper choice of coordinate set the prob-
lem of determining minimum paths 1s reduced to the problem of
effecting homing with minimum velocity.
The integral to be minimized 1is
te

(4.11) a dt = qp

-c¢cln (1 - r) .
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V., THE SECOND FUNDAMENTAL PRINCIPLE OF HOMING WITH MINIMUM
FUEL CONSUMPTION

We have just seen thet in order to minimize fuel
consumption thrust must be fixed in direction; consequently
the problem of minimum peths wes s..own to be e lineer problem.
For e chosen homing time, the problem now 1s to determine the
best way to move along a straizht line in inertial space.

The equetion of homing can be written (see the last

peragreph of Section IV)

Here Dy = V«Xo + Utg)® + (Vtg)® , end a is the megnitude of

3, the vector of acceleretion due to thrust. The thrust must

be directed to accelerste the craft in the direction of

© = arcten Vtz/(X, + Utz). We must choose a to setisfy equation

(5.1) end to minimize the integral
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in equation (4.11),

*THEOREM V. If the homing time is chosen, the best way to
apply thrust is this: apply full thrust in the proper direction

until the right velocity is reached, then coast to interception.

q
q', for max. thrust

q",for thrust less than max.
Vil -

N
'—.

Figure IL. Velocity curves for acceleration a'and "

Proof. Consider a', the maximum accelerstion which

the thrust can effect; 1t is a function of time, Let q' be
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the velocity defined if the acceleration is applied for e time
ty !, then the craft is allowed to coast to interception.

Let q" be the velocity defined by any other acceler-
etion 8" (see Figure II). Now a" < a' for pert of the time

interval (0, t,'). Hence g"(ty ') < g'(t1').

Now if g" is to ceuse homing at the time tg it must

satisfy the relation

te
j q" dt = Dy
0
te
] = q' dt .
0
But
Ty Tyt
J q" dt < gq' dt ;
0 0
hence
Tg Ts
\l~ q" at > q! dt
£y ! ty ! |
= qgg' (bg - t1) .
Henée
(5.3) a"pex > A'max = U= e

Page 39



IAIZFHDbDAIITICVXL,IRIEESEBAIQCHH CENTER ~ UNIVERSITY OF MICHIGAN

Report No UMM 18

This is obvious in Figure II if we interpret sccelerection as
the slope, velocity es the ordinste, end distence ss the srea
under the curve.

Therefore, the peth defined by a' requires less fuel.

This theorem has several interesting corolleries.

COROLLARY V,1l. Any delay in the start of homing is westeful

of fuel.

This 1s e direct consequence of the theorem since
the curve for g" lies below the ebove curve for g' when t < %,.
Hence 1t must rise above 1t leter aos 1in Figure II. This repre-

sents grester finel velocity, hence greater fuel consumption.

COROLLARY V.2. Thurst anplied as en impulse is most economical

of fuel.

Proof. If thrust is epplisd es en impuise, g
reaches its meximum velue qg = Dy/ty at time t = 0 (see Figure
III) so thet the g-curve extends to the g-axis. Now 1f the
thrust 2" is finite, the curve for velocity g" defined by it
lies below the line q = Dy/ts in e neighborhood of t = O,
Since the area under each curve must be Dg, the letter curve
must rise over the lire q = Dy/ty leter; hence this peth re-

qulres more fuel.,
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The analytic proof follows. It consists of two
parts, the proof that for an impulse g = Dy/t,, and the proof

that if the acceleration has an upper bound, then gy > Dg/ts.

q'-Velocity curve when thrust is finite

Velocity curve for an impulse at 1=07

f
l
l
|
| a, 4 .
I
|
|
t

] 2
Figure 0. Velocity curves

We define the impulse as the limiting case when the

burning time approaches zerol. This implies thet the acceler-

ation becomes infinite. We cheracterize the other cases by

2

finite ecceleration®, that is, by finite thrust.

lSee footnote, p. 7.

gThese'characterizations seem to emphasize the importent prop-
erties of the two cases. The two categories ere not ell-inclu-
sive, however; for exemple, 1f the acceleration g be defined by
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Let us expand equation (5.1)
ty

(501') qgtz - t a dt

Dy .

From the results of the preceding chapter we consider only

a 2 0, We have then

(5.4) dz 2 Dz/tz .
Now | by
0 = t o dt (= s,")
0
€y
S oty a dt ,
0
or
(5.8) s.' = tiqs .
Dg
ay, g, constent, for t <
a1tg
a = 5
Dz 1 s for t > D2,
D, 2 a1te
arte® (te - —£)
atg

then substitution into equation (5.1) shows that a satisfies
the equation of homing for all values of a; > Dg/tz, including
the case when a; becomes infinite; yet the burning time t, 1is
always equal to the homing time tg. Such systems do not seem
practical and we shall not consider them further.
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If we combine (5.4) and (5.6) to get

D, D
(5.'7) —= = ds s -2 s
te te - tl
it follows that
D
(5.8) lim g = =2
t*0 te

The first part of the theorem is proved. We see

from relations (5.5) and (5.8) that

(5.9) lim s,' = 0.
' t 0

On the other hand, consider the case when the

acceleration a is finite. Let a" be an upper bound to a.

t
Let g be-[‘a.dt, and define t," and g;" by the reletions
0

tl"
(tg = t) a" dt = Dy
0
(5.10)
" = a"t , for t < t,"
q]_" - 81"131" (not al"tl) .
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MICHIGAN

Now
Ts ta
qdt = qg" dt ( =Dg) .
0 0
But
q £ q" for t < t,"
so that
tlll tl"
q dt = q" dt
0 0
and
te te
qdt = q" dat .
t.!." L’l"

Since the maximum value

or equal to its eversge value, 1t follows thet

Qz 2 QZ"
_ Dy
i
t2 - ;
or
Qs '—>—- Dz >'% .
Dy £
tp - n ?
22"ty

gg of the integrand is greeter than
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The last relations come directly from the definitlons
in reletions (5.10). By Theorem II, the cese of the impulse
requires less fuel,

The proof 1is complete.

There now remains but one problem in the determinetlon
of the lower bound to fuel consumption, the determinstion of

the best homing tiie. Thet is taken up in the next sectlon.
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VI, THE LOWER BOUND TO FUEL CONSUMPTION

We have just seen that if the homing time is chosen,
the best way to apply thrust is to make it as lerge as possi-
ble during the eerly moments of homing. This leads to the im-
pulse es a limit es the burning time t, approeches zero. The
only remeinins problem is to determine the proper angle of
thrustt e for the impulse, or to choose the best howming time

since the two are connected by the formula

Vi,
X + Uty

(6,1) ten 8 =

We state the results as two theorems, one for in-
couing terzets (U < 0) and the other for outzoling targets

(U > 0),

THEOREM VI A: For an incoming target the lower bound of fuel
is obteined if thrust is applisd es an impulse normel to the

initlel line of sight.

las . . . . .

Since we are now workinz in two dimensions, e single enzle 8
will specify the direction of thrust: we cell 8 the engle of
thrust,.
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Proof. Assume the target 1s initially et the point

(X0,0) with velocity components (U,V) where U < Q (see Figure

IV). Consider an impulse such thet it gives

Craft X,
(+=0) T}

Figure T. Family of velocities due to impulse
which will cause interception,

a velocity jump of magnitude g meklng en engle & wlth the

x-axis. The equation of homing

(3.18) XoV + 513" Veos © - q;Xp sin @ - Usy' sin @& = 0
becomes
(6.2) V-9, 808n6 = 0

since s,' = 0 for an impulse and Xg # O.
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We wish to minimize

V
Lot =
(6.21) 41 sin ©

as a functlon of 8, Thls has the obvious minimum for @ = 90°;

The proof 1s complete.
The graphic proof 1s so simple and enlightening that
we include 1t, see Filgure TV: consider an impulse such thet

the velocity Jjump g; satisfies the relation
(6.2) : 'ql sin @ -V = 0.

From the greph we see thet gy is smallgr for & = 90° (and that

all conditions of homing are setisfied since Y; = yi, Y3 = yi,

Xl - 'Xl <'O, Xl - 'X'l > O)o

The corrssponding fuel consumption is

_ Vv
(6.4) r' = 1 -6 ©;

this is the lowar bound to fuel consumption.,

It seems worthwhile at this point to review the
chain of ressoning for this importent result. We have shown:
1, If a homing peth is given for which angle of

thrust 1s varied, one can determine directly a better path for
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which engle of thrust is constent.. Consequently e minimum path
must have thrust fixed in direction.

2., If the angle of thrust is fixed, the best way to
epply thrust 1s to epply thrust es high es possible eerly, then
coest; the impulse is the ideal,

b, For en incoming target, the best dirsction for
en impulse 1s et right ensles to the initiel line of sizht.

Thus, thers is no possible way to home which would

requlre less fuel.

For the outzoing terget, we have

THEOREM VI B: Ageinst an outgoing target, the lower bound to

fuel consumption 1is

. 2 2 2
where @ =U + V.,

Proof. Let us combine the inequelity

o
L]
[&))

cos ¢ < cos ©

(see Figure IV) with the equetion of homing for en imoulse (6.2).

low ¢ = 90°, hence
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We can rewrite equetion (6.2) as

Vv
Q= V(1 - cos® o)

(6.,7)

”~

With reletion (6.6) tals gives the grestest lower bound

vV
V(1 - cos® )

(6.8) - glb, (ql) =

= Q

end we can come erbitrarily close to this 1limit. The corre-
sponding lower bound to fuel consumption for en outgoing ter-

get 1s

(6.9) r" = 1 -6 .

There are several Interesting conseguences.

LEMMA. As the angle of thrust © approaches the angle ¢
between the initisl line of sight end the initiel velocity

vector, the homins time becories infinite,

We cen solve equations (6.1) end (6.2) for ty

when thrust is fixed in dirsction

Xy sin ©
(6.10) ty = .
Q sin (¢ - ©)
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The denominator goes to zero as © epproaches ¢ and the numer-
ator remains finite. From this we get an important corollery to

the theorem.

COROLLARY VI.1l. For precticel purposes, more fuel then the
Q

c

lower bound r" =1 - e is required for hominz azainst an

(]

outzolng terget.

o

Proof, The limit is epproached only as 8 approeches
9. In this cese the homing time becores infinite (equation
6.10): the terget would heve completed its mission before hom-
ingy, occurred. .

Two other corollaries cen be proved., However, they
involve considerable manipulation end'they follow from other
consideretions es obvious conclusions. Hence we stete them

e 1 . . . . 1
here and indicete”a proof. A different proof is glven later .

(@]

COROLLARY VI.2. If thrust is not infinitesimel, then the

O

lower bound to furel consumption, r" = 1 - e © for homing

2 sainst an outgoing tergst is independent of the thrust function,
That 1s, if the thrust is finite, the lower bound
approached as tg becores infinite does not de end upon the

thrust function.

lumm-19, Section X.
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Thet can be proved by developing the relations

Dz . Dy I T
tz tz - tl tz - tl

and usine the reletion thet es tg becormes infinite, T remeins
O e )

bounded 1f T is not infinitesimel.

COROLLARY VI.%. If the fuel consumption exceeds r" =1 - &

then homing is elways possible.

Inspection will show thet we heve not used the reletion
@ = 900 in the previous oroof end thet the results hold inde-
pendent of @. The corollery followsl.

So we see thet it 1s always possible to home 1f

r>r"., It is an important property of minimum paths that only

for peths nser them is it possible to home with less.

lThese two corollaries can olso be vnrovad directly from con-
siderations on the equation of homing

(3.18) XV + s,' Vcos 8 - gy Xp8in 6 = 5,7 U sin ® = 0

but the proof involves umeny deteils to meke it complete.
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VII. THE NECESSARY AND SUFFICIENT CONDITIONS FOR A PATH OF
MINIMUM FUEL CONSUMPTION

In this section are developed the necessary and
sufficlent conditions which a psth must setisfy to be ¢ peth
of minimum fuel consumption.

The proof is long and detailed. Hence we stete the
principal result »t the beginning as e theorem and put other

direct results in the next sectlon.

#THEOREM VII. The necessery and sufficlent conditions for a
path to be a path of minimum fuel consumption are:
(1) The first two fundamental principles of
homing with minimum fuel consumption (of
Sections IV and V) must be satisfied; that
is, (a) thrust must be fixed in direction
and (b) thrust must be as large es possible
during the eerly stege end then as small as
possible.
(2) It must satisfy the conditions of homing with

Page 93



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
Report No UMM 18

(3) The vector of relative position et end of
burning must be perpendicular to the thrust

vector (see Figure V).

Qcos(d-6m)

P,, target position (t=t,y)

X sun6m+1,m( VcosOm+ Usinp)

\jﬁ’ﬁem 90°= 0

X

0 \r(?:to \ Xo 90 .,.em//'!/ Target (X,,0)
_ - (t=0)
\ -
\ . -
\Sim - -7
\ ~
e

Figure XL. Conditions for a minimum path

Proof. We have established thet for a chosen homing
time, conditions (1) must be satisfied to minimize fuel con-

sumption. The remaining problem is to establish conditions on
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tg, or whet is equivalent, on 8 since they ere connected by

the reletion (4.4)

(7.1) @ = arctan —Jba_ .

Xo + Ut,

By the above principles, the unilt burning rate i
and the unit fusl consumption r are given functions of tine

for t < t,. Hence the acceleration

(7.2) a = er

is also a kurown function of time,
We must determine the angle of thrust € to mini-

mize fuel consumption. Consider the equetion of homing (3.18),
(‘7.5) XOV + Sl‘ V cos © - quo sin e - US]_' sin ] = 0 »

This is e function of the verirbles s;', g3, end @ (end of the
known parameters and functions r t); ¢, U, Vend &9). Hence

we can write it as
(7.4) F(s;',q.,0) = 0,

Assume thet r (or thet the thrust) Lis not zero
for eny time t < t.. Under the ebove assumptions (thet p(t)

is given end thet thrust 1s fixed in directlon) it 1s obvious

L ]
from the definitions (a = —2%-) ,
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E

1

(7.5) g1 = a dt , 8, = (t, - t) a dt ,

that g3, s;' end r; ere all strictly increesing functions of
t,. Hence, implicit functlion reletlons are setlisfled; ell are
‘determined os soon o one i1s chosen; end to minimize one of
them is to minimize them all. We find it simplest to minimize
gye

If hominz is to be effected, equatlion (7.3) must be

satisfied. Define the total pertial derivetive,

0Qa 0qy dsy ! dagy

Then so long as 0F/6q, # O, equation (7.3) or (7.4) then defines

q; a@s an implicit function of ©; we can write

DF _ OF _ OF dq,
D6 06 Oqgy dé

= 0

s

since equation (7.4) nust be treated es sn identity in 8, q1(0);

“hence

(7.7) égi B OF , OF
ae d6 ° oq;
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For our case we cen (and will later) show thet OF/d0qg, is

bounded; hence, a first condition for g; to heve a minimum is

oF
7.8 oF  _
(7.8) S5 0

| o
Substituting from (7.3), this becomes
(7.9) sy' Vsin @ + 9;Xp cos 8 + Us;' cos 8 = 0.

Now define o by the relation

s, 'V
(7.10) ten o = - .
CI:LXO + Sl'U

We can use the conditions of homing to show thet

(7.11) s,V Vt, - s, sin ©
' q1Xo * s.'U Xo + Ut, - s, cos ©
_ Yy = v2
Xy = Xq

Hence o 1is the angle mede by the vector of reletive position
et the end of burning with the X-axis (see Figure V).
From ecuetion (7.9) we gzet

_ 4Xo * Usy!' |

s, 'V

(7.12) ten 6 =

Compering this with equetion (7.10), we.see thrt for o minimum

path 1t 1s necessery thet the vector of reletlive position et
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end of burning be perpendicular to the esngle of thrust.
Conclusion (3) is proved.

We must prove that the conditions of the theorem ere
sufficient; thet is, that equetion (7.9) and the conditions of
honing lead to a minimum, not to a meximum nor en inflection
point when t; < tg.

We shall need the relation

dsq!

(7.13)
da;

T1 e

We substitute this relaetion into equetion (7.7) to get

ae Xo sin © + t,(=V cos & + U sin ©)

(7.14) dag, " gq1%o cos © + s,;'V sin & + s,'U cos ©

Let us denote the values associated with a minimum
path by subscript m. If we expand the numerator of the right
hand side of equetion (7.14) in powers of 6 - 6, we find that
Oy is a simple zero, and the numerstor 1s positive for 6 < 6p
(g near gm). Hence, taking into account the minus sizn 1n

front, we see thet the denominator must be positive for e min-

imum; we must have
(7.15) Xo sin Oy + ty(- V cos Oy + U sin 6p) > 0.

This we can write s

(7.16) Lo + Uty
Vi,

> cot em .
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Now if we eXxpress the position of the terget in poler form
S = VX® + Y®
(7.17)
| ® = arctan . erctan — VL6
M X, + Ut
we see that @ is an increasing function of time (since V and

X, are positive). We can write (7.16) as

(7.18) cot ® (t,) > cot ® (t5) .

Hence

<

Inspection of the conditions of homing with thrust
fixed in direction will show thet the inequality, which 1s the
condition thet the vector of reletive positio:’ and reletive

velocity be opposite in sense, can be expressed eas

Hence the condition (7.16) is setisfied for e11 noming paths
such taet t; < tg. Hence we have proved thrt conclusion (2)
is necessery and thet conlcusions (2) end (3) are also
sufficient.

Let us summerize the proof: the equetions of motion

when thrust is e specified function of timel, fixed in

lThis specified function is the upper bound,
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direction and not zero for t < t, define g3, S1, s;', r end %3
as strictly increasing functions of one enother; hence, there
is en implicit function relation between eny two end 1f condil-
tions are chosen to minimize one, all are minimized. he equa-
tion of homing in turn defines g; as a function of 8. We find
dg, /de. For q; a minimum dgy/de must vanish. This is shown
to be the condition thet thrust be perpendicular to the vector
of reletive position et end of burning. The numerator, of
dg,/d® has a simple zero so the second condition for e minimum
is thet the denominator be positive. This condition is setis-
fied by the conditions of homingz whenever the burning time is
less then the homing time.

o real trouble i1s experienced if we do not assume
a to be non-zero, since g; end s,' are still strictiy increasing
functions of one another.

The proof is complete,
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VIIT. FURTHER PROPHSRTIZS OF PATHS OF MINIMUM FUEL CONSUMPTION

The following properties of minimum peths can be
deduced at once from the results of the last section and are
essentially corollaries to Theorem VII. Because of thelr

inportance we include them as theorems.

THROREM VIII.A. The ancle of thrust for a minimum path is
greater than or equel to 90° (from the initiel line of sight).
Tt is greater than 90° if thrust is finite end equel to 90°

for an impulse.

Proof. Let us eliminate g, between equetions (7.3)
Iroor da |

and (7.9). We get

(8.1) cos 8, = -—;

8, is the angle of thrust for a minimum path. Now

Ty

t a dt.

Sl‘
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. . eoey L , .
if thrust is finite~. For the case of an impulse we saw thet

(5.9) lim s;' = 0.

t,*0
Hence

o, > 90° if thrust is finite
(8.2)

e, = 90° for homing with an impulse.

COROLLARY VIIT.1l: There csn be no minimum vath ageinst an
outgoing target.

One condition of homing 1s

oy . . < o)
The condition for s terget to be outzgoing is @ = 907, These

two conditions ere incowpatible with equation (8.1).

Q

We defined r" =1 - e © and we sew (Corollary VI.3)

that if the allowed unit fuel consumption r exceeded r" we

could effect homing.

THEOREM VIII.B: For a minimum path the unit fuel consumption

. n
ry is less than r.

See analytic proof of Theorem V for detalls.,
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Proof. We can eliminate © between equations (7.3)

and (7.9) to get

dim = V sin 6y + U cos 6y
= Qcos (¢ - &)
or
since
¢ > o .

The unit fuel congumption is then

_Ch.m
Tmzl'e c
_ 8
< 1-86 ©
whence
(8.4) r, < r'.
We had a lower bound to unit fuel consumption
_Y
r' =1 -6 ©C for incoming targets. This was the least unit

fuel consumpbion thet could possibly effect homing (equation

(6.3) following Theorem VI).

COROLLARY VIII.2. For a minimum peth the unit fuel consumption

Iy 1is greeber than or equal to r'. If thrust i1s finite, then

rm > r'.
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Proof. Consider equation (8.3)

dim = Qecos ( @ - 6y)

Hnv

Q cos (@ - 90°)

since ¢ > O, 2 900, We sew thet if thrust wes finite the strict

inequality held:
(8.5) iy > Qsing

for acceleration'bounded.

Hence we heve bounds for r, when thrust is finite.

(8.8) r!t < ry < r" .
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IX. SPECIAL MINIMUM PATHS

In the previous sections, the work on minimum fuel
consumption was done under the essumption that the second funda-
mental principle of homing with minimum fuel consumption (that
thrust be lerge early and then cut off, see Theorem V) was ob-
served. This included the case where thrust is s sﬁecified'
function of time for t < t,, and the case where throttling could
teke plece with elther thrust or eccelergtion having a known
maximum value es o function of time.

We consider now e speciel cless of peths of minimum
fuel consumption. We consider two particuler ceses, then o
general class of problems including both of them.

A) Consider\the following problem: let it be decided
to home with acceleration constent ell during homing, the con-
stant being properly chosen to effect homing.

The first principle of homing, thet thrust must be |
fixed in direction, must be setisfied. Hence, we cen write

the position of the craft
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x = 1/2 a(G)t2 cos © ,

(9.1) .
y = 1/2 a(@)t” sin 0 ,

and the condition of homing

1/2 a t5° cos 6 - Uty = X5 = 0,
(9.2)
1/2 a tz° sin ® - Vt, = 0 .’
The integral
te
(9.2) a(@) dt = t5 a(®)
0

is to be minimized. We write a(®) to emphssize that the value

of the required acceleration depends upon the angle of thrust.

(9.4) t, a(e) = —=

sin ©

and now we wish to minimize the left side. Since V 1s known,

the right side attains 1ts minimum for

(9.5) e = 90° ;

that is, for minimum fuel consumption, the thrust must be applied

along the vertical to the initial line of sight.

Page 66



AERONAUTICAL RE»SEARCH CENTER~UNZIVERSITY OF MICHIGAN
Report No UMM 18

B) Consider the following cese: let thrust T be
constent during homing, the constent chosen to effect homing.

Using the equations of Section II, we cen write the condition

of homing

ctg [1 + (% - 1) 1In (1 - r)] cos 8 = X, + Utg ,
(9.5) :

ote L+ (E-1)1n (1-r]]sine = v, .,

We can rewrite the second of these as

1 v
9.6 1+ (=-1)1 1 = ; = —_—
Sl [ (% ) 1n rﬂ c sin ©
= constant .

sin ©

Now the function
1+(.l._)1(1_)—1+1£+.1’_5+... - N )
r 1 r -2 6 12 n(n + 1)

is tlearly monotonic increasing in r. Hence to minimize r we
need to minimize the right side of equation (9.6). As before,

it attains 1ts minimum for 6 = 900.

C) General Cese: these are all examples of the

following case.
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THEOREM IX. Whenever the velocity required for homing cen be

expressed in the form
(9.7) v = f£(A,t/t2) ,

where f 1s an increasing function of A for eny fixed value of
EZEE’ minimum fuel consumption is achieved for thrust applied
at 90° from the initial line of sight.

We consider only incoming tergets; o ainst outgoing

targets there 1s no minimum.

Proof: From the results of section IV we must min-

imize
(9.8) vy = f(a,1) ,

a monotonic function of A; that is we need to select the angle
of thrust 8 to minimize A.

For homing to occur we must have

(9.9) Sz = Sz .
Now,

Vtg
(9,10) S: = TInE

and
te
s(A,tz) = v dt
0
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te
s(A,ty) = £(A,t/t5) dt
0
1
= tg £f(A,T) dT
0
or
(9.11) s(8,tz) = tz F(A),

defining F(A), a non-decreasing function of A.
Hence, by reletions (9.2), (9.10) and (9.11) it is
required for homing that

v

Fa) = o5

The right side of this equation has its minimum when 8 = 90°,
AN

90°, vy has 1ts smallest

1l

Hence A attains its minimum when ©
value for © = 900, and minimum fuel consumption is attained

for 6 = 90°,

Corollary IX.l. The conditions (2) can be repleced by the

condition thet vy = £(A,1) be a monotonic increasing function

1
of F(A) = £(A,T) dT .

This wes the only property of f used in the proof.

Page 69



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
Report No /UMM 18

Corollary IX.2. If the acceleration:hes ﬁhe form a = %;g(A,t/tg)
where g 1s an increasing function of A, thrust must be applied

at 90° from the initisl line of sight to achieve minimum fuel
consumption.

If the acceleretion hss the form

1
a = . g(A9t/t2) P)
2
1t
1
v o= %, g(A,t/ts) dt
0
t/ts
= g(A,T) dT .
0
This we cen rewrite as
v = f£(&,t/ts)

and this velocity function satisfies the hypotheses of the
theorem.
Corresponding to this first corollery we could specify

Wééker conditions on the accelerstion function. It is required

1
only that ~[~ g(A,T) dT be a monotonic increasing function of
0

1
j (1L -7) g(a,r) dr.
0
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In paragraph A of this section we considered the
case when the acceleration é_was constant during homing. We
wrote this as a(@) to indicate ‘that the value of this constant
depended upon the direction in which .thrust waes applied. We
could equally well have Written gi§£) since 8 and tg are con-
nected by the formula

tan 8 = —— 2% ____ .
Xo + Uty

If we set A(tz) = tp a(ty) we see that

Vo= A b/t [= £(a,t/t2)]
Vo = A [= ‘ f(A:l)]
S = tgA [? ts F(Aﬂ ;

so that f(A,1) is a strictly increasing function of F(A), the
hypothesis fdr cérollary IX.l.4w

This, the example of constant acceleration, is the
second most simple example of the theorem, leading to the case
when v 1s linear in A and linear in EZEE‘ The case of the

impulse is the simplest; v is linesr in A and constent in t/tz.

Corollary IX.3., If the unit burning rate_i has the form

r = %; h(A,t/tz) with h an increasing function of A the con-

clusion of the theorem holds.
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We see that
t
r = r dt
0
t
1
= I n(A,t/tz) dt
0
t/te
= h(A,T) dar

H(A’t/tz) )
a strictly increasing function of A. Now
v = =-c¢1n (1 - r)

- ¢ 1n [1 - H(A,t/85)] .

I

Since an incressing function of an increesing function is an

incressing function, the hypotheses of the theorem ere satlisfied.
In paragraph B we considered the case when thrust

was constant during homing, this constant being properly chosen

to effect homing. In any given situation r = f(tz) since

the value depends only upon the homing time chosen.
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In this case

r(t,t5) = r(ty) dt

thls we can rewrite

r(t,tz) ta I'(tz) * t/tz .

Now, if we set tp r(ts) = A, this assumes the form of the func-

tion for fuel consumption in corollary IX.3,
r o= A t/ts [= z(a,8/82)] .

This is the case when fuel consumption cen be expressed in a
particularly simple form, linear in each verieble A aend t/t:.

Velocity then has the form

v = =-c¢ 1ln (1 - At/tg) o
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APPENDIX®

DISCUSSION OF COORDINATE SYSTEMS

The first problem in a study 1s to choose a proper
coordinate set in which to work. We shall see that any car-
tesian coordinate set whose axes are not rotating 1n space
mey be used equally well. We shall see that the fundementsal
equations depehd only upon the initial relative position and
the initial relative velocity of the target with respect to
the craft-and upon the thrust applied to the craft. They are
independent of the actual velocitybof either the crsft or the
target, of body forces, and of arbitrary displacements of the
origin of coordinates., This allows a great deal of freedom
in the cholce of a coordinate system.

Since Newton's laws furnish the basis for our study,

we shall stert with a Newtonlan reference freme or coordinate

IThe material of this section is essentially the same es in
many books on mechanics and theoreticsl physics. See, for
example, Synge and Griffith, Principles of Mechenics, Chapter
XII, or G, Joos, Theoretical Physics.
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system. Let X be the position vector of the craft snd X the
position vector of the target in this reference freme. The

equation of motion of the craft 1s then

y X _
dt=

+ MG

H

where MG is the body force. We can rewrite this as

He
Al

(A.1) "z - ¢ + T
dt= 1

H

|
=

as in Section II;‘f is the unit vector parallel to E. Let

He
Al

c
1 -

]

then g is the vector of acceleration due to thrust, The inte-
gration of equation (A.1) leads to
t t

(A.2) %—f = (%%)o + [ & dt +

(]

dt .
0 0

This can be integrated once more to yield

t T t T |
£)o * g dodr + | G dedr .
0 0 0 0 '

Consider a new coordinate system, the position of

(A.3) T = %o+t (¢

i

]

the origin of which is given by the vector g(t). Then the

position vector X' of the craft in this new system is
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(A.4) ' = X -7

- a%, _ | - _
Fo + t(Tlo +| | Facdr+ G dodr- g(t).

If z' denotes the position vector of the terget in this new

system, then we have
I
(A.5) Xt = X5 + t(dt)o + G dedr - q(t) .

The coordinates of interest are those that give the

position of the terget with respect to the creft. ™We see that
(A.6) Xt =-%' = X-X

- gdd"d’l’.

The only terms that enter in thése equétions are those giving
the relstive position at the time t = 0, the relative velocity
at that time, end the thrust epplied to the creft. Hence for
the two-body problem we cen relax the restriction that the
system be Newtonlen, so long as the axes are not roteting. The
importance of this is thet the origin can be moving. For ex-
ample, a point on the esrth's surfece mej be talten as origln

without influencing the fundementel equ?tionsl.

1Account must bé taken of the eerth's rotation.
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It will be helpful later if we choose g in the

following manner

t T
5 = %, 0+ (&) + G der d
qa = X, atlo ocdT.,
0 0
In this system
T T
(A.7) X' = 2 do dT ,
0 0
- = - dX dX
13 = - — - —
(4.8) X (X - %)y + 65 - ), -

We see that X' depends only upon the applied thrust and X!
depends only upon the initial relaetive motion.

Let us consider & rectanguler coordinate system in
which X, ¥y, z are the coordinetes of the craft position, and
X, ¥, Z are those of the target. Equation (A.7) 1s equivalent

to the three sceler equations

tlT
x = f\‘]‘ax(a—) do dT
- JoJo
\jﬂiJ"T )
(¢) dod
o Jo ay(e) dodr

I
z = ay(e) doadr
0 Jo

where ay = %% is the x-component of the acceleration due to

thrust, etc,

(A.9)

3]
|
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Equation (A.8) can also be expressed

X = X, + Ut
(A.10) T o= Yo+ Ve
Z = Zo + Wt .,
If we let
& = X -x
(A.11) mn = Y-y
f = Z -2z

expression (A.6) has the form

Tl T
¢ = X, + Ut - ax do dr
0 JO
t|T
(A.12) n = Yy + V¢t - ay dodr
‘ 0 JO
|
f = Zg + Wt - | a, dedr .
0 JO

In general we shall choose the orientetion of our
axes 80 that Yo = Zo = W = 0, This can always be in the fol-
lowing manner. Set up the square arrayl representing a rota-

tion of coordinates

1For example, see Snyder and Sisam, Analytic Geometry of Space,
Article 37. '
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b4 v Z
x! 211 £12 £13

(A.13) v! Xo1 X22 223
z! 231 X32 233

where the £ 's represent the cosine of the angle between the
various exes; X5, for example, being the cosine of the engle
between the old y and the new x' axes. Then the transformestlon

is represented by

x' = R11 x +8127 +213 2,

etc. The quantities X9, Yo, Zg, U, ¥V, W, being components of
vectors, are traensformed in a similar manner, If we choose

Xgl, X230, A3z, to satisfy the relations

Zo!

R3] Xg +Rgo Yo +8R33 Z5 = O
(A.14)
W

A1 U + 830 V +83zz W = 0

and R o7, R 09, R oz, to satisfy the relation

(A015’) YO' = 321 XO+222 YO+£25 ZO = 03

then these conditions with the conditions of orthogonality

and normality
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3 3
(A.16) Z 5 Ry = Zaji R4
i=1 i=1
1if j =k
0if § =% (j,k =1,2,3)

which the cosines setisfy, will determine the & 's except for
three signs. We shall choose Xo' to be positive, V! to be
positive and the orientation of the z-axls to form a right hand

act of coordinates. Then equations (A.10) are in the désired

form, we can drop the primes,

X = Xo *+ Ut
'(A.1'7) Y = Vt
Z = 0 .

Since ax, 2y, 8g are. components of a vector, equations (A.9)
for the rocket motion are unchanged in form by the rotetion,

Equations (A.12) now have the form

T T
§ = X5 + Ut - ay de dr
0 0
i . t rr ' .
(A.18) n = Vt - ay do drT
' 0 0
T T
f = - a, dodr .
0 0
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It follows from the nature of vectors thet it is not essential
whether the subtractions (A.6) or the rotetions ere iperformed

first. The integral

2

Jaxz + a'y'z + a.z dt

in the fﬁndamental equation (2.5) conhecﬁing'fuel consumption

to thrust is the integral of the magnitude of the vector

a = =, ‘hence 1s not affected by a rotetion of coordinates.

= |3

The condition thet interception occur without further
thrust is that the vector of relative position (X, Yo, Zo) 1s
parsllel to the vector of relative velocity (U, V, W) and

opposite in sense, that

(A.19) Lo = Yo - % (= - t,) £ -t

This can be seen by substitution into equetion (A.12). Terms
in expression (A.19) with numerator end denominator both zero
must be omitted. A relation corresponding to equetion (A.19)
must be satisfied at the end of burning if homing 1s to be
achieved without further corrections, This problem is dis-
cussed in Section ITI.

We have Jjust seen thet we can express the problem

as a plane one. If we solve the plane problem, we can solve
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the problem in space, teking into account the forces of
gravity, etc.

The real importance of the transformation is this:
to solve the problem of homing it is necessary to go to the
plane problem; this may be ddné ekplicitly, or it mey be done
implicitly. It 1s not necessary to go to the trouble of

carrying out the sbove computetions but only to determine

X

Xos U and EE‘

A second significance of this transformetion 1is
this: we can study the motion in the plane sbove and know
thet we have not omitted anything of significance to the space

problem, subject to the assumptions in the introduction.

1This is done in UMM-19, Section VI,
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