REVISION OF R. P. WHITFIELD'S TYPES OF RUGOSE AND TABULATE CORALS IN THE MUSEUM OF PALEONTOLOGY, UNIVERSITY OF CALIFORNIA, AND IN THE UNITED STATES NATIONAL MUSEUM

By
ERWIN C. STUMM

1969

Paleontological Research Institution
Ithaca, New York 14850 U.S.A.
PALEONTOLOGICAL RESEARCH INSTITUTION
1968 - 1969

President ... Kenneth E. Caster
Vice-President .. William B. Heroy
Secretary ... Rebecca S. Harris
Director, Treasurer .. Katherine V. W. Palmer
Counsel ... Armand L. Adams
Representative AAAS Council David Nicol

Trustees
Kenneth E. Caster (1966-1972) Katherine V. W. Palmer (Life)
Rebecca S. Harris (Life) Axel A. Olsson (Life)

BULLETINS OF AMERICAN PALEONTOLOGY
and
PALAEONTOGRAPHICA AMERICANA

Katherine V. W. Palmer, Editor
Mrs. Fay Briggs, Secretary

Advisory Board
Kenneth E. Caster Hans Kugler
A. Myra Keen Jay Glenn Marks
Axel A. Olsson

Complete titles and price list of separate available numbers may be had on application.

For reprint, Vols. 1-23, Bulletins of American Paleontology see
Kraus Reprint Corp., 16 East 46th St., New York, N.Y. 10017 U.S.A.

For reprint, vol. I, Palaeontographica Americana see Johnson Reprint Corporation, 111 Fifth Ave., New York, N.Y. 10003 U.S.A.

Subscription may be entered at any time by volume or year, with average price of $18.00 per volume for Bulletins. Numbers of Palaeontographica Americana invoiced per issue. Purchases in U.S.A. for professional purposes are deductible from income tax.

For sale by
Paleontological Research Institution
1259 Trumansburg Road
Ithaca, New York 14850
U.S.A.
BULLETINS
OF
AMERICAN
PALEONTOLOGY

Vol. 56
No. 250

REVISION OF R. P. WHITFIELD'S TYPES OF RUGOSE AND TABULATE CORALS IN THE MUSEUM OF PALEONTOLOGY, UNIVERSITY OF CALIFORNIA, AND IN THE UNITED STATES NATIONAL MUSEUM

By
Erwin C. Stumm
Museum of Paleontology
The University of Michigan

July 18, 1969

Paleontological Research Institution
Ithaca, New York 14850 U.S.A.
CONTENTS

Abstract .. 235
Introduction and acknowledgments .. 235
Systematic descriptions .. 236

RUGOSA

Genus *Asthenophyllum* Grubbs, 1939 .. 236
Genus *Dalmanophyllum* Lang and Smith, 1939 237
Genus *Amplexizaphrentis* Vaughan, 1906 ... 238
Genus *Neocystiphyllum* Wedekind ... 239
Genus *Hexagonaria* Gürich, 1896 ... 240
Genus *Microplasma* Dybowski ... 240

TABULATA

Genus *Favosites* Lamarck, 1816 .. 241
Genus *Cystihalysites* Tchernychev 1941 ... 242
Genus *Acanthohalysites* Hamada .. 243
Genus *Catnipora* Lamarck, 1816 ... 243
Genus *Syringocolumna*, n. gen. ... 244
Bibliography ... 245
Plates .. 249
Index .. 254
REVISION OF R. P. WHITFIELD'S TYPES OF RUGOSE AND TABULATE CORALS IN THE MUSEUM OF PALEONTOLOGY, UNIVERSITY OF CALIFORNIA AND IN THE UNITED STATES NATIONAL MUSEUM

ERWIN C. STUMM
Museum of Paleontology
The University of Michigan

ABSTRACT

Thirteen species of Paleozoic corals were described by R. P. Whitfield between 1878 and 1903. Eleven of these are revised and all but one placed in other genera. Three new species, \textit{Amplexizaphre~ztis} \textit{ohioe~ziis}, \textit{Acanthobalysites wisconsinensis}, and \textit{Cystihaly~i~es microporus} are proposed and one new genus, \textit{Syringocolumna infundibula} (Whitfield) is proposed.

INTRODUCTION AND ACKNOWLEDGMENTS

Between 1878 and 1903 R. P. Whitfield described 13 species of corals from the Paleozoic rocks of Wisconsin, Ohio, and Iowa. The majority of these were from the Silurian dolomites of Wisconsin. One species was from the Devonian of Ohio, one from the Mississippian of Ohio, and one was a float specimen from the Silurian of Iowa. The specimens are listed under their original designations as follows:

Silurian of Wisconsin:

Rugosa:
- \textit{Amplexus annulatus} Whitfield, 1878
- \textit{Amplexus fenestratus} Whitfield, 1878
- \textit{Cyathaxonia wisconsinensis} Whitfield, 1878
- \textit{Cystostylus typicus} Whitfield, 1880
- \textit{Zaphreniis racinensis} Whitfield, 1882

Tabulata:
- \textit{Favosites occidentis} Whitfield, 1888
- \textit{Haly~i~es catenulatus} var. \textit{microporus} Whitfield, 1882
- \textit{Haly~i~es catenulatus} Linnaeus
- \textit{Haly~i~es catenulatus labyrinthicus} (Goldfuss)
- \textit{Syringopora infundibula} Whitfield, 1878

Devonian of Ohio:

Rugosa:
- \textit{Stylastrea anna} Whitfield, 1882

Mississippian of Ohio:

Rugosa:
- \textit{Zaphreniis cliffordana} Edwards and Haime

Silurian of Iowa:

Tabulata:
- \textit{Haly~i~es radiatus} Whitfield, 1903

The syntypes of \textit{Amplexus annulatus} from the Guelph Dolomite of Wisconsin have not been found. The species \textit{Haly~i~es radiatus} Whitfield has been adequately redescribed by Buehler (1955) and will not be described herein. It is a species of \textit{Acanthobalysites}. The remainder of the corals are redescribed and reillustrated in this paper. Part of Whit-
field's collection was purchased by the University of California (Peck and McFarland, 1954). The remainder was located at the University of Wisconsin until 1960, when it was transferred to the United States National Museum (Batten, 1960). Two of the syntypes of Stylastrea anna are in the Geological Museum, Ohio State University.

The holotype of Alveolites irregularis Whitfield from the Upper Ordovician of Wisconsin is a trepostomate bryozoan.

The repositories of the types are indicated as follows: U.S.N.M., United States National Museum; U.C.M.P., Museum of Paleontology, University of California; O.S.U., Geological Museum, Ohio State University.

I wish to thank Dr. J. W. Durham and Dr. Joseph H. Peck, Jr. of the Museum of Paleontology, University of California, for the loan of those of Whitfield's types located there. My thanks are also due to Dr. R. A. Cifelli and Mr. Jesse E. Merida for the loan of the types located in the U. S. National Museum.

SYSTEMATIC DESCRIPTIONS

Order RUGOSA

Family METRIOPHYLLIDAE

Genus ASTHENOPHYLLUM Grubbs, 1939

type species.—Asthenophyllum orthoseptatum Grubbs, 1939 (p. 547), by original designation.

Discussion.—The type species is a small ceratoid to trochoid coral in which the calyx extends almost to the base. Protosepta prominent. Meta-septa divided into major and minor series. All septa short.

Asthenophyllum? racinensis (Whitfield)

Description.—Holotype composed of a dolomitic mold of the interior of the calyx of a simple trochoid rugose coral. A latex cast of this mold reveals the original appearance of the interior of the calyx. Maximum diameter at top of calyx, 30 mm; at base, 7 mm; maximum depth, 22 mm. Septa 70 in number. Protosepta prominent, short; cardinal septa termina-
ting in a small narrow fossula only visible across base of calyx. Metasepta divided into major and minor series both as short peripheral ridges. Major septa extending maximum distance of 1 mm from the periphery and extending across the small base of the calyx to form a low, relatively inconspicuous axial base. Minor septa extending about 0.5 mm from the periphery terminating before reaching base of calyx. All septa thin, smooth, noncarinate.

Remarks.—It is impossible to determine if the original corallum had tabulae or dissepiments, but judging from the shape of the calyx I believe neither was present. *A. ? racinensis* is much larger and has many more septa than the type species and, therefore, is tentatively assigned to *Asthophyllum*.

Occurrence.—Middle Silurian, Racine Dolomite, Racine, Wisconsin.

Type.—Holotype U.S.N.M., No. 136786.

Family STREPTELASMATIDAE

Genus DALMANOPHYLLUM Lang and Smith, 1939

Type species.—*Cyathaxon daelmani* (Edwards and Haime, 1851, p. 322, plate 1, figure 6).

Diagnosis.—Solitary ceratoid rugose corals in which the major septa join a bladelike columella produced upward by joined cardinal and counter septa.

Dalmanophyllum wisconsinensis (Whitfield) Pl. 12, figs. 1-3

Description.—Holotype consisting of a dolomitic cast of the interior of the original calyx. A latex mold reproduces the calyx walls and base. Maximum diameter of calyx 39 mm, maximum depth 23 mm. Calyx walls steeply sloping to a narrow base, most of which being occupied by a blade-like columella 10 mm tall, 6 mm wide in cardinal-counter direction and a maximum of 2 mm wide at right angles to this direction. Septa 76, short, thin, and smooth, the major extending 2-3 mm from periphery, continuing across calyx base to terminate in columella. Minor septa extending about 1 mm from calyx walls, disappearing just before reaching base of calyx.
Cardinal septum forming a prominent fossula 7 mm long, 4 mm wide, and 7 mm deep, almost completely confined to the base of the calyx. No dissepiments visible. Presence or absence of tabulae unknown.

Remarks.—The species resembles D. herzeri (Hall), 1882-1884, from the Louisville Limestone of Kentucky but has a much more prominent columella.

Occurrence.—Middle Silurian, Racine Dolomite, Racine, Wisconsin.

Type.—Holotype U.S.N.M., No. 136804.

Family HAPSIPHYLLIDAE

Genus AMPLEXIZAPHERENTIS Vaughan

Type species.—Zaphrentis bowerbanki Thomson, 1883, by subsequent designation of Lang, Smith, and Thomas, 1940, pp. 16-17.

Zaphrentis cliffordana Whitfield, 1891, p. 576, pl. 13, figs. 1-3; non Z. cliffordana Edwards & Haime, 1851.

Zaphrentis cliffordana Whitfield, 1891, p. 576, pl. 13, figs. 1-3; non Z. cliffordana Edwards & Haime, 1851.

Amplexizaphrentis ohioensis, n. sp.

Pl. 11, figs. 5-8

Description.—Corallum ceratoïd, holotype with a maximum length of 39 mm and a maximum diameter of 17 mm. Exterior with weakly developed, faintly wrinkled epitheca through which the interseptal ridges are barely visible. Calyx 10 mm deep with erect walls and a wide, flat base formed on the uppermost tabula. Major septa 1 to 2 mm long on calyx walls, extending across base about one-half distance to axis. Minor septa as weakly developed peripheral ridges. Fossula moderately developed, on concave side of corallum. In transverse section septa 60, major extending about one-half distance to axis, minor as short peripheral ridges. Cardinal septum short producing an indistinct fossula. Major septa thickened peripherally, attenuate axially. Tabulae steeply inclined toward concave side of corallum, complete or incomplete, irregularly spaced from less than 0.5 mm to over 2 mm apart. No dissepiments present.

Remarks.—The species differs from "Zaphrentis" cliffordana Edwards and Haime, 1851, in having much shorter major septa.

Occurrence.—Middle Mississippian, Maxville Limestone, Maxville, Ohio.

Types.—Holotype, No. 34220, paratypes, Nos. 34219 and 34221 U.C.M.P.
Family HALIIIDAE

Genus NEOCYSTIPHYLLUM Wedekind

Type species.—By original designation, *N. mccoyi* Wedekind, 1927, p. 78, pl. 19, figs. 7, 8.

Diagnosis.—Simple rugose corals with a well-developed dissepimentarium and pinnate or radially arranged septa which may be thin or dilated axially.

Neocystiphyllum? fenestratum (Whitfield) Pl. 12, fig. 8; Pl. 13, figs. 3, 4

Description.—The only syntype located is a large simple ceratoid coral that has been completely silicified. Maximum length 11 cm, maximum diameter 5.5 cm. Calyx not preserved. Epitheca worn in most places so peripheral edges of septa and dissepiments visible on external surface. Exterior with widely spaced, periodic swellings. In transverse section septa 107, thin, smooth, and long. Major septa extending at least three-fourths distance to axis; minor septa almost as long. Dissepiments numerous, closely set; dissepimentarium occupying peripheral half of corallum. No fossulae or other modification of the protosepta present in the internal structures. In longitudinal section, dissepimentarium composed of numerous rows of small to medium-sized, axially convex dissepiments. Tabularium partly destroyed by silification but where tabulae are present they are typically complete, closely set, and distally convex.

Remarks.—The species is placed tentatively in *Neocystiphyllum*. Hill, 1956, placed *Neocystiphyllum* as a junior subjective synonym of *Phaulactis* Ryder (1926), but the genus does not show the characteristic septal thickening and complete lack of pinnate septal development of typical phaulactids. It appears to be a valid genus and possibly should not be included in the family Halliidae. Whitfield's figures of the other syntype (1882a, pl. 15, figs. 1-2) show a relatively deep, bell-shaped calyx with a distinct cardinal fossula.

Occurrence.—Middle Silurian, Niagaran, Waukesha or Racine Dolomite, Cato, Wisconsin.

Type.—Syntype U.S.N.M., No. 136803.
Family **PHILLIPSASTRAEIDAE**

Genus **HEXAGONARIA** Gürich

Type species.—By subsequent designation of Lang, Smith, and Thomas (1940, p. 69) *Cyathophyllum hexagonum* Goldfuss, 1826 *partim*, p. 61, pl. 20, figs. 1a-b.

Diagnosis.—Cerioid, typically hexagonal rugose coralla having coral-lites with carinate septa small, globose dissepiments and relatively flat, complete or incomplete tabulae.

Hexagonaria anna (Whitfield)
Pl. 10, figs. 5, 6

1948. *Hexagonaria anna* Stumm, Contr. Mus. Paleont., Univ. Michigan, vol. 7, No. 2, pp. 25, 26, pl. 5, fig. 3; pl. 9, figs. 1-3; pl. 13, figs. 1, 2; pl. 14, figs. 3-6.

Remarks.—This species has been described in detail by Stewart (1938) and Stumm (1948). In addition, Stumm (1967) wrote a paper on the blastogeny of the species. *H. anna* is a widespread species, occurring in the Dundee Limestone and the Silica Formation of northwestern Ohio and in the Bell Shale, Rockport Quarry Limestone, and Ferron Point Formation in the Traverse Group of north-central Michigan. The type specimens apparently are from the "blue" limestone member at the base of the Silica Formation.

Types.—Lectotype (chosen by Stumm, 1948, p. 26), O.S.U. No. 15347, paratype No. 15349; other paratypes U.C.M.P., Nos. 34216, 34217, 34218.

Family **CYSTIPHYLIDAE**

Genus **MICROPLASMA** Dybowski

Type species.—By subsequent designation of Wedekind, 1927, p. 64,
Microplasma gotlandicum Dybowski, 1874, p. 508, pl. 5, figs. 5a-d. Silurian, Gotland.

Diagnosis.—Coralla with the internal structures of *Cystiphyllum* but being phaceloid instead of simple in growth form.

Microplasma typica (Whitfield) Pl. 10, figs. 1, 2

Description.—Corallum phaceloid, composed of parallel or subparallel cylindrical corallites ranging from 7 mm to 9 mm in diameter. External features not preserved. Some corallites in lateral contact; others separated by distances as great as their diameters. Interiors or corallites filled with dissepiments and tabellae from 0.5 to 1.5 mm across and with a maximum length of 1.5 mm. Peripheral zone of dissepiments steeply inclined, convex axially and distally, merging into an axial zone of distally convex tabellae. Border between dissepimentarium and tabularium obscure or lacking. Peripheral spinules, if originally present, obscured by recrystallization of small calcite crystals along walls of dissepiments and tabulae.

Remarks.—The species shows a distinct resemblance to *M. lovenianum* Dybowski from the Wenlock Limestone of England as illustrated by White (1966, pp. 149, 150, pl. 22) but differs in having a smaller, less distinct tabularium.

Occurrence.—Middle Silurian, Niagaran Series, upper coral beds, Sturgeon Bay, Wisconsin.

Type.—Holotype U.C.M.P., No. 34213.

Order TABULATA

Family FAVOSITIDAE

Genus FAVOSITES Lamarck

Type species.—By subsequent designation of Edwards and Haime, 1850 (p. 1x), *F. gothlandicus* Lamarck, 1816, p. 205.

Diagnosis.—Compound coralla having pentagonal or hexagonal corallites resembling a honeycomb.

Favosites occidentalis Whitfield Pl. 12, figs. 9, 10; Pl. 13, figs. 1, 2

Description.—Corallum irregularly hemispherical, composed of pentagonal or hexagonal, slightly subrounded corallites. Most corallites averaging a little less than 1.5 mm in diameter and ranging from less than 1 mm in immature corallites to a maximum of 2 mm in irregularly scattered ones, giving the surface of the corallum a diploid appearance. Tabulae relatively thick, horizontal, relatively evenly spaced at about 0.5 mm to 1 mm apart. No true septal spines or ridges present. The apparent presence of septal spines in some corallites due to recrystallization by small calcite crystals. Mural pores almost completely obliterated by dolomitization but appear to have been originally in one or two rows.

Remarks.—The syntypes have been severely altered by dolomitization, but all structures except the mural pores are visible.

Occurrence.—Middle Silurian, Guelph Dolomite, Saukville, Ozaukee County, Wisconsin.

Types.—Lectotype (here chosen) U.S.N.M., No. 136757; paratype U.S.N.M., No. 135945.

Family HALYSITIDAE

Genus CYSTIHALYSITES Tchernychev

Type species.—By original designation Cystihalysites mirabilis Tchernychev, 1941, pp. 70, 71, pl. 2, figs. 5-7; pl. 3, figs. 1-6.

Diagnosis.—Halysitinae with cystose structures in the mesocorallites instead of tabulae and with no septal spinules in the macrocorallites.

Cystihalysites microporus, n. sp. Pl. 11, figs. 1-3

Description.—Corallum with ranks of small corallites of two sizes. Macrocorallites ranging from 1.1 mm to 1.5 mm in maximum diameter with an average of 1.31 mm. Mesocorallites ranging from 0.4 mm to 0.7 mm in maximum diameter. Macrocorallites lacking septal spinules and having flat, complete tabulae spaced at an average distance of 0.43 mm apart. Mesocorallites filled with small, closely crowded, distally convex cysts in two to five horizontal rows.
Remarks.—This species has much smaller macrocorallites and mesocorallites than any other species of *Cystihalysites* known to me.

Occurrence.—Middle Silurian, Niagaran Group, Sturgeon Bay, Wisconsin.

Type.—Holotype U.C.M.P., No. 34214.

Genus *ACANTHOHALYSITES* Hamada

Diagnosis.—Halysitidae with macrocorallites and mesocorallites. Macrocorallites with septal spinules.

Acanthohalysites wisconsinensis, n. sp. Pl. 10, figs. 3, 4; Pl. 11, fig. 4

Description.—Corallum with ranks of relatively large macrocorallites and mesocorallites. Macrocorallites ranging from 1.9 mm to 2.3 mm in maximum diameter, with an average of 2.13 mm. Mesocorallites ranging from 0.4 mm to 0.8 mm in maximum diameter with an average of 0.57 mm. Macrocorallites with 12 septal spinules in well-preserved corallites. Spinules extending an average of about one-third distance to axis. Tabulae of macrocorallites horizontal, spaced from 0.5 mm to 1.0 mm apart. Tabulae of mesocorallites closely set less than 0.5 mm apart and distinctly distally convex.

Remarks.—The distally convex tabulae in the mesocorallites are the distinctive feature of this species. The only other species of *Acanthohalysites* with convex mesocorallite tabulae is *A. encrustans* (Buehler) (1955, pp. 66, 67), and this species has larger macrocorallites and an entirely different growth form. *Acanthohalysites louisvillensis* (Stumm) (1965, p. 79, pl. 80, figs. 8-10) has horizontal tabulae in the mesocorallites.

Occurrence.—Middle Silurian, Niagaran Group, Sturgeon Bay, Wisconsin.

Type.—Holotype U.C.M.P., No. 34215.

Genus *CATENIPORA* Lamarck, 1816

Type species.—By monotypy, *C. escharoides* Lamarck (1816). For detailed synonymy see Thomas and Smith (1954); Buehler (1955); and Hamada (1957).

Diagnosis.—Corallum composed of ranks of macrocorallites lacking mesocorallites but provided with 12 rows of septal spinules in each corallite. Tabulae complete and horizontal.

Catenipora microporus (Whitfield) Pl. 12, fig. 7; Pl. 13, figs. 5, 6

Remarks.—Buehler’s description was taken from specimen; from Michigan and Kentucky, and there are a few differences between his specimens and the holotype.

In the holotype the macrocorallites range from 0.3 to 1.2 mm in larger dimension. The septal spines are short, never extending more than one-half the way to the axis. Both Buehler and Hamada indicate that the longer septa meet to form a pseudocolumella. This feature is not shown on the holotype. The walls are greatly thickened at the junction of the corallites and in some of the thickened walls a small circular pore is present. The tabulae are complete, horizontal, and closely set.

Occurrence.—Middle Silurian, Niagaran Series, upper coral beds, Bailey’s Harbor, Wisconsin.

Type.—Holotype U.S.N.M., No. 136760.

Family **Syringoporidae**

Genus **Syringocolumna**, new genus

Diagnosis.—Phaceloid coralla with internal structures composed of funnel-shaped tabulae, groups of which coalesce axially to form an intermittent columella; no disseipments, cystose structures, or septal spinules present.

Syringocolumna infundibula (Whitfield) Pl. 11, figs. 9-11

Description.—Corallum known only from holotype. Growth habit phaceloid with subparallel cylindrical corallites ranging from 3 mm to 6 mm in diameter. Increase of corallites by lateral gemmation not by transverse stolons as in Syringopora. External features not preserved. Outer walls of corallites thin. Tabulae relatively evenly spaced, funnel-shaped. Groups of adjacent tabulae coalescing to make an axial columella, intermittently developed along each corallite. No other structures present.

Remarks.—Whitfield placed this species in his genus Cystostylus in which the type species is a rugose coral.

Occurrence.—Middle Silurian, Niagaran Group, Racine Dolomite, Howley's Quarry, Milwaukee, Wisconsin.

Type.—Holotype U.C.M.P., No. 34350.

BIBLIOGRAPHY

Batten, R. L.

Buehler, E. J.

Dybowski, W. N.

Easton, W. H.

Edwards, H. M., and Haime, Jules

Etheridge, R.

Goldfuss, G. A.
1826. Petrefacta Germaniae, ... Bd. 1, lief. 1, pp. 1-76, pls. I-XXV.

Grubbs, D. M.

Gürich, G.

Hall, James

In 1882 Hall published the short descriptions of the corals without illustrations in the advance sheets. In 1883 the descriptions appeared exactly as previously written but with illustrations in the Indiana report and a different title. In 1884 he republished the 1882 advance sheets as part of the regular 35th Ann. Rept. with the same wording on species descriptions. He illustrated some of them, but not Dalmanophyllum.

Thomas, H. D., and Smith, Stanley

Thomson, J.

Vaughan, A.

Wedekind, R.

White, D. E.

Whitfield, R. P.
1892. Geology of Wisconsin, vol. 4, pp. 313, 314, pl. 23, figs. 6, 7.
PLATES
EXPLANATION OF PLATE 10

All figures × 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2. Microplasma typica (Whitfield)</td>
<td>Transverse section of holotype. Upper coral beds. Niagaran Series (Middle Silurian), Sturgeon Bay, Wisconsin. U.C.M.P., No. 34213. 2. Longitudinal section of the same specimen.</td>
<td>241</td>
</tr>
<tr>
<td>3,4. Acanthohalysites wisconsinensis, n. sp.</td>
<td>Transverse section of holotype showing septal spinules. Niagaran Series (Middle Silurian), Sturgeon Bay, Wisconsin. U.C.M.P., No. 34215. 4. Longitudinal section of same specimen showing horizontal tabulae in macrocorallites and convex tabulae in mesocorallites.</td>
<td>243</td>
</tr>
<tr>
<td>5,6. Hexagonaria anna (Whitfield)</td>
<td>Transverse section of paratype. Silica Formation (Middle Devonian), Antwerp, Paulding County, Ohio. U.C.M.P., No. 34218. 6. Longitudinal section of same specimen.</td>
<td>240</td>
</tr>
</tbody>
</table>
Exteriors x 1; sections x 2

Figure Page

1-3. Cystihalysites microporus, n. sp. ... 242
1. Transverse section of holotype, Niagaraan Series (Middle Silurian), Sturgeon Bay, Wisconsin. U.C.M.P., No. 34214.
2. Longitudinal section of same specimen showing cysts in mesocorallites. 3. Distal exterior of same specimen.

4. Acanthohalysites wisconsinensis, n. sp. 243

5-8. Amplexizaphrentis ohioensis, n. sp. ... 238
5. Transverse section of paratype. Maxville Limestone (Middle Mississippian), Maxville, Ohio. U.C.M.P., No. 34219. 6. Longitudinal section of paratype. Same occurrence as original of fig. 5. U.C.M.P., No. 34221. 7,8. Transverse and longitudinal views of holotype. Same occurrence as original of fig. 5. U.C.M.P., No. 34220.

9-11. Syringocolumna infundibula (Whitfield) 244
9. Side view of holotype. Racine Dolomite, Niagaraan Series (Middle Silurian), Howley's Quarry, Milwaukee, Wisconsin. U.C.M.P., No. 34350. 10. Transverse section of same specimen. 11. Longitudinal section of same specimen showing intermittent columella.
Figure Page

1-3. *Dalmanophyllum wisconsinensis* (Whitfield) .. 237

4-6. *Asthenophyllum? racinensis* (Whitfield) ... 236
 4-5. Base and side views of cast of calyx of holotype. Racine Dolomite, Niagaran Series (Middle Silurian), Racine, Wisconsin. U.S.N.M., No. 136786. 6. Stereogram of latex mold of same specimen showing cardinal fossula and weak axial boss.

7. *Catenipora microporus* (Whitfield) .. 244

8. *Neocystiphyllum? fenestratum* (Whitfield) ... 239
 Side view of holotype. Waukesha or Racine Dolomite, Niagaran Series (Middle Silurian), Cato, Wisconsin. U.S.N.M., No. 136803.

9,10. *Favosites occidens* Whitfield ... 241
 Distal and proximal views of lectotype (here chosen). Guelph Dolomite, Niagaran Series (Middle Silurian), Saukville, Ozaukee County, Wisconsin. U.S.N.M., No. 136757.
EXPLANATION OF PLATE 13
Figs. 1-4 ×2; figs. 5, 6 × 4

Figure

1,2. **Favosites occidens** Whitfield .. 241
Longitudinal and transverse sections of lectotype (see Pl. 12,
figs. 9, 10).

3,4. **Neocystiphyllum? fenestratum** (Whitfield) 239
Transverse and longitudinal sections of holotype (see Pl. 12,
fig. 8).

5,6. **Catenipora microporus** (Whitfield) 244
Transverse and longitudinal sections of holotype (see Pl. 12,
fig. 7), showing short spinules and moniliform macrocorallites.
INDEX — NO. 250

Index of genera and species

Note: Light face figures refer to page number. Bold face figures refer to plate number.

A
Acanthohalysites 243
Amplexizaphrentis 238
anna, Hexagonaria 10 240
Asthenophyllum 236

C
Catenipora .. 243
Cystihalysites 242

D
Dalmanophyllum 237

F
Favosites .. 241
fenestratum, Neocystiphyllum?12, 13 239

H
Hexagonaria ... 240

I
infundibula, Syringocolumna11 244

M
Microplasma ... 240

microporus, Catenipora12, 13 244
microporus, Cystihalysites11 242

N
Neocystiphyllum 239

O
Occidens, Favosites12, 13 241
ohioensis, Amplexizaphrentis11 238

R
racinensis, Asthenophyllum?12 236

S
Syringocolumna 244

typica, Microplasma10 241

W
wisconsinensis, Acanthohalysites10, 11 243
wisconsinensis, Dalmanophyllum12 237
<table>
<thead>
<tr>
<th>Volume</th>
<th>Page Numbers</th>
<th>Title</th>
<th>Pages</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(No. 184)</td>
<td>996 pp., 1 pls. Type and Figured Specimens P.R.I.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 185-192)</td>
<td>381 pp., 35 pls. Australian Carpod Echinoderms, Yap forams, Shell Bluff, Ga. forams. Newcomb mollusks, Wisconsin mollusk faunas, Camerina, Va. forams, Corry Sandstone.</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(No. 193)</td>
<td>673 pp., 48 pls. Venezuelan Cenozoic gastropods.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 194-198)</td>
<td>427 pp., 29 pls. Orдовician stromatoporoids, Indo-Pacific camerinids, Mississippian forams, Cuban rudists.</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 199-203)</td>
<td>365 pp., 68 pls. Puerto Rican, Antarctic, New Zealand forams, Lepidocyclina, Eumalacostraca.</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(No. 204)</td>
<td>564 pp., 63 pls. Venezuela Cenozoic pelecypods</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 205-211)</td>
<td>419 pp., 70 pls. Large Foraminifera, Texas Cretaceous crustacean, Antarctic Devonian terebratuloid, Osgood and Paleocene Foraminifera, Recent molluscan types.</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 212-217)</td>
<td>584 pp., 83 pls. Eocene and Devonian Foraminifera, Venezuelan fossil scaphopods and polychaetes, Alaskan Jurassic ammonites, Neogene mollusks.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(No. 218)</td>
<td>1058 pp., 5 pls. Catalogue of the Paleocene and Eocene Mollusca of the Southern and Eastern United States.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 219-224)</td>
<td>671 pp., 83 pls. Peneroplid and Australian forams, North American car- poids, South Dakota palynology, Venezuelan Miocene mollusks, Voluta.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 225-230)</td>
<td>518 pp., 42 pls. Venezuela and Florida cirripeds, Antarctic forams, Linnaean Olives, Camerina, Ordovician conodonts, Niagaran forams.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 231-232)</td>
<td>420 pp., 10 pls. Antarctic bivalves, Bivalvia catalogue.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 233, 236)</td>
<td>387 pp., 43 pls. New Zealand forams, Stromatoporoida, Indo-Pacific, Miocene-Pliocene California forams.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 237-238)</td>
<td>488 pp., 45 pls. venezuela Bryozoa, Kinderhookian Brachiopods.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 239-245)</td>
<td>510 pp., 50 pls. Dominic ostracodes, Texan pelecypods, Wisconsin mol- lusks, Siphocyprea, Lepidocyclina, Devonian gastropods, Miocene Pectens Guadaloupe.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 246-247)</td>
<td>657 pp., 60 pls. Cenozoic corals, Trinidad Neogene mollusks.</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Nos. 248-249)</td>
<td>230 pp., 9 pls. American Foraminifera, North Carolina fossils.</td>
<td>8.00</td>
<td></td>
</tr>
</tbody>
</table>

PALEONTOGRAPHICA AMERICANA

Volume I. See Johnson Reprint Corporation, 111 Fifth Ave., New York, N. Y. 10003

Monographs of Arcas, Lutetia, rudistids and venerids.

II. (Nos. 6-12). 531 pp., 37 pls. Heliophyllum halli, Tertiary turrids, Neocene Sponyli, Paleozoic cephalopods, Tertiary Fasciolarias and Paleozoic and Recent Hexactinellida. 23.00

III. (Nos. 13-25). 513 pp., 61 pls. Paleozoic cephalopod structure and phylogeny, Paleozoic siphonophores, Busycen, Devonian fish studies, gastropod studies, Carboniferous crinoids, Cretaceous jellyfish, Platystrophia and Venericardia. 28.00

IV. (Nos. 26-33). 492 pp., 72 pls. Rudist studies Busycen, Dalmanellidae, Byssonychia, Devonian lycopods, Ordovician eurypterids, Pliocene mollusks. 28.00

V. (Nos. 34-37). 445 pp., 101 pls. Tertiary Arcacea, Mississippian pelecypods, Ambonychidae, Cretaceous Gulf Coastal forams. 32.00

VI. (Nos. 38, 39). 135 pp., 29 pls. Lycopsids and sphenoids of Freeport Coal, Venericardia. 8.75
Vols. I-XXIII. See Kraus Reprint Corp., 16 East 46th St., New York, N. Y. 10017, U. S. A.

XXIV. (Nos. 80-87). 334 pp., 27 pls. 12.00
Mainly Paleozoic faunas and Tertiary Mollusca.

XXV. (Nos. 88-94B). 306 pp., 30 pls. 12.00
Paleozoic fossils of Ontario, Oklahoma and Colombia, Meso-
ozoic echinoids, California Pleistocene and Maryland Mio-
cene mollusks.

XXVI. (Nos. 95-100). 420 pp., 58 pls. 14.00
Florida Recent marine shells, Texas Cretaceous fossils,
Cuban and Peruvian Cretaceous, Peruvian Eocene corals,
and geology and paleontology of Ecuador.

XXVII. (Nos. 101-108). 376 pp., 36 pls. 14.00
Tertiary Mollusca, Paleozoic cephalopods, Devonian fish
and Paleozoic geology and fossils of Venezuela.

XXVIII. (Nos. 109-114). 412 pp., 34 pls. 14.00
Paleozoic cephalopods, Devonian of Idaho, Cretaceous and
Eocene mollusks, Cuban and Venezuelan forams.

XXIX. (Nos. 115-116). 738 pp., 52 pls. 18.00
Bowden forams and Ordovician cephalopods.

XXX. (No. 117). 563 pp., 65 pls. 16.00
Jackson Eocene mollusks.

XXXI. (Nos. 118-128). 458 pp., 27 pls. 16.00
Venezuelan and California mollusks, Chemung and Pennsyl-
vianian crinoids, Cypraeidae, Cretaceous, Miocene and
Recent corals, Cuban and Floridian forams, and Cuban
Fossil localities.

XXXII. (Nos. 129-133). 294 pp., 39 pls. 16.00
Silurian cephalopods, crinoid studies, Tertiary forams, and
Mytilarca.

XXXIII. (Nos. 134-139). 448 pp., 51 pls. 16.00
Devonian annelids, Tertiary mollusks, Ecuadorian strati-
graphy palaeontology.

XXXIV. (Nos. 140-145). 400 pp., 19 pls. 16.00
Trinidad Globigerinidae, Ordovician Enopleura, Tasmanian
Ordovician cephalopods and Tennessee Ordovician ostra-
cods and conularid bibliography.

XXXV. (Nos. 146-154) 386 pp., 31 pls. 16.00
G. D. Harris memorial, camerinid and Georgia Paleocene
Foraminifera, South America Paleozoics, Australian
Ordovician cephalopods, California Pleistocene Eulimidae,
Volutidae, and Devonian ostracods from Iowa.

XXXVI. (Nos. 155-160). 412 pp., 53 pls. 16.00
Globotruncana in Colombia, Eocene fish, Canadian Chazyan
Antillean Cretaceous rudists, Canal Zone Foraminifera,
fossils, foraminiferal studies.

XXXVII. (Nos. 161-164). 486 pp., 37 pls. 16.00
Antillean Cretaceous Rudists, Canal Zone Foraminifera,
Stromatoporoida.

XXXVIII. (Nos. 165-176). 447 pp., 53 pls. 18.00
Venezuela geology, Oligocene Lepidocyclina, Miocene ostra-
cods, and Mississippian of Kentucky, turritellid from Vene-
zuela, larger forams, new mollusks, geology of Carriacou,
Pennsylvanian plants.

XXXIX. (Nos. 177-183). 448 pp., 36 pls. 16.00
Panama Caribbean mollusks, Venezuelan Tertiary forma-
tions and forams, Trinidad Cretaceous forams, American-
European species, Puerto Rico forams.