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Mixed shell element for seven-parameter formulation
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SUMMARY

A new mixed shell element is developed for a seven-parameter formulation in this paper. The mixed
shell element is constructed by assuming stress field and displacement field together. Assumed stress
field and assumed displacement field can be combined by stress–strain relationship with Hu-Washizu
functional. The developed mixed shell element can provide more flexible stiffness than other com-
mercial softwares. Additionally, seven-parameter shell formulation is used instead of Reissner/Mindlin
formulation, since it can provide the thickness change. Even though some commercial engineering
software are not proper for very thick shell structure, the developed mixed shell element for seven-
parameter formulation can be used without distinction of thick shell and thin shell. An example of
shell models with different thickness is provided with solid model. Static and modal analyses are also
performed for verification. Copyright � 2005 John Wiley & Sons, Ltd.

KEY WORDS: mixed shell element; seven-parameter shell formulation; thickness change; orthogonal
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INTRODUCTION

It took many years of struggle for engineers and researchers to make an efficient shell ele-
ment. Among various shell elements, low-order shell element is more popular than high-order
element due to its convenience to construct model and low cost of computation. It can be
applied in many industrial fields, such as automotive, aerospace, and even MEMS.

Many efforts have been made to make an efficient shell element in the past years. Even
though it is impossible to present all the related papers, it is meaningful to list some important
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96 Y. HAHN AND N. KIKUCHI

contributors for it: Ahmad introduced the degenerated shell element from solid element [1].
Since this element can be derived directly from the fundamental three-dimensional continuum
mechanics, it has been very popular over the past years. However, the computing cost is
expensive and it has some limitations to the non-linear analysis; Argyris [2, 3] developed a new
triangle element that used the three axes—which is called the natural co-ordinate—which are
parallel to the sides of triangle. This method does not need expensive numerical integration,
since the stiffness method is derived with a simple algebraic expression. It also eliminates
shear-locking effect; Hughes developed a reduced integration scheme [4] and Belytschko et al.
introduced one-point integration and the stabilization scheme for element’s rank deficiency [5].
LS-DYNA used Belytschko’s shell element and provides fast calculation; Simo re-examined the
incompatible mode approach and developed assumed enhanced strain element [6, 7]. This kind
of assumed strain method is widely used [8–10]; even though assumed strain method is known
as an old method, assumed stress method is a much older method [11–13]. In fact, it can be
said that the assumed stress method is the first finite element technique. Recently, Sekiguchi
focused on this method and developed the distortion-free element [14].

In this paper, mixed shell element is considered. Instead of assuming the strain part only,
an assumed stress field is also used at the same time. Two assumed fields can be combined
by stress–strain relationship with Hu-Washizu functional.

In order to enhance the drawback of conventional shell formulation, seven-parameter shell
formulation [15, 16] is considered in this paper. Conventional shell formulation, which is
Reissner/Mindlin formulation [17, 18], cannot deal with the thickness change, since constant
thickness is assumed. This effects the conventional shell formulation which cannot handle very
thick shell structure. In order to deal with either the thick shell or thin shell, seven-parameter
shell formulation [15, 16] is considered. Even though six-parameter shell formulation is dealt
with thickness change, it has a problem of thickness locking. In order to cure the thick-
ness locking, seven-parameter shell formulation should be used. The mixed shell element is
developed for this seven-parameter formulation.

The organization of this paper is as follows. First, a seven-parameter shell formulation is
introduced based on Bischoff [15]. Second, the mixed shell element is developed for seven-
parameter formulation. Finally, several interesting numerical solution is compared with the
analytical solution and other commercial software. Small deformation and linear elastic and
isotropic materials are considered in this paper.

SEVEN-PARAMETER SHELL FORMULATION

Kinematics

Figure 1 shows the original and deformed configurations of the middle surface of a shell struc-
ture. ai is the unit direction vector and �i is the surface co-ordinate (the symbol i describes
corresponding co-ordinate direction). Then, the kinematics of seven-parameter shell formulation
can be defined as follows [15]:

x = r + �3a3, x̄ = r̄ + �3ā3, r̄ = r + v, ā3 = a3 + w (1)
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Figure 1. Kinematics of seven-parameter shell formulation.

where the bar describes the deformed configuration. Each variable is the function of the surface
co-ordinate:

x̄ = x̄(�1, �2, �3), x = x(�1, �2, �3)

r̄ = r̄(�1, �2), r = r(�1, �2), a3 = a3(�
1, �2), ā3 = ā3(�

1, �2)
(2)

The unit normal vector of the surface can be also defined as

a� = �r
��� = r,� and a3 = h

2

a1 × a2

|a1 × a2| , h : shell thickness (3)

Using the above relationships, the displacement vector can be obtained as follows:

u = x̄ − x = r + v + �3(a3 + w) − r − �3a3 = v + �3w (4)

If we assume that w is just a rotation vector, this kinematic equation represents Reissner/Mindlin
formulation, which is called five-parameter shell formulation, (Equation (5)). However, consid-
ering w as a translational vector that represents the thickness change and rotation, the kinematic
equation for seven-parameter shell formulation can be obtained (Equation (6)).⎧⎪⎪⎨

⎪⎪⎩
ux

uy

uz

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

vx

vy

vz

⎫⎪⎪⎬
⎪⎪⎭ + �3

{
wx

wy

}
(5)
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⎧⎪⎪⎨
⎪⎪⎩

ux

uy

uz

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

vx

vy

vz

⎫⎪⎪⎬
⎪⎪⎭ + �3

⎧⎪⎪⎨
⎪⎪⎩

wx

wy

wz

⎫⎪⎪⎬
⎪⎪⎭ (6)

where wz in Equation (6) is the thickness change and the variables of wx and wy are just
translation vectors which describe rotational behaviour.

The strain tensor can be obtained using Green–Lagrange strain tensor that is dependent on
displacement [15].

Eij = Eu
ij (i, j = 1, 2, 3)

Eu
ij = 1

2 (g iQu, j + gjQu, i + u, jQu, i )
(7)

where g� = x,� = r,� + �3a3,� and g3 = x,3 = a3. In seven-parameter shell formulation,
the strain tensor is defined differently by adding additional enhanced assumed strain field
Ẽ33 to prevent the thickness locking. This additional strain is known as a seventh parameter
[15, 16, 19].

Eij = Eu
ij + Ẽij (i, j = 1, 2, 3)

Eu
ij = 1

2 (g iQu, j + gjQu, i + u, jQu, i )

Ẽkl = 0 (k, l) �= (3, 3)

(8)

Therefore, we can symbolize the above equation as follows:

Eu
ij = �ij + h

2
�3�ij + h2

4
(�3)2�ij (9)

With the small displacement assumption, the symbol of Eij can be changed to �ij and the
higher order terms can be ignored [15].

�ij = �ij + �3�ij (10)

The detailed strain components can be found in Reference [15].

Stiffness matrix

In order to construct the complete three-dimensional shell formulation, Hu-Washizu functional,
which can make three-field formulation, is used instead of strain potential energy that is only
dependent on displacement field. The Hu-Washizu functional for small deformation and linear
elastic material can be described as follows [20]:

�HW =
∫

1

2
�TD� − �TD�0 + �T�0 + �T(Lu − �) d� − �ext (11)

where L is strain displacement operator, D is elastic modulus coefficient, � is strain, �0 is
initial strain, �0 is initial stress, and �ext is external work. If the strain field is assumed as
Equation (12) and no initial strain and stress, Equation (13) can be obtained from Equation (11).
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Equation (14) represents the constitutive equation for linear material.

� = Lu + �̃ (12)

�HW =
∫

1

2
�TD� + �T(Lu − �) d� − �ext (13)

� = D� (14)

Then, the following weak form can be obtained:

��HW =
∫

��TD� − ��T�̃ + �T(L�u) − �T�� d� − ��ext = 0 (15)

It can be derived that the additional incompatible strain field �̃ is to satisfy the orthogonality
condition from the maximization of saddle point problem [14, 16].∫

��T�̃ d� = 0 (16)

The following equation can be described from Equation (15) with Equations (12)–(14):

��HW =
[∫

��T(D� − �) − ��T�̃ + (L�u)T� d�

]
−

[∫
�uTb d� +

∫
�uTt dA

]
= 0 (17)

where b is body force and t is traction force. The external force is described as body force
and traction force in Equation (17). Using Equations (14) and (16), Equation (17) turns to the
general weak form for linear static analysis:[∫

(L�u)T� d�

]
=

[∫
�uTb d� +

∫
�uTt dA

]
(18)

Instead of using Equation (18), the generalized Equation (19) is also useful [20].[∫
��T(D� − �) − ��T�̃ + (L�u)T� d�

]
−

[∫
�uTb d� +

∫
�uTt dA

]
= 0

[∫
��T(D� − �) d�

]
= 0

[∫
��T�̃ d�

]
= 0

(19)

Based on the displacement method, the finite element formulation for a seven-parameter shell
model can be derived. Using Equation (10), the following form can be derived:[∫

��T� d�

]
=

[∫
�(� + �3�)T� d�

]
=

[∫
��T� + �3��T� d�

]

=
[∫

��T
∫

� d�3 dA +
∫

��T
∫

�3� d�3 dA

]
=

[∫
��Tn + ��Tm dA

]
(20)
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where n and m are stress resultants. Stress resultant is the integration of stress in thickness
direction as shown in Equation (20). Therefore, full expression of weak form is as follows:

[∫
{��11n

11 + ��22n
22 + ��33n

33 + 2(��12n
12 + ��13n

13 + ��23n
23)

+��11m
11 + ��22m

22 + ��33m
33 + 2(��12m

12 + ��13m
13 + ��23m

23)} dA

]

=
[∫

�uTb d� +
∫

�uTt dA

]
(21)

where �33 is an additional enhanced assumed strain which is orthogonal to the stress.
Then, the discretization is possible for finite element method with additional incompatible

strain field discretized as follows [16]:

�33 = �1 + �2� + �3� + �4�� = {1 � � ��}{�1 �2 �3 �4}T = H� (22)

where � is dummy variable to describe incompatible strain field. From the above equations,
the final strain–displacement relation matrix can be obtained as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�11

�22

�33

2�12

2�13

2�23

�11

�22

2�12

2�13

2�23

�33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[r̃TNT
,1]N,1 0 0

[r̃TNT
,2]N,2 0 0

0 [anT
3 NT]N 0

[r̃TNT
,1]N,2 + [r̃TNT

,2]N,1 0 0

[anT
3 NT]N,1 [r̃TNT

,1]N 0

[anT
3 NT]N,2 [r̃TNT

,2]N 0

[anT
3 NT

,1]N,1 [r̃TNT
,1]N,1 0

[anT
3 NT

,1]N,2 [r̃TNT
,2]N,2 0

[anT
3 NT

,1]N,2 + [anT
3 NT

,2]N,1 [r̃TNT
,1]N,2 + [r̃TNT

,2]N,1 0

0 [anT
3 NT

,1]N + [anT
3 NT]N,1 0

0 [anT
3 NT

,2]N + [anT
3 NT]N,2 0

0 0 H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ṽ

w̃

�

⎫⎪⎪⎬
⎪⎪⎭ ⇔ E = Bd

(23)

where r = Nr̃, a3 = Nan
3 , v = Nṽ, and w = Nw̃.
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And stress resultant can be described in terms of strain as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n11

n22

n33

n12

n13

n23

m11

m22

m12

m13

m23

m33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ēh 	h 	h 0 0 0 0 0 0 0 0 0

	h Ēh 	h 0 0 0 0 0 0 0 0 0

	h 	h Ēh 0 0 0 0 0 0 0 0 0

0 0 0 Gh 0 0 0 0 0 0 0 0

0 0 0 0 Ghq 0 0 0 0 0 0 0

0 0 0 0 0 Ghq 0 0 0 0 0 0

0 0 0 0 0 0 Ēh̄ 	h̄ 0 0 0 	h̄

0 0 0 0 0 0 	h̄ Ēh̄ 0 0 0 	h̄

0 0 0 0 0 0 0 0 Gh̄ 0 0 0

0 0 0 0 0 0 0 0 0 Gh̄q 0 0

0 0 0 0 0 0 0 0 0 0 Gh̄q 0

0 0 0 0 0 0 	h̄ 	h̄ 0 0 0 Ēh̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�11

�22

�33

2�12

2�13

2�23

�11

�22

2�12

2�13

2�23

�33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= DE

(24)

where

Ē = E(1 − 
)

(1 + 
)(1 − 2
)
, 	 = E


(1 + 
)(1 − 2
)
, G = E

2(1 + 
)
, hq = �h,

h̄ = h3

12
, h̄q = �h̄

�, � is shear correction factor.
In Equation (23), a remedy is needed in order to prevent the ill-conditioned stiffness matrix.

If Equation (24) is concerned, it is easy to recognize that the term of h̄ (= h3/12) will cause
ill-conditioned problem. Wall et al. [21] proposed scaled director conditioning (SDC) method
to prevent ill-conditioned matrix. In this paper, (2/h) is multiplied to the second column of
B and (h/2) is multiplied to w in Equation (23) instead of using SDC method. The concept
is identical, but this is simpler and easier to implement. The normal vector a3 should be unit
vector in this case. Actually, this kind of method is already used in other paper [22] but it is not
presented as a tool in order to cure the ill-conditioning problem. Figure 2 shows the comparison
of eigenvalues as the thickness becomes smaller. The formulation with this numerical treatment
can provide reasonable results. Otherwise, non-physical eigenvalue distribution is shown.

Finally, ordinary stiffness matrix can be constructed using the above Equations (23) and (24)
and the additional incompatible strain term can be removed by static condensation.
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Figure 2. Comparison of eigenvalues with and without numerical treatment as thickness decreases.

Mass matrix

It can be derived from kinetic energy which is a part of external work. With the previous
expressions, the mass matrix can be obtained as follows:

�K.E. =
∫

(�u̇T�u̇) d� = �ḋ
T

∫
(NTD�N) dAḋ

= �

⎧⎨
⎩

˙̃v
˙̃w

⎫⎬
⎭

T ∫
NT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�h 0 0 0 0 0

0 �h 0 0 0 0

0 0 �h 0 0 0

0 0 0 �h3/12 0 0

0 0 0 0 �h3/12 0

0 0 0 0 0 �h3/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N dA

{ ˙̃v
˙̃w

}
(25)
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For mass matrix in Equation (25), row-sum technique is generally used for modal analysis
or time integration method. Row-sum technique is to make mass matrix diagonalize—diagonal
value in matrix is substituted for summation value of all members in corresponding row and
every off-diagonal member is exchanged by zero. Usually, mass matrix with the same shape
function used in stiffness matrix is called consistent mass matrix and mass matrix with row-sum
technique is called lumped mass matrix. Generally, lumped mass matrix is used to obtain the
low frequencies and consistent mass matrix is used for high frequencies.

In seven-parameter shell formulation, row-sum technique can be easily used, since all dis-
placement vectors are described by translational vectors. However, for Reissner/Mindlin shell
formulation, another technique to treat rotational vector is needed, since the independent vari-
ables are organized by translational and rotational vectors. However, the ignorance of rotational
inertia term makes no difference if only the lowest eigenvalues are concerned since the rotational
inertia term provides very high frequencies.

MIXED SHELL ELEMENT FOR SEVEN-PARAMETER FORMULATION

In order to make mixed shell element for seven-parameter formulation, the assumed stress field
should be defined first. Based on five-parameter shell model, the assumed stress modes can be
described as follows in general:

�11 = c1 + c2�
2 + c3�

3 + c4�
2�3

�22 = c5 + c6�
1 + c7�

3 + c8�
1�3

�33 = 0

�12 = c13 + c14�
3

�13 = c15 + c16�
2

�23 = c17 + c18�
1

(26)

where c is constant parameter. Since five-parameter shell model assumed no thickness change,
there is no stress in thickness direction. However, the thickness direction stress should be
inserted in seven-parameter shell model as follows:

�11 = c1 + c2�
2 + c3�

3 + c4�
2�3

�22 = c5 + c6�
1 + c7�

3 + c8�
1�3

�33 = c9 + c10�
1 + c11�

2 + c12�
1�2

�12 = c13 + c14�
3 + c15�

1�3 + c16�
2�3

�13 = c17 + c18�
2 + c19�

2�1 + c20�
2�3

�23 = c21 + c22�
1 + c23�

1�2 + c24�
1�3

(27)

Similar assumed stress components can be found in the Sansour’s work [23, 24].
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In Equation (20), stress resultants for seven-parameter shell formulation can be derived as
follows:

n11 =
∫ h/2

−h/2
S11 d�3 =

∫ h/2

−h/2
(c1 + c2�

2 + c3�
3 + c4�

2�3) d�3 = h(c1 + c2�
2)

n22 =
∫ h/2

−h/2
S22 d�3 =

∫ h/2

−h/2
(c5 + c6�

1 + c7�
3 + c8�

1�3) d�3 = h(c5 + c6�
1)

n33 =
∫ h/2

−h/2
S33 d�3 =

∫ h/2

−h/2
(c9 + c10�

1 + c11�
2 + c12�

1�2) d�3

= h(c9 + c10�
1 + c11�

2 + c12�
1�2)

n12 =
∫ h/2

−h/2
S12 d�3 =

∫ h/2

−h/2
(c13 + c14�

3 + c15�
1�3 + c16�

2�3) d�3 = h(c13)

n13 =
∫ h/2

−h/2
S13 d�3 =

∫ h/2

−h/2
(c17 + c18�

2 + c19�
2�1 + c20�

2�3) d�3

= h(c17 + c18�
2 + c19�

2�1)

n23 =
∫ h/2

−h/2
S23 d�3 =

∫ h/2

−h/2
(c21 + c22�

1 + c23�
1�2 + c24�

1�3) d�3

= h(c21 + c22�
1 + c23�

1�2)

(28)

m11 =
∫ h/2

−h/2
�3S11 d�3 =

∫ h/2

−h/2
�3(c1 + c2�

2 + c3�
3 + c4�

2�3) d�3 = h3

12
(c3 + c4�

2)

m22 =
∫ h/2

−h/2
�3S22 d�3 =

∫ h/2

−h/2
�3(c5 + c6�

1 + c7�
3 + c8�

1�3) d�3 = h3

12
(c7 + c8�

1)

m33 =
∫ h/2

−h/2
�3S33 d�3 =

∫ h/2

−h/2
�3(c9 + c10�

1 + c11�
2 + c12�

1�2) d�3 = 0

m12 =
∫ h/2

−h/2
�3S12 d�3 =

∫ h/2

−h/2
�3(c13 + c14�

3 + c15�
1�3 + c16�

2�3) d�3

= h3

12
(c14 + c15�

1 + c16�
2)

m13 =
∫ h/2

−h/2
�3S13 d�3 =

∫ h/2

−h/2
�3(c17 + c18�

2 + c19�
2�1 + c20�

2�3) d�3 = h3

12
(c20�

2)

m23 =
∫ h/2

−h/2
�3S23 d�3 =

∫ h/2

−h/2
�3(c21 + c22�

1 + c23�
1�2 + c24�

1�3) d�3 = h3

12
(c24�

1)

(29)
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where h is thickness, n and m are stress resultants. Each stress resultant mode can be found
in Reference [15].

In Equation (29), m33 is zero. However, the enhanced assumed strain in seven-parameter
formulation makes us construct the corresponding assumed stress field:

m33 = m̃33 = h3

12
(c25 + c26�

1 + c27�
2 + c28�

1�2) (30)

Therefore, the complete assumed stress field for the seven-parameter shell model is constructed:
in order to match the linear strain field in seven-parameter formulation, the linear stress field
in thickness direction should be constructed as follows:

�11 = c1 + c2�
2 + (c3 + c4�

2)�3

�22 = c5 + c6�
1 + (c7 + c8�

1)�3

�33 = c9 + c10�
1 + c11�

2 + c12�
1�2 + (c25 + c26�

1 + c27�
2 + c28�

1�2)�3

�12 = c13 + (c14 + c15�
1 + c16�

2)�3

�13 = c17 + c18�
2 + c19�

2�1 + c20�
2�3

�23 = c21 + c22�
1 + c23�

1�2 + c24�
1�3

(31)

Then, the matrix form for assumed stress can be constructed as the following matrix form:

s = Mc

s = {n11 n22 n33 n12 n13 n23 m11 m22 m12 m13 m23 m33}T

c = {c1 · · · c24 c25 c26 c27 c28}T

(32)

The matrix form of M can be found in Appendix A. Therefore, the alternate weak form can
be derived from Equation (20).∫

��TD� d� −
[∫

�uTb d� +
∫

�uTt dA

]
= 0

∫
��TD� d� ⇒

∫
��T

∫
� d�3 dA =

∫
��T

∫
� d�3 + ��T

∫
�3� d�3 dA

=
∫

�ETs dA = �dT
∫

BTM dAc

[∫
�uTb d� +

∫
�uTt dA

]
⇒ �dT

∫
NTb d� + �dT

∫
NTt dA = �dTf

∴
∫

BTM dAc = f

(33)

Equation (33) is constructed by assumed stress only. In order to make mixed shell element,
displacement field should be also assumed. In the previous section, the assumed displacement
field is already introduced.
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The relationship between assumed stress field and displacement can be derived considering
Equations (19) and (14)—it is derived directly if the complementary energy is considered.∫

��T(D−1� − �) d� = 0 ⇔
∫

��TD−1� d� =
∫

��T� d� (34)

Equation (34) can be described differently in terms of stress as follows:

∫
��TD−1� d� = �cT

∫
HTD̄

−1
H dAc

∫
��T� d� =

∫ (∫
��T d�3� +

∫
��T�3 d�3�

)
dA (35)

=
∫

�nT� + �mT� dA = �cT
∫

MTB dAd

where H and D̄
−1

are shape function matrix and inverse of elastic modulus coefficient, respec-
tively, which are shown in Appendix A.

Therefore, Equation (34) can be described in matrix form as follows:∫
HTD̄

−1
H dAc =

∫
MTB dAd ⇔ c = M̃

−1
Fd

M̃ =
∫

HTD̄
−1

H dA

F =
∫

MTB dA

(36)

Substituting (36) to (33),∫
BTM dAc = f ⇔ FTM̃

−1
Fd = f ⇔ K̃d = f (37)

Equation (37) is the final form of matrix equation for mixed shell element for seven-parameter
formulation for linear elastic material.

This mixed shell element does not pass the patch test. However, the convergence is observed
from several examples. In next section, various convergence examples will be provided.

NUMERICAL EXAMPLES

Commercial software, such as MSC/NASTRAN v2004, ABAQUS v6.2, and ANSYS v8.1,
are used for reference. In tables, each symbol of T x, Ty, and T z stands for displacement in
x-, y-, and z-direction, respectively.
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Figure 3. Finite element model for thick square plate.

Table I. The results of thick square plate.

T x Ty T z Thickness change

In-house (mixed) 1.0 −0.3 0.0 −0.15
MSC/NASTRAN 1.0 −0.3 0.0 N/A
ANSYS 1.0 −0.3 0.0 N/A
ABAQUS 1.0 −0.3 0.0 N/A

Table II. The results of cantilever case of tension test model with
constraint in the thickness direction.

T x Ty T z Thickness change

In-house (mixed) 0.936 −0.225 0.0 −0.225
MSC/NASTRAN 0.977 −0.225 0.0 N/A
ANSYS 0.978 −0.225 0.0 N/A
ABAQUS 0.977 −0.224 0.0 N/A

Tension test for thick square plate

The model is shown in Figure 3. This example is a good example to compare conventional shell
formulation and seven-parameter shell formulation. Even though the shape of model in Figure 3
is two-dimensional plate, the model is a hexahedron solid since the thickness is the same as the
surface dimension. Commercial software based on five-parameter shell formulation and in-house
program based on seven-parameter shell formulation are tested. Considering boundary condition,
the answer should be the same, since it is just tension test. Table I shows that the displacement
results of forced node. The only in-house program can provide the thickness change.

If one end is fixed like a cantilever beam, the interesting result can be obtained as shown
in Table II. In commercial software, the displacement in the normal direction of load is the
same as that of in-house program, even though the displacement result in the loading direction
is larger than that of in-house program.

Another example is to release the constraint in the thickness direction. Table III shows the
results of this case. Mixed shell element provides almost the same values as other commercial
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Table III. The results of cantilever case of tension test model
without constraint in the thickness direction.

T x Ty T z Thickness change

In-house (mixed) 0.977 −0.225 0.0 −0.127
MSC/NASTRAN 0.977 −0.225 0.0 N/A
ANSYS 0.978 −0.225 0.0 N/A
ABAQUS 0.977 −0.224 0.0 N/A

Table IV. The results of cantilever case of tension test model
with solid element (CHEXA) of MSC/NASTRAN.

T x Ty T z Thickness change

MSC/NASTRAN 0.936 −0.225 −0.225 N/A

software. Especially, the same results are provided with MSC/NASTRAN except for thickness
change.

If the solid element model is tested, its result is identical to that of in-house program.
Therefore, in-house program is more reasonable in physical point of view (Table IV).

Shear test for plate

This example is famous for shear test and described in Reference [25]. The model is shown
in Figure 4. As shown in Table V, the result of in-house program presents similar results
compared with other software. Unlike the previous example, the irregular elements are used
and tested in this case. Table V shows the displacements of one of tip nodal points applied
force. The results of in-house program are little larger than those of commercial software.
However, those are acceptable in author’s opinion since the error is not severe.

Out-of-plane bending test for plate

The model, which has the dimension of 6 mm for length, 0.2 mm for width, and 0.1 mm for
thickness, is shown in Figure 5. Typical case of out-of-plane bending is examined. The results
show good performance of in-house program in Table VI. Table VI shows the displacement
results of tip nodes applied force. The analytical solution is 0.432 based on Reference [26].
There is only small difference between in-house and commercial software. All of programs
provide good performance for out-of-plane bending case.

Twisted beam

The model is shown in Figure 6. This example is for testing a distorted shell element.
Table VII shows good displacement results of in-house program which used mixed shell
element compared with the analytical solution, 1.75e-3, from Reference [26] at the node applied
force. ANSYS provides the largest deformation value compared with other results.
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Figure 4. Finite element model for shear test (E = 2.0e8, v = 0.3, t = 0.1).

Table V. The results of shear test.

T x Ty T z

In-house (mixed) −1.272e-6 1.0967e-5 0.0
MSC/NASTRAN −1.336e-6 1.0432e-5 0.0
ANSYS −1.336e-6 1.0432e-5 0.0
ABAQUS −1.329e-6 1.0471e-5 0.0

 

Fixed 

Fx=0.5 

E=10.e6, v=0.3, t=0.1 

0.2 

 1 

6 

Fx=0.5 

x 

y 

Figure 5. Finite element model for out-of-plane bending test.

18◦ pinched hole hemisphere

This example is famous for testing shell element. The model is shown in Figure 7. The results
in Table VIII show good performance of in-house program. Table VIII shows the displacement
result at the node applied force. The reference value, 0.094, is presented as an upper bound in
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Table VI. The results of out-of-plane bending test.

T x Ty T z

In-house (mixed) 0.0 0.0 0.424
MSC/NASTRAN 0.0 0.0 0.426
ANSYS 0.0 0.0 0.422
ABAQUS 0.0 0.0 0.424

Figure 6. Finite element model for curved plate (E = 2.9e7, v = 0.22, t = 0.32).

Table VII. The results of curved plate.

T x Ty T z

In-house (mixed) −3.368e-10 1.873e-3 2.340e-3
MSC/NASTRAN −6.564e-18 1.760e-3 2.263e-3
ANSYS 1.813e-11 1.869e-3 2.421e-3
ABAQUS −3.285e-11 1.914e-3 2.227e-3

Reference [26]. Considering the theoretical upper bound 0.094, in-house program has a little
larger result.

Open section frame

The model is shown in Figure 8. This model is considered as a practical case that can be
used in real industrial field—it is also considered in Reference [25]. This model can be used
as a component of side frame of commercial vehicle. Since the analytical solution cannot be
provided, the results of other softwares are compared. The displacement results at the node
applied force in Table IX shows that the in-house presents good performance.

Thin plate and thick plate

Two plate models constructed by shell and solid elements are shown in Figures 9(a) and (b),
respectively. Two different models that have different thicknesses are tested. Both models have
2 mm length and 2 mm width. However, one of them has 0.01 mm thickness and the other has
1 mm thickness. First, MSC/NASTRAN is used to simulate free–free modal analysis. The first
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Figure 7. Finite element model for 18◦ pinched hole hemisphere (E = 6.83e7, v = 0.3, t = 0.04).

Table VIII. The results of 18◦ pinched hole hemisphere.

T x Ty T z

In-house (mixed) 9.569e-2 1.011e-2 0.0
MSC/NASTRAN 9.355e-2 5.336e-2 0.0
ANSYS 9.300e-2 5.540e-2 0.0
ABAQUS 9.294e-2 4.901e-2 0.0

Table IX. The results of open section beam.

T x Ty T z

In-house (mixed) −2.440e-3 −1.153e-3 −1.418e-4
MSC/NASTRAN −2.433e-3 −1.154e-3 −1.417e-4
ANSYS −2.432e-3 −1.154e-3 −1.417e-4
ABAQUS −2.53e-3 −1.154e-3 −1.417e-4

three modal results from modal analysis are compared between shell model and solid model in
Table X. For the 0.01 mm thickness, the results of shell model and solid model are similar, but
they are different for the 1mm thickness. Especially, the third natural frequency and modeshape
of the 1 mm thickness models are different between shell model and solid model.

Table XI shows the results of in-house program—mixed shell element for seven-parameter
formulation. First mode is bending and next two modes are torsion modes. There is no difference
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Figure 8. Finite element model for open section beam (E = 1.0e7, v = 0.333, t = 0.05).

Figure 9. Finite element models of plate with 0.01 and 1 mm thickness (E = 2.0e5, v = 0.3): (a)
models of thickness 0.01 mm (shell (left) and solid (right) elements); and (b) models of thickness

1.0 mm (shell (left) and solid (right) elements).

between the results of shell model and solid model. The third natural frequency and mode
shape of 1 mm thickness shell model are close to those of solid model. The results of in-
house program are also close to those of MSC/NASTRAN. Even though the eigenvalue of
in-house program is a little less than that of solid element model and MSC/NASTRAN, they
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Table X. First three natural frequencies and modeshapes by MSC/NASTRAN.
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Table XI. First three natural frequencies and modeshapes by in-house program.
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Figure 10. Bracket finite element model (E = 3.0e7, v = 0.3, t = 0.05).

Figure 11. Deformed contour result of bracket model.

are acceptable results since the difference is not severe. Therefore, it is obvious that in-
house program developed in this paper can be used without distinction of the thin and
thick shells. (The solid element is also implemented with selective reduced integration method
in this paper. The results of solid model in Table XI come from the developed solid
element).
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Bracket Model
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Figure 12. Convergence of tip deflection according to the number of element.

Figure 13. Finite element model of solid and shell combination model (E = 2.0e8, v = 0.3, t = 0.1).

Bracket convergence test

In order to consider practical example, bracket model is considered as shown in Figure 10.
End of bracket is constrained and one of the edge tips is applied by unit force. This ex-
ample can be tested for bending and twisting performance of curved shell structure. Four
different models that have different number of elements are tested. All models are converged
as the number of elements increases as shown in Figure 12. ABAQUS has the worst perfor-
mance for this example. Figure 11 presents the in-house contour results of 12 288 elements
model.
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Table XII. Natural frequencies of 200 elements model.

Table XIII. Natural frequencies of 1120 elements model.
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Table XIV. Natural frequencies of 7040 elements model.

Solid and shell combination model

The model is shown in Figure 13. All modeshapes and its frequency are shown in
Tables XII–XIV. In Table XII, there is difference for the first mode. Considering the ge-
ometry of the model, the first mode should be bending—not torsion. Therefore, in-house pro-
gram provides better performance for modal analysis than other commercial software. For the
results of ABAQUS, it is the worst among the results. Even though the number of elements is
around 1000, ABAQUS provides strange first modeshape. Figures 14–17 show the convergence
trend at each mode.

CONCLUSION

A new mixed shell element for seven-parameter formulation is developed in this paper. The
developed element using seven-parameter formulation can be used without distinction of thin
shell and thick shell. Even though the developed shell element cannot pass the patch test, the
convergence can be obtained through various examples. Moreover, the robust modeshape can
be obtained by in-house program for cantilever model of shell and solid combinations. Other
examples present a reliable solution for the developed mixed shell element for seven-parameter
formulation.
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Figure 14. Convergence of first eigenvalues according to the number of element.
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Figure 15. Convergence of second eigenvalues according to the number of element.
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Third Mode
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Figure 16. Convergence of third eigenvalues according to the number of element.
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Figure 17. Convergence of fourth eigenvalues according to the number of element.
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APPENDIX A

Equation (32):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h h�2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 h h�1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 h h�1 h�2 h�1�2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h h�2 h�2�1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h h�1 h�1�2 0 0 0 0 0

0 0
h3

12

h3

12
�2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
h3

12

h3

12
�1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
h3

12

h3

12
�1 h3

12
�2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
h3

12
�2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
h3

12
�1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
h3

12

h3

12
�1 h3

12
�2 h3

12
�1�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

Equation (35):
The assumed stress can be also expressed as follows:

� = S = Sn + �3Sm (A2)

where

Sn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 + c2�
2

c5 + c6�
1

c9 + c10�
1 + c11�

2 + c12�
1�2

c13

c17 + c18�
2 + c19�

2�1

c21 + c22�
1 + c23�

1�2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Sm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c3 + c4�
2

c7 + c8�
1

c25 + c26�
1 + c27�

2 + c28�
1�2

c14 + c15�
1 + c16�

2

c20�
2

c24�
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A3)

Equation (A2) is another expression of Equation (32). Using Equations (A2) and (A3), the
following form for assumed stress can be defined:∫

��TD−1� d� =
∫

�(Sn + �3Sm)TD−1(Sn + �3Sm) d�

=
∫

�ST
nhD−1

n Sn + ST
m

h3

12
D−1

m Sm dA

= �cT
∫

HTD̄
−1

H dAc (A4)
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where

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 �2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 �1 �2 �1�2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �2 �1�2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 �1�2 0 0 0 0 0

0 0 1 �2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 �2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 �2 �1�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A5)

D̄
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h Ē+	
Ē

2+Ē	−2	2
h 	

−Ē
2−Ē	+2	2

h 	
−Ē

2−Ē	+2	2
0 0 0

h 	
(−Ē+	)(Ē+2	)

h −Ē−	
(−Ē+	)(Ē+2	)

h 	
(−Ē+	)(Ē+2	)

0 0 0

h 	
(−Ē+	)(Ē+2	)

h 	
(−Ē+	)(Ē+2	)

h Ē+	
(Ē−	)(Ē+2	)

0 0 0

0 0 0 h 1
G

0 0

0 0 0 0 h 1
�G

0

0 0 0 0 0 h 1
�G

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

h3

12
Ē+	

Ē
2+Ē	−2	2

h3

12
	

−Ē
2−Ē	+2	2

0 0 0 h3

12
	

−Ē
2−Ē	+2	2

h3

12
	

(−Ē+	)(Ē+2	)

h3

12
−Ē−	

(−Ē+	)(Ē+2	)
0 0 0 h3

12
	

(−Ē+	)(Ē+2	)

0 0 h3

12
1
G

0 0 0

0 0 0 h3

12
1

�G
0 0

0 0 0 0 h3

12
1

�G
0

h3

12
	

(−Ē+	)(Ē+2	)

h3

12
	

(−Ē+	)(Ē+2	)
0 0 0 h3

12
Ē+	

(Ē−	)(Ē+2	)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A6)
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