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Variance estimation for clustered recurrent event data
with a small number of clusters
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SUMMARY

Often in biomedical studies, the event of interest is recurrent and within-subject events cannot usu-
ally be assumed independent. In semi-parametric estimation of the proportional rates model, a working
independence assumption leads to an estimating equation for the regression parameter vector, with
within-subject correlation accounted for through a robust (sandwich) variance estimator; these methods
have been extended to the case of clustered subjects. We consider variance estimation in the setting
where subjects are clustered and the study consists of a small number of moderate-to-large-sized clus-
ters. We demonstrate through simulation that the robust estimator is quite inaccurate in this setting. We
propose a corrected version of the robust variance estimator, as well as jackknife and bootstrap estima-
tors. Simulation studies reveal that the corrected variance is considerably more accurate than the robust
estimator, and slightly more accurate than the jackknife and bootstrap variance. The proposed methods
are used to compare hospitalization rates between Canada and the U.S. in a multi-centre dialysis study.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many clinical and observational studies, the event of interest is recurrent; i.e. may occur
repeatedly for an individual. Examples include hospitalizations, infections, acute myocardial
infarctions, wheezing episodes and bouts of depression. In biomedical studies, it is not usually
reasonable to assume that events within a subject are independent. Since the within-subject
dependence structure may be complicated to model or simply not of interest, marginal mod-
elling is often indicated. Examples of existing failure time models for clustered failure time
data include the marginal hazard models proposed by Wei et al. [1], the common baseline
hazard model of Lee et al. [2], and the mixed baseline hazard models of Spiekerman and
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Lin [3] and Clegg et al. [4]. For recurrent event data, the mean number of events and the
event occurrence rate are better intuited than the hazard function and many authors have pro-
posed regression methods based on the mean or rate function. For example, Pepe and Cai [5]
developed semi-parametric methods for modelling the rate function, wherein each numbered
recurrent event has a distinct baseline rate. Lawless and Nadeau [6] considered modelling
the mean number of events, and developed pertinent theory for the discrete-time case. Sub-
sequently, Lin et al. [7] developed the asymptotic theory through empirical processes for the
continuous time setting. The marginal mean/rate methods of Pepe and Cai [5], Lawless and
Nadeau [6] and Lin et al. [7] each involve estimating the regression parameter as the solution
to an estimating equation derived through a working independence assumption, with a robust
(sandwich) estimator employed for the variance. Underlying each of these methods is the
assumption that subjects are independent.
Cases often arise where, not only within-subject events, but study individuals are not in-

dependent. For example, in a retrospective study of hospitalization rates among renal failure
patients, patients within the same geographic region may be correlated due to unmeasured
patient characteristics which predispose them to poor health or propensity to utilize medical
services. In an asthma study, children from the same neighbourhood may share certain envi-
ronmental risk factors (e.g. air particulate levels) which may induce wheezing episodes. Or, in
a multi-centre study of technique failures among patients on dialysis, patients from the same
centre may be correlated due to centre-speci�c characteristics with respect to practice pat-
terns. Since the model of Lin et al. [7] assumes that study subjects are independent, Schaubel
and Cai [8] proposed two proportional rates models applicable when subjects are clustered;
one model which had a common baseline rate across clusters, and a second which featured
cluster-speci�c baseline rates.
The investigation which motivated the methods proposed in this report was a prospective

international multi-centre study of peritoneal dialysis (PD) patients [9]. Patients who experi-
ence renal failure must undergo renal replacement therapy in order to remain alive. Although
kidney transplantation is the preferred treatment method, patients usually begin on dialysis,
and often remain on dialysis due to an ever-increasing shortfall in the availability of donor
organs. There are two major forms of dialysis: haemodialysis (HD) and PD. In the context
of publicly funded health care, as in Canada, PD is less costly; approximately 30 per cent of
Canadian dialysis patients are put on PD. In the U.S., less than 10 per cent of dialysis pa-
tients receive PD. The discrepancy between Canada and the U.S. with respect to the percentage
of patients receiving PD leads naturally to the question of whether patients in one country
have better prognosis than the other. The Canada–U.S.A. (CANUSA [9]) PD study o�ers
the opportunity to address this research question. Speci�cally, it is of interest to compare
hospitalization rates between Canadian and American PD patients, adjusting for well-known
prognostic factors.
The CANUSA study consists of 14 dialysis centres. Hospital admissions for a given patient

cannot reasonably be assumed to be independent. Moreover, patients treated at the same
centre cannot be assumed to be independent, since centre-speci�c practice patterns may di�er
markedly, and due to shared and unmeasured patient characteristics associated with living in
the centre’s catchment area. Thus, the independent units in the CANUSA study are the centres
and, with only 14 centres, the robust variance estimator would not be expected to provide
a reliable basis for inference. As such, an alternative method of estimating the variance is
required.
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We propose a corrected version of the robust variance estimator for use in analysing clus-
tered recurrent event data with a small number of moderate-to-large-sized clusters of subjects.
Through an extensive simulation study, we show that the robust variance estimator is very
inaccurate with 15 or fewer clusters. The corrected variance estimator is shown to be signif-
icantly more accurate, yielding empirical coverage probabilities much closer to the nominal
level. We also examine bootstrap and jackknife estimators, and �nd that the corrected robust
variance estimator is more accurate than either the jackknife or bootstrap.
The remainder of this article is organized as follows. In Section 2, we formalize the problem

and derive the proposed variance estimators. In Section 3, we describe a simulation study.
Hospitalization data from the previously described CANUSA dialysis study are analysed in
Section 4. Concluding remarks are contained in Section 5.

2. MODELS AND METHODS

In the development that follows, let n represent the number of clusters, with the number of
subjects in cluster j denoted by nj. Let N ∗

ij (t) denote the number of events experienced by
the ith subject from the jth cluster as of time t. The covariate vector will be represented
by Zij(s), wherein all time-dependent covariates are assumed to be ‘external’ in the sense of
Kalb�eisch and Prentice [10]; i.e. not directly a�ected by the recurrent event process.

2.1. Rate/mean regression model

Lin et al. [7] proposed the following models for recurrent event data:

E[N ∗
ij (t)|Zij]= eR

T
0Zij �0(t) (1)

E[dN ∗
ij (t)|Zij(t)]= eR

T
0Zij(t) d�0(t) (2)

the proportional means and rates models, respectively. Model (1) is a special case of (2),
applicable when the covariate vector is not time-dependent. The event mean and rate functions
are marginal, in the sense that they are not conditional on the event history, unlike the
proportional intensity models (e.g. Reference [11]).
Assumptions underlying the above-listed models include independence of subjects. In sit-

uations subjects where clusters of subjects may be correlated, and when the within-subject
and within-cluster event dependence structures are not of interest, marginal modelling is still
indicated. Schaubel and Cai [8] recently proposed two proportional rates models for recurrent
event data, given by

E[dN ∗
ij (s)|Zij(s)]= eR

T
0Zij(s) d�0(s) (3)

E[dN ∗
ij (s)|Zij(s)]= eR

T
0Zij(s) d�0j(s) (4)

where d�0(t) and d�0j(t) are unspeci�ed baseline rate functions, R0 is a parameter vector,
and Zij(s) is covariate vector. The choice between model (3) and (4) depends on the data
structure and the aims of the investigator. For example, if cluster sizes are very small, model
(4) is not practical. Even if cluster-sizes are moderate-to-large, other considerations may lead
to preference of (3), particularly with regard to interpretation of the regression coe�cient.
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In both models, the parameter, R0, re�ects comparisons between covariate levels; in (4),
such comparisons are made among subjects within the same cluster, while the comparison
is averaged over clusters in (3). For example, in the previously described CANUSA study,
interest lies in comparing hospitalization rates between Canada and the U.S. Model (3) is
the natural choice, since the e�ect of a cluster-level covariate cannot be addressed through
model (4). That is, since all patients within a centre are necessarily from the same country,
di�erences in hospital rates by country are not estimable through a model which strati�es by
centre.
In practice, since the observation period of a study of �nite duration, events for a subject

may be censored. Let the observed number of events for subject i from cluster j be represented
by Nij(t)=N ∗

ij (t ∧Cij), where a∧ b= min(a; b) and Cij denotes censoring time. It is assumed
that Cij is independent of N ∗

ij (·), conditional on the covariate vector.

2.2. Results: large number of clusters

We begin by describing results applicable when the number of clusters is large. Schaubel and
Cai [8] showed that a consistent estimator of R0 is given by R̂, the solution to the estimating
equation U(R)= 0, where

U(R)=
n∑
j=1

nj∑
i=1

∫ �

0
{Zij(s)− E(s; R)} dNij(s) (5)

with � being a truncation point typically set to the maximum censoring time, E(s; R)=
S(1)(s; R)=S(0)(s; R) and S(d)(s; R)= n−1 ∑n

j=1

∑nj
i=1 I(Cij¿s)Zij(s)

⊗deR
TZij(s) for d=0; 1; 2,

where, for a vector a; a⊗0 = 1; a⊗1 = a; a⊗2 = aaT. An estimator for the cumulative rate function
is given by �̂0(t; R̂), where

�̂0(t; R)= n−1 n∑
j=1

nj∑
i=1

∫ t

0
S(0)(s; R)−1 dNij(s) (6)

Under certain regularity conditions n1=2(R̂ − R0) converges to a Normal distribution with
mean 0 and a covariance which can be consistently estimated by �̂(R̂), where

�̂(R)= �̂(R)−1�̂(R)�̂(R)−1 (7)

with

�̂(R) =
∫ �

0
V(s; R)S(0)(s; R) d�̂0(s; R) (8)

V(s; R) = S
(2)(s; R)
S(0)(s; R) − E(s; R)⊗2

�̂(R) = n−1 n∑
j=1
�̂j(R)⊗2

�̂j(R) =
nj∑
i=1

∫ �

0
{Zij(s)− E(s; R)} dM̂ ij(s; R)

M̂ ij(t; R) =Nij(t)−
∫ t

0
I(Cij¿s)eR

TZij(s) d�̂0(s; R) (9)
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It is also shown that n1=2{�̂0(t; R̂)−�0(t)} converges weakly to a zero-mean Gaussian process
with a covariance function which can be consistently estimated empirically.
The variance estimator in (7) converges almost surely to �(R0) as n→ ∞ and has been

shown to be a good estimator of the variance of R̂ when the number of clusters is at least
50. However, it may not be su�ciently accurate when the number of clusters is low, which
could lead to con�dence intervals for the elements of R0 which are unrealistically narrow and,
correspondingly, invalid inference. Since the CANUSA data set to be analysed is based on a
sample of n=14 centres, we cannot be con�dent of the accuracy of �̂(R̂).
In the next subsection, we propose three alternative methods to estimate the variance of

R̂ when �tting the proportional rates model to clustered recurrent event data with a small
number of moderate-to-large-sized clusters.

2.3. Proposed variance estimators

It has been shown by Schaubel and Cai [8] that

n1=2(R̂− R0)=�(R0)−1n−1=2 n∑
j=1
�j(R0) + op(1) (10)

where we de�ne

�(R) =
∫ �

0
v(s; R)s(0)(s; R) d�0(s)

�j(R) =
nj∑
i=1

∫ �

0
{Zij(s)− e(s; R)} dMij(sR)

with s(d)(s; R), e(s; R) and v(s; R) being the limiting values of S(d)(s; R), E(s; R) and V(s; R),
respectively. As stated, in (9), �j(R0) is estimated by �̂j(R̂), wherein Mij(t; R0)=Nij(t)−∫ t
0 I(Cij¿s)e

RT0Zij(s) d�0(s; R0) is replaced by M̂ ij(t; R̂)=Nij(t)−
∫ t
0 I(Cij¿s)e

R̂T Zij(s) d�̂0(s; R̂). A
concern is that the magnitude of the residual-type term M̂ ij(t; R̂) may signi�cantly underesti-
mate that of the true underlying error term, Mij(t; R0). This is particularly a concern in small
samples; or, more speci�cally, situations where there is a small number of independent units.
In addition, under-coverage of the standard robust variance estimator may be exacerbated by
the association among events within and among clustered subjects.
In an attempt to improve coverage probability (CP) of con�dence intervals and the accuracy

of hypothesis tests involving R0, we propose the following corrected version of the robust
variance estimator:

�̂M (R̂)= �̂(R̂)−1�̂M (R̂)�̂(R̂)−1 (11)

with �̂M (R)= n−1∑n
j=1{�̂M

j (R)}⊗2,

�̂M
j (�) =

{
I+

nj∑
i=1

∫ �

0
{Zij(s)− E(s; R)} dD̂Tij(s; R)�(R)−1

}
�̂j(R)

+ n−1
nj∑
i=1

∫ �

0
{Zij(s)− E(s; R)}I(Cij¿s)eRT0Zij(s)S(0)(s; R)−1 dM:j(s; R)
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where I is the identity matrix, M:j(t; R)=
∑nj

i=1Mij(t; R) and

D̂ij(t; R)= − n
∫ t

0
I(Cij¿s){Zij(s)− E(s; R)}eRTZij(s) d�̂0(s; R) (12)

The corrected variance represents an attempt to improve upon the estimation of the error
term, Mij(t; R0). The derivation is based on Taylor Series expansions and is outlined in
Appendix A.
Natural choices of methods to generate small-sample estimators of the regression parame-

ter include the jackknife and the bootstrap [12], which we now describe. In computing the
jackknife estimator and its corresponding estimated variance, n estimators of R0 are computed,
each with a di�erent cluster deleted. We de�ne R̂(−j) as the estimator based on the subsample
which excluded cluster j. Pseudo-values are de�ned as ˆ̂j= nR̂ − (n − 1)R̂(−j), where, as be-
fore, R̂ is the estimator based on all clusters. The jackknife estimator of R0 and its associated
variance estimate are given by

R̂J = n−1 n∑
j=1

ˆ̂
j (13)

�̂J = {n(n− 1)}−1 n∑
j=1
(ˆ̂j − R̂J )⊗2 (14)

For the bootstrap, B samples are selected, each containing n clusters selected with replace-
ment. The bootstrap estimator of R0 and its estimated variance are given by

R̂B = B−1 B∑
b=1
R̂b (15)

�̂B = (B− 1)−1
B∑
b=1

(R̂b − R̂B)⊗2 (16)

where R̂b is the estimator computed from the bth resample.

3. SIMULATION STUDY

In order to examine the operating characteristics of the variance estimators discussed in the
previous section, we performed a simulation study. Since interest lies speci�cally in the case of
a very small number of moderate-to-large-sized clusters, we set n=15 (clusters) and examined
cluster sizes of nj=25 and 50. We also examined the case where cluster size varies greatly,
setting nj=5× j for j=1; : : : ; 15, which results in a minimum and maximum cluster sizes of
5 and 75, respectively, and an average cluster size of �nj=40.
In simulating the event times, we �rst generated a latent (frailty) variate for each clus-

ter, Qj∼Gamma(�−2
Q ; �

−2
Q ), to induce positive correlation among subjects within a cluster.

A subject-speci�c frailty, Ri∼Gamma(�−2
R ; �

−2
R ), was then generated in order to induce
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correlation among within-subject event times. Note that E[QjRi]= 1, while �2QR ≡V (QiRj)=
(�2Q+1)(�

2
R+1)−1, with Kendall’s Tau rank correlation for any pair of events within-subject

equal to �2QR(2 + �
2
QR)

−1. We chose �2Q=0:25, 0.5 and �
2
R=0:5, 1.0 such that, as in most

practical situations, the correlation within-subject exceeds that within-cluster.
A covariate, Zij, was generated from the Bernoulli(0.5) distribution. For each subject,

events were then simulated, with the kth event time for the ith subject within the jth cluster
given by

Tijk =Tijk−1 − log{1−Uijk}{QjRi d�0e�0Zij}−1

where the Uijk’s are independent Uniform(0; 1) random variates and Tij0 ≡ 0. This set-up
implies the following conditional and marginal models:

E[N ∗
ij (t)|Zij; Qj; Rj]=QjRi d�0te�0Zij

E[N ∗
ij (t)|Zij]= d�0te�0Zij

respectively. We set �0 = log(2) and d�0 = 0:125, 0.25 and 0.5. Censoring times were gener-
ated as Cij ∼Uniform(0,5), representing a study of length 5 time units with randomly staggered
entry times and administrative censoring only.
Each data con�guration was replicated 500 times. For each simulated data set, we estimated

�0 through (i) the solution to (5), denoted by �̂ (ii) the jackknife (13), denoted �̂J and (iii)
the bootstrap (15), denoted �̂B. The standard error of �̂ was estimated through the usual robust
variance estimator given in (7), which is denoted �̂(�̂), as well as the corrected estimator in
(A7), denoted �̂M (�̂). Naturally, the variance of the jackknife and bootstrap estimators were
estimated by (14) and (16), respectively.
Results of the simulation study are presented in Tables I and II. Note that Tables I and II

are based on the same simulated data sets, to ensure comparability of the di�erent estimators.
In Table I, we list the bias and empirical standard deviation (ESD) of �̂, as well as the
average estimated standard error (ASE) and empirical 95 per cent CP based on the robust
estimator and its corrected counterpart. The parameter estimator, �̂, is approximately unbiased
for �0. For almost all data con�gurations, the robust standard error greatly underestimates the
ESD; correspondingly, empirical CPs are well below the nominal 95 per cent. The corrected
variance estimator approximates the ESD with much greater accuracy, with empirical CP
notably greater than the robust estimator. Empirical coverage averaged approximately 90 per
cent for the robust variance and was less than 90 per cent for approximately half of the
runs. CP averaged approximately 93 per cent for the corrected estimator. Even with the
correction some under-coverage persisted, as CP was as low as 90 per cent for three of
the 36 runs.
In Table II, we display simulation results pertaining to the jackknife and bootstrap esti-

mators. Both �̂J and �̂B are approximately unbiased. For both methods, the accuracy of the
estimated standard errors and 95 per cent empirical CP exceeds those of the robust variance
estimator. However, the corrected variance is generally superior in both respects. For all con-
�gurations, CP associated with �̂M is at least as great as the CP for either �̂J or �̂B. For
nj=25, the jackknife and bootstrap variance estimators perform virtually equal. Empirical cov-
erage is slightly greater for the jackknife than the bootstrap for nj=50, although the opposite
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Table I. Simulation results: robust variance estimator and proposed corrected version.

�̂ ASE CP

nj �2Q �2R d�0(t) Bias ESD �̂(�̂) �̂M (�̂) �̂(�̂) �̂M (�̂)

25 0.25 0.5 0.125 0.008 0.194 0.182 0.196 0.92 0.94
0.25 0.013 0.150 0.147 0.160 0.93 0.94
0.5 0.006 0.134 0.125 0.141 0.91 0.94

1.0 0.125 0.002 0.229 0.201 0.216 0.89 0.91
0.25 −0:016 0.195 0.171 0.186 0.90 0.92
0.5 −0:009 0.166 0.148 0.166 0.89 0.93

0.5 0.5 0.125 −0:008 0.215 0.189 0.204 0.89 0.91
0.25 0.004 0.175 0.153 0.169 0.88 0.90
0.5 0.006 0.147 0.138 0.159 0.91 0.95

1.0 0.125 −0:007 0.249 0.212 0.228 0.87 0.90
0.25 0.006 0.196 0.177 0.193 0.89 0.93
0.5 −0:018 0.186 0.159 0.180 0.89 0.93

50 0.25 0.5 0.125 0.002 0.137 0.130 0.141 0.92 0.94
0.25 0.006 0.112 0.104 0.116 0.90 0.93
0.5 0.000 0.099 0.089 0.105 0.90 0.94

1.0 0.125 −0:001 0.157 0.141 0.152 0.89 0.92
0.25 0.006 0.133 0.121 0.133 0.92 0.94
0.5 0.002 0.119 0.108 0.126 0.92 0.94

0.5 0.5 0.125 0.001 0.156 0.135 0.147 0.89 0.92
0.25 0.007 0.127 0.112 0.127 0.89 0.94
0.5 −0:003 0.111 0.097 0.121 0.90 0.94

1.0 0.125 0.002 0.163 0.151 0.164 0.91 0.93
0.25 0.005 0.142 0.128 0.143 0.91 0.93
0.5 −0:008 0.136 0.116 0.139 0.88 0.94

5× j 0.25 0.5 0.125 −0:012 0.149 0.139 0.152 0.91 0.92
0.25 −0:003 0.123 0.113 0.127 0.89 0.93
0.5 −0:005 0.110 0.094 0.113 0.89 0.95

1.0 0.125 −0:005 0.170 0.155 0.170 0.91 0.93
0.25 0.004 0.140 0.131 0.147 0.91 0.94
0.5 −0:003 0.133 0.116 0.134 0.89 0.93

0.5 0.5 0.125 −0:005 0.156 0.143 0.158 0.92 0.94
0.25 0.005 0.147 0.120 0.138 0.86 0.90
0.5 0.002 0.125 0.104 0.129 0.86 0.95

1.0 0.125 0.006 0.186 0.161 0.178 0.90 0.92
0.25 −0:010 0.156 0.140 0.158 0.88 0.92
0.5 −0:004 0.140 0.127 0.153 0.91 0.96

Based on n=15 clusters; nj =cluster size, �2Q =variance of cluster-speci�c frailty, �
2
R=variance of subject-

speci�c frailty, d�0(t)= baseline event rate, �̂=solution to (5), ASE=average estimated standard error,
CP= empirical 95 per cent coverage probability, ESD=empirical standard deviation, �̂(�̂)= uncorrected
robust variance estimator, (7); �̂M (�̂)= corrected robust variance estimator, (A7); �ve hundred simulations
were preformed for each data con�guration.
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Table II. Simulation results: jackknife and bootstrap estimators.

�̂J �̂B

nj �2Q �2R d�0(t) Bias ESD ASE CP Bias ESD ASE CP

25 0.25 0.5 0.125 0.003 0.195 0.197 0.93 0.014 0.195 0.187 0.92
0.25 0.011 0.152 0.159 0.94 0.016 0.149 0.150 0.94
0.5 0.004 0.137 0.136 0.93 0.008 0.130 0.127 0.92

1.0 0.125 −0:003 0.231 0.218 0.91 0.006 0.231 0.207 0.89
0.25 −0:019 0.199 0.186 0.92 −0:014 0.192 0.177 0.91
0.5 −0:011 0.170 0.161 0.91 −0:010 0.164 0.150 0.90

0.5 0.5 0.125 −0:014 0.218 0.210 0.90 −0:003 0.215 0.197 0.89
0.25 0.002 0.179 0.170 0.90 0.006 0.173 0.156 0.89
0.5 0.004 0.154 0.154 0.93 0.007 0.142 0.141 0.92

1.0 0.125 −0:015 0.254 0.237 0.90 0.000 0.250 0.221 0.89
0.25 0.002 0.202 0.197 0.92 0.009 0.194 0.183 0.91
0.5 −0:020 0.195 0.177 0.91 −0:018 0.182 0.163 0.90

50 0.25 0.5 0.125 0.000 0.139 0.139 0.94 0.004 0.138 0.132 0.93
0.25 0.005 0.114 0.112 0.92 0.007 0.110 0.105 0.91
0.5 −0:001 0.102 0.096 0.92 0.000 0.098 0.090 0.90

1.0 0.125 −0:003 0.158 0.151 0.91 0.002 0.158 0.144 0.89
0.25 0.005 0.135 0.130 0.93 0.006 0.131 0.122 0.93
0.5 0.001 0.122 0.117 0.93 0.003 0.117 0.110 0.93

0.5 0.5 0.125 −0:001 0.158 0.148 0.91 0.004 0.155 0.140 0.91
0.25 0.006 0.131 0.124 0.92 0.008 0.124 0.115 0.92
0.5 −0:004 0.117 0.108 0.92 −0:002 0.107 0.100 0.92

1.0 0.125 −0:001 0.168 0.166 0.93 0.004 0.160 0.155 0.93
0.25 0.004 0.146 0.142 0.92 0.004 0.140 0.131 0.92
0.5 −0:009 0.142 0.129 0.91 −0:007 0.131 0.119 0.90

5× j 0.25 0.5 0.125 −0:015 0.151 0.152 0.92 −0:010 0.148 0.145 0.92
0.25 −0:006 0.125 0.125 0.92 −0:001 0.122 0.117 0.92
0.5 −0:007 0.114 0.104 0.90 −0:005 0.108 0.099 0.92

1.0 0.125 −0:009 0.172 0.172 0.93 −0:001 0.170 0.162 0.92
0.25 0.001 0.142 0.145 0.92 0.006 0.139 0.137 0.92
0.5 −0:004 0.136 0.128 0.91 −0:003 0.131 0.121 0.93

0.5 0.5 0.125 −0:008 0.162 0.162 0.93 −0:002 0.155 0.152 0.93
0.25 0.003 0.154 0.137 0.89 0.007 0.143 0.127 0.90
0.5 0.003 0.132 0.118 0.89 0.002 0.123 0.110 0.89

1.0 0.125 0.001 0.192 0.184 0.92 0.009 0.183 0.171 0.92
0.25 −0:011 0.163 0.160 0.91 −0:009 0.153 0.148 0.91
0.5 −0:005 0.147 0.145 0.93 −0:003 0.137 0.136 0.94

Based on n=15 clusters; nj =cluster size, �2Q =variance of cluster-speci�c frailty, �
2
R=variance of subject-

speci�c frailty, d�0(t)= baseline event rate, �̂=solution to (5), ASE= average estimated standard error, CP=
empirical 95 per cent coverage probability, ESD= empirical standard deviation, �̂J = jackknife estimator,

�̂
B
=bootstrap estimator, �ve hundred simulations were preformed for each data con�guration.
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holds for the variable cluster size setting. Across all con�gurations, CPs were approximately
92 per cent for the jackknife and 91 per cent for the bootstrap variance estimators. Note that
results were very similar to those presented in Tables I and II when the null case, �0 = 0,
was examined.

4. APPLICATION

We applied the proposed methods to the analysis of hospitalization rates in the previously
described Canada–U.S.A. PD (CANUSA) Study. Our objectives were to compare Cana-
dian and American PD patients with respect to hospitalization rates, adjusting for known
prognostic factors, and to examine the various methods of variance estimation in real-data
setting.
CANUSA was a prospective cohort study of 680 PD patients from 14 renal centres in the

U.S. and Canada, with cluster sizes (patients per centre) ranging from 11 to 95. Patients were
enrolled between September 1, 1990 and December 31, 1992, with follow-up until December
31, 1993. Patients were followed from the time they began PD until the earliest of death,
receipt of a kidney transplant, technique failure or withdrawal from dialysis. A previous
mortality analysis of the CANUSA data revealed that U.S. patients experienced signi�cantly
higher covariate-adjusted mortality rates, relative to Canadian patients [13]. In addition to
mortality, the quality of life of these patients while they are alive and receiving PD is also of
great interest. The number of hospitalizations is a well-accepted measure of patient morbidity,
due to its concreteness, lack of subjectivity and ease of interpretation.
In total, there were 1157 hospitalizations among the CANUSA cohort. Since our objective

was to analyse hospitalization patterns among patients receiving PD, we �tted the following
conditional rate model:

E[dN ∗
ij (t)|Zij(t);PDij(t)=1]= eR

T
0Zij(t) d�0(t)

where PDij(t)=1 if the ith patient from centre j is receiving PD at time t and 0 otherwise.
Note that use of a conditional model avoids issues pertaining to the dependent censoring
due to death (90 patients), transplantation (137 patients), technique failure (118 patients) or
withdrawal (18 patients). Methods for the proportional rates model described in Section 2 can
be applied upon re-de�ning the at-risk process as I(Cij¿ t)PDij(t).
Results of our analysis are displayed in Table III, where the estimated regression coef-

�cient, �̂, represents the covariate-adjusted log rate ratio for patients in the U.S. relative to
Canada. The corresponding hospitalization rate ratio (U.S.:Canada) is, therefore, estimated at
e�̂. Note that p-values are based on the Wald test. We �rst computed �̂ as the solution to
(5), which yields �̂=0:236 and an estimated rate ratio of e0:236 = 1:27. Several estimators of
the variance of �̂ were then employed, the �rst of which is given by �̂(�̂)−1, with �̂(�̂)
as de�ned in (8). This is the variance estimator derived by Andersen and Gill [11] for the
proportional intensity model under the assumption of conditionally independent increments.
Based on (8), the standard error is estimated at ŜE(�̂)=0:085, which, given the stringent un-
derlying independence assumptions, we expect to greatly underestimate the true variability in
�̂. The Wald test based on �̂(�̂)−1 implies that hospitalization rates are signi�cantly elevated
among U.S. patients, relative to those in Canada, with p=0:006.
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Table III. Analysis of Canada–U.S.A. (CANUSA) multi-centre PD study: parameter
estimator and standard error estimates for log hospitalization rate ratio (U.S.A.:Canada).

Assumed �0 V (�̂) �0
independence estimator (eq.) estimator (eq.) estimate ̂SE p

w=in cluster, �̂ �̂(�̂)−1

w=in subject (5) (8) 0.236 0.085 0.006

w=in cluster, �̂
w=in subject (5) (17) 0.236 0.107 0.028

w=in cluster, �̂
w=in subject (5) (18) 0.236 0.123 0.055

w=in cluster, �̂ �̂(�̂)
w=in subject (5) (7) 0.236 0.141 0.094

w=in cluster, �̂ �̂M (�̂)
w=in subject (5) (A7) 0.236 0.246 0.337

w=in cluster, �̂J �̂J (�̂)
w=in subject (13) (14) 0.243 0.195 0.213

w=in cluster, �̂B �̂B(�̂)
w=in subject (15) (16) 0.238 0.183 0.192

�̂=solution to (5), �̂J = jackknife estimator, �̂B=bootstrap estimator, �̂(�)−1 = variance
estimator based on Martingale theory, �̂(�)= uncorrected robust variance estimator, (7);
�̂M (�̂)= corrected robust variance estimator, (A7); �̂J (�)M = jackknife variance estimator,
�̂B(�)M =bootstrap variance estimator, ̂SE= estimated standard error.

We next estimated the variance as

�̂(R̂)−1
(

n∑
j=1

nj∑
i=1
Nij(�)

)−1
n∑
j=1

nj∑
i=1

∫ �

0
{Zij − E(s; R̂)}dM̂ ij(s; R̂)}⊗2�̂(R̂)−1 (17)

derived under the proportional rates model under the assumption that within-patient and
within-centre hospitalizations are independent. Based on (17), ŜE(�̂)=0:107, larger than the
estimated SE based on (8), but still expected the greatly understate the true SE. From the Wald
test based on (17), hospitalization rates among U.S. patients still appear to be signi�cantly
increased, with p=0:028.
We then employed a variance estimator which accounts for the dependence among events

within-patient, but assumes the independence of patients treated at the same centre:

�̂(R̂)−1
(

n∑
j=1
nj

)−1
n∑
j=1

nj∑
i=1

{∫ �

0
{Zij − E(s; R̂)}dM̂ ij(s; R̂)

}⊗2
�̂(R̂)−1 (18)
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This is the variance estimator proposed by Lin et al. [7] for recurrent event data, but with
independent subjects. With ŜE(�̂)=0:123, the Wald test yielded a borderline-signi�cant result
(p=0:055).
We next employed the variance estimator proposed by Schaubel and Cai [8] and listed in

(7), which accounts for the dependence among hospitalizations within a patient and the cluster-
ing of patients within centres. The corresponding standard error is estimated at ŜE(�̂)=0:141,
which is larger than previous estimates which assumed within-centre and/or within-patient
independence, but still yields a moderately interesting p-value (p¡0:10). Since the CANUSA
study consisted of only n=14 centres, (7), which was only advocated for n¿ 50, may still
underestimate V (�̂).
When the proposed corrected version of the robust variance estimator, given in (11), was

used, the estimated variance is notably increased, with ŜE(�̂)=0:246, leading to a highly
non-signi�cant Wald test (p=0:337).
The jackknife and bootstrap variance estimators, given by (14) and (16), respectively,

far exceed the robust variance estimator, but are less than the corrected estimator, with
ŜE

J
(�̂J )=0:213¿ŜE

B
(�̂B)=0:192. These results are quite consistent with the patterns are

observed in the simulation study, with respect to the rank ordering of the variance estimators.
The magnitude of the discrepancy between the standard robust variance estimator and the
jackknife, bootstrap and (particularly) the corrected estimator exceeds that typically observed
in the simulation study. Under-coverage of the robust standard estimator is due to under-
estimation of the ‘score’ process variance, which results from estimating R0 as well as the
inter-event correlations among and within subjects. It is di�cult to discern exactly which of
these factors is most at work, particularly since methods for measuring correlation among
recurrent event sequences are not well-developed.
Therefore, after accounting for the lack of independence among hospitalizations within-

patient and patients within-centre, and accounting for the small number of clusters, it appears
that the previously reported 27 per cent increase in the hospitalization rate for U.S. (versus
Canadian) PD patients may be attributable to chance alone.

5. DISCUSSION

The robust (sandwich) variance estimator has been shown to be inaccurate in the recur-
rent event data setting with a small number of independent units. This was demonstrated in
Reference [14], who studied the setting wherein subjects are independent and may experi-
ence recurrent events of multiple types; no solution to the problem of under-coverage was
proposed. The degree of underestimation in the large-sample standard errors has been shown
to increase with the degree of within-subject correlation, and the under-estimation is more
pronounced when subjects are clustered (i.e. when adding a second level of dependence to
the data structure). Underestimation of the variance could lead to con�dence intervals with
true coverage notably less than the nominal level, in addition to invalid inference.
We propose a corrected version of the robust variance estimator for the regression coe�cient

in the proportional rates model, with application to studies involving a small number of
moderate-to-large-sized clusters. Simulation studies reveal that the proposed variance estimator
leads to much more accurate standard error estimates and empirical coverage probabilities, in
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situations where the robust estimator is shown to be quite inaccurate, although the correction
factor does not completely eliminate the under-coverage. Jackknife and bootstrap estimators
are also examined, with the jackknife appearing to be slightly more accurate than the bootstrap,
but not as accurate as the corrected robust estimator. With respect to computation, the bootstrap
involved routine application of SAS macros, while the jackknife and corrected robust estimator
also involved SAS-IML (SAS Institute; Cary, NC).
When we applied the proposed and other methods to the analysis of hospitalization rates

among dialysis patients, inference was found to depend greatly on the nature of the variance
estimator. Results ranged from highly signi�cant, under the assumption that within-patient
hospitalizations are independent, to highly non-signi�cant, after accounting for the within-
centre clustering of patients. Our analysis o�ers no evidence that hospitalization rates are
unequal between PD patients in Canada and the U.S., despite the fact that the percentage of
dialysis patients receiving PD is much higher in Canada.
In the real-data application, a conditional rate function was modelled, E[dN ∗

ij (t)|PDij(t) =
1]; i.e. the hospitalization rate while patients were receiving PD and, hence, prior to death,
transplantation and technique failure. The objective of the analysis was to compare hospital-
ization rates by country, speci�cally among PD patients. The experience of patients following
transplantation or technique failure is not of interest, here. The speci�cation of the conditional
rate function is somewhat unorthodox. However, in the presence of death, to jointly describe
the (mortality, event) experience of the cohort, one could model death through standard uni-
variate survival analysis, then model the event rate among patients while they survive. The
mortality component of the analysis having already been conducted [13], we turn our attention
to the hospitalization rate, conditional on survival. The conditional rate function modelled is
analogous to the cause-speci�c hazard function widely used in competing risks analysis, as
mentioned in Reference [7]. Since the rate model explicitly conditions on the non-occurrence,
at time t, of the terminal events, censoring via terminal event does not constitute dependent
censoring. A drawback to the conditional approach is the interpretation. However, the primary
objective of the current article is to address the issue of clustered subjects, not terminating
events. An alternative would be a marginal model for the event rate, as proposed by Ghosh
and Lin [15]. The analysis of recurrent events in the presence of death and other terminating
events is discussed in detail by Cook and Lawless [16].
To the best of our knowledge, no corrected version of the robust variance estimator has

been proposed for use in recurrent event data. Mancl and DeRouen [17] developed a corrected
variance for use in generalized estimating equation modelling, while Fay and Graubard [18]
proposed an adjusted sandwich estimator for use in the Cox regression model. Both of these
methods involve expanding residual-term elements to account for the use of estimated, as
opposed to known, parameters.

APPENDIX A

In deriving a corrected version of �̂j(R), we begin by noting that

Mij(t; R0) = M̂ ij(t; R̂)
−{M̂ ij(t; R̂)− M̂ ij(t; R0)} (A1)

−{M̂ ij(t; R0)−Mij(t; R0)} (A2)
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Naturally, we can compute M̂ ij(t; R̂) after obtaining R̂ and �̂0(t; R̂); but, it is necessary to
estimate (A1) and (A2). Beginning with (A1), using a Taylor series expansion

−{M̂ ij(t; R̂)− M̂ ij(t; R0)}= D̂
T
ij(s; R∗)(R̂− R0) (A3)

where D̂ij(s; R∗)= − @M̂ ij(t; R)=@R|R∗ and R∗ lies on the line segment joining R̂ and R0. The
derivative is given by

@M̂ ij(t; R)
@R = n

∫ t

0
I(Cij¿s){Zij(s)− E(s; R)}eRTZij(s) d�̂0(s; R) (A4)

Applying (10), in addition to the strong convergence of R̂ to R0, we have

−{M̂ ij(t; R̂)− M̂ ij(t; R0)}= D̂
T
ij(s; R0)�(R0)−1

n∑
j=1
�j(R0) (A5)

In considering a representation for (A2),

−{M̂ ij(t; R0)−Mij(t; R0)}=
∫ t

0
I(Cij¿s)eR

TZij(s) d{�̂0(s; R)− �0(s)}

= n−1
∫ t

0
I(Cij¿s)eR

TZij(s)n−1S(0)(s; R0)−1 dM (s; R0) (A6)

where M:(t; R)=
∑n

j=1

∑nj
i=1Mij(t; R). Combining (A5) and (A6), then eliminating mean-zero

cross-product terms involving uncorrelated subjects from di�erent clusters, we generate a
corrected version of �̂j(R̂), which we denote by �̂M

j (R̂), where

�̂M
j (R) =

{
I+

nj∑
i=1

∫ �

0
{Zij(s)− E(s; R)} dD̂Tij(s; R)�(R)−1

}
�̂j(R)

+ n−1
nj∑
i=1

∫ �

0
{Zij(s)− E(s; R)}I(Cij¿s)eRT0Zij(s)S(0)(s; R)−1 dM:j(s; R)

where I is the identity matrix, M:j(t; R)=
∑nj

i=1Mij(t; R).
Thus, a corrected variance estimator for R̂ is given by

�̂M (R̂)= �̂(R̂)−1�̂M (R̂)�̂(R̂)−1 (A7)

where �̂M (R)= n−1∑n
j=1{�̂M

j (R)}⊗2.
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