PAR1-Mediated NFκB Activation Promotes Survival of Prostate Cancer Cells Through a Bcl-xL-Dependent Mechanism

Kwanchanit Tantivejkul,1* Robert D. Loberg,1 Samkeliso C. Mawocha,1 Lashon L. Day,1 Lauren St. John,1 Brian A. Pienta,1 Mark A. Rubin,2 and Kenneth J. Pienta1,3

1Department of Urology, The Michigan Urology Center, University of Michigan, Ann Arbor, Michigan 48109
2Massachusetts General Hospital, Boston, Massachusetts
3Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109

Abstract We have previously reported that protease-activated receptor 1 (PAR1 or thrombin receptor) is over-expressed in metastatic prostate cancer cell lines compared to prostate epithelial cells. In this study, we examined 1,074 prostate biopsies by tissue microarray analysis and demonstrated that PAR1 expression is significantly increased in prostate cancer compared to normal prostate epithelial cells and benign prostatic hyperplasia. We hypothesized that PAR1 activation contributed to prostate cancer cell progression. We demonstrated that stimulation of PAR1 by thrombin or thrombin receptor activating peptide (TRAP6), in androgen-independent DU145 and PC-3 cells resulted in increased DNA binding activity of the NFκB p65 subunit. IL-6 and IL-8 levels were also elevated in conditioned media by at least two-fold within 4–6 h of PAR1 activation. This induction of cytokine production was abrogated by pretreatment of cells with the NFκB inhibitor caffeic acid phorbol ester. The p38 and ERK1/2 MAPK signaling cascades were also activated by PAR1 stimulation, whereas the SAPK/JNK pathway was unaffected. Inhibition of p38 and ERK1/2 by SB-203589 and PD-098059, respectively, did not abrogate NFκB activity, suggesting an independent induction of NFκB by PAR1 stimulation. Furthermore, TUNEL assay showed that activation of PAR1 attenuated docetaxel induced apoptosis through the upregulation of the Bcl-2 family protein Bcl-xL. Akt activation was not observed, suggesting that drug resistance induced by PAR1 was independent of PI3K signaling pathway. Because thrombin and PAR1 are over-expressed in prostate cancer patients, targeting the inhibition of their interaction may attenuate NFκB signaling transduction resulting in decreased drug resistance and subsequent survival of prostate cancer cells. J. Cell. Biochem. 96: 641–652, 2005. © 2005 Wiley-Liss, Inc.

Key words: prostate cancer; survival; PAR1; Bcl-xL; cytokines

The multifunctional serine protease thrombin is a key activator of the coagulation cascade and we have previously reported that protease-activated receptor 1 (PAR1 or thrombin receptor) is over-expressed in metastatic prostate cancer cell lines compared to prostate epithelial cells. In addition to being responsible for platelet aggregation and converting fibrinogen to fibrin, thrombin also induces cellular responses such as proliferation and release of angiogenic factors [Zain et al., 2000; Huang et al., 2001; Maragoudakis et al., 2002]. Many patients with advanced cancer, including prostate cancer, suffer from thromboses due to excessive activation of the coagulation system [Kohli et al., 2002]. In many experimental systems, stimulation of cancer cells with thrombin is associated with modulation of cell adhesion, invasiveness, and metastasis [Nierodzik et al., 1992; Wojtukiewicz et al., 1993; Walz and Fenton, 1994].

Thrombin elicits cellular responses through the activation of a family of G protein-coupled protease-activated receptors (PARs) [Coughlin,
Four known members of the PARs family have been identified: PAR1 and PAR3 are activated by thrombin, PAR2 is activated by trypsin, and PAR4 can be activated by both trypsin and thrombin [Vu et al., 1991]. The expression of PAR1 has been associated with tumor growth and increased metastasis [Even-Ram et al., 2001; Yin et al., 2003]. Cleavage in the extended amino terminus of PAR1 by thrombin unmasks a new tethered ligand, which serves as an intramolecular activator. Thus, activation of PAR1 by thrombin is irreversible and can only be terminated by intracellular receptor recycling and degradation [Coughlin, 1999]. Identified signaling pathways that are activated by thrombin-mediated PAR1 activation include the phosphatidylinositol 3-kinase (PI3K) [Chalmers et al., 2003], protein kinase C [Lidington et al., 2000], c-Jun N-terminal kinase (JNK) [Mitsui et al., 1998], p38 MAPK [Marin et al., 2001], RhoGTPase [Ming et al., 2004], and nuclear factor NFκB [Rahman et al., 2002].

Previous reports have shown that the transcription factor NFκB is constitutively active in androgen-insensitive prostate cancer cells [Palayoor et al., 1999; Suh et al., 2002; Zerbini et al., 2003]. Furthermore, tumor samples with high Gleason grades also have high nuclear expression of RelA (p65) [Suh et al., 2002]. NFκB/Rel proteins regulate the expression of genes involved in cell growth and differentiation, inflammatory responses, and apoptosis. The NFκB/Rel proteins belong to two different classes distinguishable by their mode of synthesis and transactivation properties [Karin et al., 2002]. RelA (p65), RelB, and c-Rel are synthesized in their mature form, while p50/p105 (NFκB1) and p52/p105 (NFκB2) require proteolytic processing to produce mature DNA binding proteins. These proteins form various homo- and hetero-dimers that exist in the inactive forms in the cytoplasm in complex with the inhibitory protein subunit IκB. When IκB becomes phosphorylated by the IκB kinase (IκK), it is marked for ubiquination and proteasomal degradation. Disassociation from IκB allows NFκB to translocate to the nucleus. Subsequent phosphorylation facilitates binding to a specific DNA sequence, resulting in gene transcription.

Due to the fact that excessive amounts of thrombin are generated in prostate cancer patients and we and others have previously reported that PAR1 is upregulated in prostate cancer cell lines [Chay et al., 2002; Liu et al., 2003], we hypothesized that activation of PAR1 contributed to prostate cancer progression. We compared PAR1 expression in normal and cancerous prostate tissues and elucidated the function of PAR1 in prostate cancer by examining the effects of PAR1 activation on signaling pathways including NFκB DNA binding activity, IκB phosphorylation, and MAPK signaling pathways. We also investigated the effects of PAR1 activation on cytokine productions and cell survival.

MATERIALS AND METHODS

Tissue Microarray Analysis

Immunohistochemistry of PAR1 expression was performed on prostate tissue microarrays (TMAs) as previously described [Rubin et al., 2002]. Standard biotin–avidin complex technique and a monoclonal antibody against PAR1 (Immunotech, Marseille, France) was used to evaluate PAR1 expression. Slides were counterstained with hematoxylin. Protein expression was scored as negative (score = 1), weak (score = 2), moderate (score = 3), or strong (score = 4) using a system that has been validated previously [Dhanasekaran et al., 2001]. Expression was graphically represented using error bars with 95% confidence intervals. Differences between types of tissues were evaluated using ANOVA with a post hoc Scheffe analysis to take multiple tissue types into account.

Cell Culture

Human prostate cancer cell lines PC-3 and DU145 were obtained from ATCC (Manassas, VA). They were maintained in RPMI 1640 supplemented with 10% fetal bovine serum and 100 U/ml penicillin, 100 μg/ml streptomycin, and 250 ng/ml amphotericin B (all from Invitrogen, Carlsbad, CA) at 37°C in a 5% CO2 humidified incubator. Stock solution of 1 μM thrombin (Sigma, St. Louis, MO) and 6 mM thrombin receptor activating peptide SFLLRN (TRAP6) (Bachem, King of Prussia, PA) were prepared in sterile distilled water and stored at −20°C.

Cytosolic and Nuclear Protein Extraction

Cells were collected in ice-cold PBS and pelleted by centrifugation at 400g for 5 min. Cells were lysed with ice-cold hypotonic lysis
buffer (10 mM HEPES, pH 7.9; 1.5 mM MgCl₂, 10 mM KCl, 0.5 mM DTT, and 0.1% Triton X-100) containing 1 μg/ml each of aprotinin, leupeptin and pepstatin A, 1 mM PMSF, 1 mM NaF, and 1 mM Na₃VO₄. Cells were pelleted by centrifugation at 8,000 g for 10 min and supernatant (cytosolic fraction) was snap-frozen immediately. The remaining cell pellet was incubated for 30 min on ice in nuclear extraction buffer (20 mM HEPES, pH 7.9, 1.5 mM MgCl₂, 420 mM NaCl, 0.2 mM EDTA, 0.5 mM DTT, 1% Nonadet P-40, and 25% v/v glycerol) containing 1 μg/ml each of aprotinin, leupeptin and pepstatin A, 1 mM PMSF, 1 mM NaF, and 1 mM Na₃VO₄. Nuclear suspension was centrifuged at 16,000 g for 5 min and nuclear extract was snap-frozen immediately. Protein concentrations were determined by Biorad protein determination reagent (Biorad, Hercules, CA).

NFκB Transcription Factor Assay

The NFκB transcription factor assay kits (Chemicon International, Temecula, CA) were used to quantitate nuclear activation of unstimulated and PAR1-stimulated cells. Nuclear extracts were incubated with NFκB capture probe for 1 h at room temperature. Contents were then transferred to an ELISA plate and incubated for 1 h more at room temperature. Plates were washed and each well was incubated with anti-NFκB p65 or anti-NFκB p50 antibodies followed by anti-rabbit IgG-HRP conjugated secondary antibody. Bound NFκB components were detected by chemiluminescent detection reagent and absorbance was measured with a microplate luminometer (Molecular Devices, Sunnyvale, CA).

Cytokine ELISA Assays

Cells at 60%–80% confluency were plated in 6-well plates and starved for 2 h prior to treatment with thrombin or TRAP6 in serum-free RPMI 1640 supplemented with 1% penicillin and streptomycin. Conditioned medium from each well was collected at various time points and stored at −20°C until use. IL-6 expression in cell culture supernatants was determined by using ChemiKine™ human IL-6 sandwich ELISA kit (Chemicon International, Temecula, CA) and IL-8 expression was determined by using Quantikine human IL-8 immunoassay kit (R&D Systems, Minneapolis, MN) according to the protocols supplied by the manufacturers.

TUNEL Staining

Cells were seeded in chamber slides to 60%–80% confluency. They were starved for 2 h and stimulated with either thrombin or TRAP6 in serum-free RPMI 1640 supplemented with 1% penicillin and streptomycin for 4 h prior to addition of 100 nM taxotere overnight. Cells were then fixed in freshly prepared 4% paraformaldehyde in PBS, pH 7.4. After blocking with 3% H₂O₂ in methanol, cells were permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate. They were then labeled with TUNEL reaction mixture (Roche, Indianapolis, IN) for 1 h at 37°C in a humidified atmosphere in the dark. DAPI was used to visualize the nucleus. Samples were analyzed under a fluorescence microscope at 450 nm excitation and 565 nm emission.

Western Blot and Immunoblotting

Cells were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.4, 1% NP-40, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 mM Na₃VO₄, 1 mM NaF, 1 μM okadaic acid, and 1 μg/ml each of aprotinin, leupeptin, and pepstatin). Proteins were separated in 10%–15% SDS–PAGE gels and transferred onto PVDF membrane. Membranes were blocked with 5% milk in PBST (0.1% Tween in PBS) for 1 h at room temperature. They were incubated overnight at 4°C with primary antibodies: anti-phospho p38 (Thr180/Tyr182), anti-phospho ERK1/2 (Thr202/Tyr204), anti-phospho SAPK/JNK (Thr183/Tyr185), anti-phospho ATF-2, anti-phospho Akt (Ser473), anti-Akt, anti-phospho GSK3α/β (Ser21/9), anti-GSK3β, anti-phospho IκB, anti-IκB, anti-NFκB, anti-Bcl-xL, anti-Bcl2, anti-survivin, anti-Bad, anti-Mcl-1, and anti-actin (all from Cell Signaling Technology, Beverly, MA). Membranes were washed three times prior to incubation with secondary antibodies (HRP-conjugated anti-rabbit from Cell Signaling Technology or HRP-conjugated anti-mouse from Santa Cruz Biotechnology, Santa Cruz, CA) for 1 h at room temperature. Bands were visualized by ECL chemiluminescent (Promea, Madison, WI) and quantitated using Image J software (NCI, Bethesda, MD).

Statistical Analysis

Results obtained from each experiment are expressed as mean ± standard deviation of triplicates. To perform statistical analysis, the
two-tailed Student’s t-test was used; a p value less than 0.05 is considered significant.

RESULTS

PAR1 Is Overexpressed in Prostate Cancer

Over-expression of PAR1 has been previously reported in human prostate cancer cell lines [Chay et al., 2002; Liu et al., 2003]. Tissue microarray of 1,074 samples collected from normal prostate, benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), cancerous prostates, and metastatic lesions revealed that PAR1 expression increased proportionately to the degree of prostate disease (Fig. 1). BPH expressed higher levels of PAR1 than normal prostate stroma (BPH 1.4 ± 0.1, stroma 1.1 ± 0.2 stain intensity). Tissues from high grade PIN and prostate adenocarcinoma exhibited significantly higher magnitude of PAR1 expression compared to normal prostate stroma, BPH, and atrophic prostate tissues (PIN 2.7 ± 0.2, prostate cancer 2.5 ± 0.1 stain intensity, respectively), suggesting that up-regulation of PAR1 is an early event in prostate tumorigenesis.

Stimulation of PAR1 Activates NFκB Signal Transduction

To elucidate the significance of PAR1 signaling in prostate cancer cells, we performed transcription factor activation assay using nuclear protein extracts to evaluate NFκB DNA binding activity. We used two androgen-insensitive cell lines which have high (PC-3 cells) and low levels (DU145 cells) of PAR1 expression [Chay et al., 2002]. Cells were stimulated with 2 and 10 nM thrombin (physiological

![Normal Prostate](image1.jpg) ![High Grade PIN](image2.jpg) ![Prostate Adenocarcinoma](image3.jpg)

Statistical Analysis

![Graph](image4.jpg)

Fig. 1. PAR1 expression increases in prostate cancer. An analysis of 1,074 samples showed a significant increase in PAR1 expression in high grade PIN and prostate cancer compared to normal prostate stroma, benign prostate hyper trophy, and atrophic prostate tissue. Representative TMA images of normal prostate, high grade PIN, and prostate adenocarcinoma stained with PAR1 monoclonal antibody and counterstained with hematoxylin are shown. Slides were scored as described in “Materials and Methods.” The graph represents scored PAR1 expression ± 95% confidence intervals.
and pharmacological concentration, respectively), and 20 and 100 µM TRAP6, a PAR1-specific activator, for 30 min. The result demonstrated no change in NFκB p50 subunit DNA binding activity in both DU145 and PC-3 cells (Fig. 2A,B). However, TRAP6 stimulation of DU145 cells resulted in two-fold increase of NFκB p65 subunit DNA binding activity. Dose-dependent increase of p65 subunit in PC-3 cells was also observed after PAR1 stimulation with either thrombin (1.5-fold increase with 2 nM thrombin and 1.8-fold increase with 10 nM thrombin) or TRAP6 (two-fold increase with 20 µM TRAP6 and 3.1-fold increase with 100 µM TRAP6, *p* < 0.01). To confirm that NFκB was activated, we also analyzed phosphorylation status of IκB by Western blot analysis of the cytosolic protein extracts (Fig. 2C,D). DU145 cells demonstrated a three- to five-fold increase in IκB phosphorylation when stimulated with thrombin or TRAP6. Treatment of PC-3 cells with thrombin increased IκB phosphorylation by two- to three-fold compared to untreated control cells (*p* < 0.05), whereas TRAP6 induced 5.7- to 8-fold increase in IκB phosphorylation (*p* < 0.01). Since IκB phosphorylation releases NFκB for translocation into the nucleus, the result supported our findings that stimulation of PAR1 increased NFκB DNA binding activity in prostate cancer cells.

To evaluate the extent of NFκB activity induced through PAR1, we examined the production

![Fig. 2](image_url)
of IL-6 and IL-8 cytokines by ELISA. Conditioned media collected over a 24 h-period from cells that have been treated with or without thrombin or TRAP6 was used to quantify IL-6 and IL-8 levels. Our result showed that DU145 constitutively produced less IL-6 and IL-8 than PC-3 cells. Conditioned media of DU145 cells collected after 24 h of incubation contained 41.7 ± 1.5 pg/ml IL-6 and 258.6 ± 21.1 pg/ml IL-8 compared to 230.4 ± 67.5 pg/ml IL-6 and 24675 ± 3914 pg/ml IL-8 produced by PC-3 cells (Fig. 3). However, within 4–6 h of stimulation with thrombin or TRAP6, IL-6 and IL-8 levels increased by at least two to six-fold in DU145 cells (Fig. 3A,C). This increase in cytokine production was maintained over the 24 h-period. Similarly, thrombin and TRAP6 also induced PC-3 cells to increase IL-8 production by as much as eight-fold within 8 h (Fig. 3B,D). Furthermore, cytokine production induced by PAR1 stimulation was abrogated when cells were pretreated with CAPE (50 μg/ml), an inhibitor of NFκB activity, suggesting that cytokine production was dependent on NFκB activation (Fig. 4).

MAPKs Are Activated by PAR1 Stimulation

NFκB signal transduction in prostate cancer has been shown to be regulated by the MAPK signaling pathway [Je et al., 2004]. Here we investigated PAR1-mediated phosphorylation and activation of p38, ERK1/2, and SAPK/JNK MAP kinase signaling cascades by Western blot analysis. DU145 and PC-3 cells stimulated with thrombin or TRAP6 for 30 min resulted in a significant increase in p38 and ERK1/2 phosphorylation compared to untreated control cells (Fig. 5). SAPK/JNK phosphorylation remained unaffected in both DU145 and PC-3 cells by PAR1 stimulation. Furthermore, phosphorylation of pMAPKAPK2, a downstream mediator of p38 and ERK1/2 signaling, was induced by 30 min stimulation with 10 nM thrombin and 100 μM TRAP6. Additionally, phosphorylation of HSP27 and ATF-2 was induced by PAR1 stimulation in both DU145 and PC-3 cells.

It has been reported that inhibition of p38 by MAPK inhibitor in endothelial cells reduced ATF-2 activity, thereby suppressing NFκB nuclear translocation [Kaur et al., 2003]. To determine whether PAR1-induced NFκB activation was dependent on MAPK activity, we treated DU145 and PC-3 cells with TRAP6 (100 μM for 30 min) in the presence and absence of a p38 (SB-203589) or ERK1/2 (PD-098059) inhibitor. Neither inhibitor suppressed TRAP6-induced p65 subunit DNA binding activity in DU145 or PC-3 cells, suggesting that NFκB activation through PAR1 is independent of the p38 and ERK1/2 activities (Fig. 6).

Fig. 3. PAR1 activation stimulates cytokine productions in prostate cancer cells. The amount of IL-6 (A, B) and IL-8 (C, D) produced by DU145 and PC-3 cells (5 × 10^5 cells per well) treated or untreated with thrombin (Thr) or TRAP6 was measured by ELISA as described in “Materials and Methods.” Conditioned media was collected at the indicated time points and kept frozen at −20°C until the assay was performed. Each data point represents the mean ± standard deviation of three separate samples.
Suppression of Docetaxel-Induced Apoptosis

To investigate the functional significance of PAR1 activation, we used docetaxel to induce apoptosis. DU145 cells were pretreated with 10 nM thrombin or 100 μM TRAP6 for 4 h prior to the addition of 100 nM docetaxel overnight. Apoptotic cells were identified by TUNEL staining of the nucleus (Fig. 7). Untreated control, thrombin-treated or TRAP6-treated cells did not have cells undergoing apoptosis. Docetaxel induced apoptosis in approximately 20% of cells as evident by positive TUNEL staining. However, pretreatment of prostate cancer cells with either thrombin or TRAP6 suppressed docetaxel-induced apoptosis. Similar results were observed in PC-3 cells (data not shown).

To determine the mechanism by which PAR1 stimulation inhibited apoptosis, we examined the expression levels of Bcl-2 family member proteins by Western blot. Cells were treated with thrombin or TRAP6 for 4 h and total cell lysates were collected for analysis (Fig. 8). In both cell lines, treatment with thrombin or TRAP6 induced the upregulation of Bcl-xL expression. Mcl-1, which is constitutively expressed in DU145 but not PC-3 cells was also upregulated by PAR1 stimulation in DU145 cells. No significant change was detected in the expressions of Bcl-2, Bad, and survivin in either DU145 or PC-3 cells. To investigate whether PI3K was involved in PAR1-induced survival, we examined the phosphorylation state of Akt and Gsk3α/β. No difference in the phosphorylation of Akt or Gsk3α/β was observed when cells were treated with thrombin or TRAP6 for 30 min, suggesting that PI3K is not involved.

DISCUSSION

There is no curative treatment for metastatic prostate cancer. We have previously reported that PAR1 is over-expressed in metastatic prostate cancer cell lines compared to normal prostate epithelial cells [Chay et al., 2002]. We hypothesized that PAR1 over-expression could contribute to prostate cancer cell progression and survival. In this study, we examined tissue expression of PAR1 from over 1,000 tissue samples collected from prostate biopsies. We demonstrated that PAR1 over-expression is evident early in tumorigenesis. Previous studies have also shown that men with advanced prostate cancer tend to have elevated thrombin levels [Lind et al., 2003]. Due to the fact that thrombin and its receptor, PAR1, are present in high levels in prostate cancer patients, we investigated the role of PAR1 stimulation by thrombin or TRAP6, a PAR1-specific activator. We report here that PAR1 activation leads to NFκB signal transduction which resulted in increased cell resistance to docetaxel-induced apoptosis, via a Bcl-xL dependent mechanism.

NFκB is known to play an important role in the control of cell growth, differentiation, survival, and cytokine productions. It has been shown that activation of NFκB through stimuli such as TGFβ2 or lysophosphatidic acid promotes prostate cancer cell survival [Lu et al., 2004; Raj et al., 2004]. We used two androgen-insensitive cell lines that differ in the levels of PAR1 expression: PC-3 cells which have high PAR1 expression compared to DU145
cells which have low PAR1 expression. We showed that stimulation of both prostate cancer cell lines by thrombin or TRAP6 increased NFκB p65 subunit activation. In a study of benign and malignant human prostate tissues, Shukla et al. [2004] reported that NFκB p65 subunit, but not the p50 subunit, is constitutively activated in human prostate cancer. Although constitutive activation of the NFκB p50 subunit has been shown to be critical in mouse skin carcinogenesis model [Budunova et al., 1999], it is less abundant and has a lower transcriptional activity than the NFκB p65 subunit [Karin et al., 2002]. We did not see a significant change in p50 subunit activity with thrombin or TRAP6 stimulation, possibly due to the low levels present in these cells.

Constitutive expression of IL-6 in androgen-independent prostate cancer cell lines has been reported [Zerbini et al., 2003]. Our results demonstrated that DU145 cells produced significantly lower amounts of IL-6 and IL-8 than PC-3 cells under serum-depleted conditions. However, upon stimulation with thrombin or TRAP6, prostate cancer cells increased IL-6 and IL-8 productions by at least two-fold over untreated control cells within 4-6 h. The induction of IL-6 and IL-8 through PAR1 may play a key role in prostate cancer progression.

Fig. 5. Activation of PAR1 leads to activation of p38 and Erk1/2 MAPK signaling pathways. Total cell lysates (40 μg/lane) were separated by 12.5–15% SDS–PAGE and proteins were analyzed by chemiluminescence.

Fig. 6. MAPK inhibitors do not suppress NFκB activation by TRAP6 in prostate cancer cells. Cells were pretreated with p38 inhibitor (SB-203589) and Erk1/2 inhibitor (PD-098059) for 30 min prior to stimulation with 100 μM TRAP6 for an additional 30 min. Nuclear fraction was collected from DU145 (gray bars) and PC-3 (white bars) cells (A). NFκB p65 subunit transcription factor activation was measured as previously described. Cytosolic protein extracts (15 μg/lane) were analyzed for IκB phosphorylation status (B). Each experiment was performed in duplicate and the result expressed as mean ± standard deviation.
Evidence suggests that IL-6 acts as a survival factor in tumors such as multiple myeloma [Hardin et al., 1994], esophageal carcinoma [Leu et al., 2003], and colon cancer [Yuan et al., 2004]. In prostate cancer, introduction of exogenous IL-6 conferred resistance to cytotoxic agent-induced apoptosis [Pu et al., 2004]. Furthermore, IL-8 has been shown to contribute to the development of benign prostate hyperplasia by stimulating growth of both benign prostate epithelial cells and stromal cells [Castro et al., 2004]. Orthotopic implantation of a PC-3 cell clone that highly produces IL-8 into nude mice resulted in highly tumorigenic and vascularized prostate tumor compared to low IL-8 producing clone [Kim et al., 2001]. We demonstrated that these cytokines are under the control of NFκB and can be regulated by PAR1 activation. Suppression of NFκB activity by its inhibitor CAPE suppressed IL-6 (data not shown) and IL-8 productions in prostate cancer cells, suggesting an important mechanism of NFκB-mediated survival.

NFκB signal transduction in prostate cancer has been shown to be regulated by the p38 MAPK signaling pathway [Shimada et al., 2003; Je et al., 2004]. In platelets, activation of p38 by thrombin leads to NFκB-dependent leukocyte recruitment [Kaur et al., 2003]. In macrophages, all three MAPK signaling pathways were activated by thrombin [Kang et al., 2003]. However, our results indicated that NFκB activation via PAR1 is independent of the MAPK signaling pathways. Nonetheless, PAR1 activation resulted in the activation of p38 and ERK1/2 signaling cascades, whereas the SAPK/
JNK pathway was unaffected. It is possible that p38, ERK1/2, and NFκB are all required for the survival of prostate cancer cells and that PAR1-dependent NFκB activation is regulated by alternative mechanisms.

Activation of the PI3K signaling cascade has long been considered a crucial pathway of cell survival, and the loss of the tumor suppressor gene PTEN function and expression in prostate cancer has been well-characterized [Deocampo et al., 2003; Koksal et al., 2004]. The loss of PTEN, a negative regulator of PI3K, leads to the dysregulation of PI3K/Akt signaling cascade, which promotes cell survival in many types of cancer. However, our results suggest that PAR1-induced cell survival is independent of Akt activation, but occurs through the upregulation of Bcl-xL. Although both Bcl-2 and Bcl-xL prevent the release of cytochrome c from the mitochondria, thereby blocking apoptosis, recent studies have indicated that Bcl-xL may play a more crucial role in prostate cancer cell anti-apoptosis mechanism than Bcl-2. Suppression of Bcl-xL by oligonucleotides, but not Bcl-2, rendered cells more sensitive to induction of apoptosis [Lebedeva et al., 2000]. It has also been reported that over-expression of Bcl-xL by transfection protected prostate cancer cells from the PI3K-specific inhibitor LY294002-induced apoptosis [Yang et al., 2003]. Likewise, prostate cancer cells that have been exposed to exogenous IL-6 become resistant to chemotherapy due to the overexpression of Bcl-xL and not Bcl-2 [Pu et al., 2004]. Thus, Bcl-xL expression may be the crucial protein in promoting prostate cancer cell survival in the absence of PI3K/Akt signaling pathway.

In this study, we have shown that stimulation of PAR1, which is over-expressed in prostate cancer, plays an important role in prostate cancer cell survival through the activation of the NFκB signaling pathway (Fig. 9). This resulted in the increase production of IL-6 and IL-8 in prostate cancer cells, which have been implicated in the development of drug resistance and

Fig. 8. PAR1 stimulation protects prostate cancer cells from apoptosis through the Bcl-2 family proteins, but not Akt. Cells were serum-starved for 2 h followed by stimulation with 10 nM thrombin or 100 μM TRAP6 for 4 h. Proteins from cell lysates (40 μg/lane) were collected and separated on 12.5–15% SDS gels and probed for Bcl-xL, Bcl-2, Bad, Mcl-1, survivin, and actin (A). Anti-phospho Akt and anti-phospho Gsk3α/β were used to detect Akt and Gsk3α/β activation status (B). Membranes were then stripped and rehybridized to detect total expression of Akt and Gsk3α/β. Each experiment was performed in duplicate and repeated three times.

Fig. 9. Schematic representation of PAR1-induced signal transduction in prostate cancer. Activation of PAR1 by either thrombin or TRAP6 resulted in increased NFκB p65 subunit DNA binding activity. This resulted in upregulation of cytokine productions in prostate cancer. The p38 and ERK1/2 signaling cascades were also activated by PAR1. These pathways may work together to induce prostate cancer cell survival through the expression of Bcl-xL.
tumorigenesis. Furthermore, induction of PAR1 signaling attenuated cytotoxic drug-induced apoptosis through the up-regulation of Bcl-xL. Because thrombin, the ligand for PAR1 is readily available in the serum of prostate cancer patients, its ability to activate PAR1 may contribute to prostate cancer progression and evasion of apoptosis. In recent years, NFκB inhibitors have been developed extensively since dysregulation of NFκB signal has been implicated in many types of malignancies. Inhibition of the PAR1-thrombin interaction may contribute to the attenuation of NFκB signaling pathway and, therefore, may be beneficial to the management of the disease.

ACKNOWLEDGMENTS

We thank Chris Chay, Linda Kalikin, and Karen Giles for their useful comments and assistance in preparation of the article.

REFERENCES

Yuan H, Liddle FJ, Mahajan S, Frank DA. 2004. IL-6-induced survival of colorectal carcinoma cells is inhibited by butyrate through down-regulation of the IL-6 receptor. Carcinogenesis 25:2247–2255.
