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A new approach to modeling the signal observed in arterial spin
labeling (ASL) experiments during changing perfusion condi-
tions is presented in this article. The new model uses numerical
methods to extend first-order kinetic principles to include the
changes in arrival time of the arterial tag that occur during
neuronal activation. Estimation of the perfusion function from
the ASL signal using this model is also demonstrated. The
estimation algorithm uses a roughness penalty as well as prior
information. The approach is demonstrated in numerical simu-
lations and human experiments. The approach presented here
is particularly suitable for fast ASL acquisition schemes, such
as turbo continuous ASL (Turbo-CASL), which allows subtrac-
tion pairs to be acquired in less than 3 s but is sensitive to
arrival time changes. This modeling approach can also be ex-
tended to other acquisition schemes. Magn Reson Med 54:
955–964, 2005. © 2005 Wiley-Liss, Inc.
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We recently presented a new two-coil approach to contin-
uous arterial spin labeling (CASL), (dubbed Turbo-CASL)
(1), that significantly enhances the temporal resolution of
ASL measurements while the SNR of the measurement is
maintained. An additional benefit of the technique is that
its sensitivity to transit time changes can be leveraged to
increase the sensitivity to brain responses. In brief, Turbo-
CASL consists of a continuous labeling experiment in
which the control image is collected immediately after the
tagging pulse, but before the tag reaches the plane of in-
terest. The tagged image is collected when the tissue con-
centration of the label reaches its maximum. With Turbo-
CASL one can collect samples at a much faster rate com-
pared to standard CASL techniques, and still allow for a
long labeling time. In our previous publication (1) we
showed that the Turbo-CASL method also had an advan-
tage in terms of SNR per unit of time, even though the
amount of accumulated tag is not allowed to reach its
steady-state maximum. The method is very sensitive to
transit time changes. This makes quantification of perfu-
sion more difficult, but it can also serve to exaggerate the

perfusion increases that occur during activation and hence
improve detection power, as shown in our previous work.
In this follow-up paper we address the quantification is-
sues that arise as a result of these transit time changes.

Quantification of blood flow from ASL measurements is
a difficult problem that requires the measurement of many
parameters. A number of models have been presented to
quantify perfusion, for a number of ASL acquisition
schemes. These models are largely based on the first-order
kinetics of the wash-in and wash-out of the inversion label
into the tissue, taking into account its T1 decay and ex-
change properties. The current models aim to quantify the
microvascular perfusion, and consequently the larger ar-
terial signal is routinely suppressed by the use of crusher
gradients or postinversion delays. These delays have the
added benefit of desensitizing the signal to the arterial
transit time (ATT) (2–4). These models were developed for
the cases of steady-state flow and transit time (5–10). Un-
der such circumstances, the uptake of the arterial tag can
be modeled as a linear system.

However, in addition to the flow increase, neuronal
activation is also accompanied by a reduction in the ATT
of approximately 10–20%, as observed by Gonzalez-At et
al. (10) and Yang et al. (11). In the case of Turbo-CASL, we
have calculated (1,12) that the signal can potentially
change approximately 15% by a transit time change alone
using the existing models.

As a result, the ASL signal observed in our Turbo-CASL
approach has nonlinear characteristics that are not easily
explained by existing models, and likely distort the under-
lying flow response. In this study we extended the general
framework of the kinetics of the arterial label to the case in
which flow and transit times change dynamically in a
given paradigm. We then developed and implemented a
method to estimate perfusion given an ASL signal from the
model. We present phantom and human data demonstrat-
ing the use of the method.

THEORY

We formulated a simple numerical model for ASL based
on the same principles used in the previously described
analytic models (5,7). To incorporate the transit time ef-
fects, we modeled the movement and decay of the inver-
sion tag from the tagging location to the imaging location
by using the well-known transport equation in one dimen-
sion with an additional term for T1 relaxation. Once the tag
reaches the exchange location (which is the same as the
imaging location), we use a first-order exchange for the
uptake of the tag by the tissue compartment (5,7).
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As depicted in Fig. 1, the model considers the arterial
path from the tagging location to the exchange location as
a set of discrete compartments that feed into each other.
Let A(x,t) be the amount of tag (in units of magnetization)
at position x and time t. Let us consider the longitudinal
relaxation of the tag as it moves toward the exchange site.
The passage of the tag through the arterial compartment,
A(x,t), can be characterized in general by the transport
equation with a decay term that accounts for the relaxation
of the label, and a second term that accounts for the ex-
change of the tag into the tissue (perfusion):

�A�x,t�
�t

� � Vart�t� �
�A�x,t�

�x
� R1art � A�x,t� � f�t� � A�x,t�

[1]

where Vart(t) is the time-varying mean arterial velocity
function that reflects the observed changes in transit time
along the path, R1art represents the longitudinal relaxation
of the tag while it is in the arteries, and f(t) is the perfusion
rate. Perfusion of the tag into the tissue is considered
negligible (f(t) � 0) from the tagging plane until the ex-
change site, corresponding to the voxel of interest, so prior
to that location we can write

�A�x,t�
�t

� � Vart�t� �
�A�x,t�

�x
� R1art � A�x,t� [2]

Note that the pulsatility of the arterial flow can be built
into the mean velocity function if desired, although we
assume that the effect of pulsatility is negligible in this
work. Let the voxel of interest be located at a distance xd

from the tagging site. At that location, the tag is partly
taken up from the arteries by the tissue compartment (de-
fined as tissue as well as microvasculature) at a variable
rate f(t) (the perfusion function of interest).

The tissue uptake at the voxel of interest is then de-
scribed by:

�T�t�
�t

� f�t� � A�xd,t� �
f�t�
�

� T�t� � R1tis � T�t� [3]

where T(t) is the tag content at the voxel of interest, � is the
brain–blood partition coefficient, and R1tis is the longitu-
dinal relaxation rate of the tag while it is in the tissue. It is
assumed that the tag will spend enough time in the tissue
to decay completely before it reaches the venous compart-
ment, so the outflow term in Eq. [3] is neglected and the
venous contribution to the signal is not considered. It must

be noted that Eq. [3] is mostly the same formulation of the
ASL problem at steady-state conditions proposed by oth-
ers (5,7). The key difference is the input to the tissue, as we
consider the ATT (and hence the mean arterial velocity) to
be a time-varying function. While this is a small effect in
the steady-state regime, it is very significant in the Turbo-
CASL regime for functional MRI experiments.

The initial conditions of this problem are that A(x,0) �
0 for all x, and T(0) � 0. The system is driven by a tagging
input function:

A�0,t� � M0
art � � � RF�t� [4]

in which Mart
0 is the arterial magnetization, � is the inver-

sion efficiency factor, and RF(t) is the radiofrequency
pulse train used for the labeling scheme of interest. In the
both CASL and Turbo-CASL, RF(t) is a boxcar with the
appropriate duty cycle. In pulsed techniques, such as
flow-sensitive alternating inversion recovery (FAIR), the
system is driven by an input function that is applied every
two TRs into the labeling region only:

A�x,t� � � for x � �0.x�,t � �2 � n� TR] [5]

In other words, every two TRs, the inversion pulse intro-
duces a fresh tag into the slab. The rest of the time, the
movement of the arterial contents is described by Eqs. [1]
and [2]. In this case, xs is equivalent to the slab width in
the slice-selective case, and the to the whole system in the
nonselective case. The gap between the labeling slab and
the imaging slice is xd – xs.

In the presence of flow crusher gradients to spoil arterial
signal, the usual ASL subtraction signal is given by T(t).
The nonlinearity posed by the time-varying Vart(t) func-
tion makes finding a closed-form solution to the system
quite challenging, but this formulation lends itself nicely
to a numerical implementation in which the evolution of
A(x,t) and T(t) are computed for all time steps using a
scheme such as the Lax-Wendroff algorithm. Note that it is
not possible to perform Runge-Kutta simulations, because
the system includes partial derivatives.

Estimation

In practice, the parameter of interest is the flow function
f(t) given an ASL signal, but because the instantaneous
velocity function, Vart(t), is also unknown, we need the
ability to simultaneously estimate the perfusion and mean
arterial velocity functions given an ASL time series. This
can be done by iteratively minimizing a cost function that
consists of the least-squares difference between the pre-
dicted and measured signals.

This estimation problem is challenging because it is
nonlinear and underdetermined (we need to estimate two
N-vectors, f and Vart, from a single N-vector of ASL mea-
surements). There are a number of techniques we can
apply to the problem to make it more manageable. Fortu-
nately, we have prior knowledge about the unknown vec-
tors that we can use to constrain the fitting algorithm. Such
prior knowledge includes the range of values that are
physiologically reasonable for perfusion and transit time
under resting and activation conditions (10–14). (One
could further narrow this range by measuring the baseline

FIG. 1. Depiction of the numerical ASL model as a series of com-
partments. Transport and first-order exchange rate drive the move-
ment of labeled spins into the tissue.
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perfusion of each individual subject in a standard CASL
experiment.)

From previous studies (1,10,14) of transit time under
rest and activation, we can clearly infer that there is a high
degree of correlation between the mean arterial velocity
and the perfusion vectors (a 50% increase in perfusion
during activation is typically accompanied by a 10% de-
crease in transit time). While we do not yet know the exact
relationship between the two parameters, we can make a
first-order Taylor series approximation of the change in
velocity from the change in perfusion, i.e., assume that the
increase in mean arterial velocity from baseline is linearly
related to the increase in perfusion relative to baseline, or

Vart�t� � Vart�0�

Vart�0�
� 	 �

f�t� � f�0�

f�0�
[6]

where Vart(0) and f(0) refer to the resting mean velocity
and perfusion (initial conditions), respectively. This as-
sumption allows us to eliminate the Vart(t) vector from the
search space and make the problem well-determined by
making a measurement of ATT during resting state only.
Note that such a transit time measurement is required for
Turbo-CASL techniques (1,13), and in this case it also
yields the initial value of the velocity function.

In addition to constraining the search for the flow func-
tion to a physiologically plausible range (e.g., from 0 to 3
mL/s/g), we also can expect the perfusion response func-
tion to be smooth and continuous, and thus impose a
roughness penalty onto the cost function in the form of a
derivative of the perfusion estimate.

In summary, given this prior information and the ASL
subtraction signal, y(t), we can estimate the perfusion time
course by searching for the function (f(t)) that minimizes a
cost function consisting of the least-squares difference be-
tween the synthesized data and the modeled signal, plus
the magnitude of the time derivative of f(t) weighted by a
roughness penalty factor, 
. The perfusion estimate func-
tion is given by

f̂�t� � argminf�t���y�t� � ŷ�t�� � 
�d
dt

f�t��� [7]

This minimum can be found iteratively by a number of
search algorithms, such as conjugate gradient descent,
simplex, etc. As discussed below, we found the Levenberg-
Marquardt algorithm to be well suited for the task.

MATERIALS AND METHODS

Simulations

To investigate the feasibility of iterative estimation ap-
proaches, we performed a set of simulations of ASL exper-
iments during an event-related activation paradigm con-
sisting of three activations separated by 15-s intervals over
a 100-s scanning period. The simulated peak perfusion
increase from a single event’s response was 40% following
a gamma-variate function. The mean arterial velocity was
assumed to increase up to 8% from its baseline propor-
tionately with perfusion increases. This synthetic perfu-
sion function was sampled at TR seconds.

The ASL signal was simulated for both the turbo and
standard CASL approaches using the acquisition parame-
ters in Table 1 and the model described in the Theory
section. Specifically, we updated the tag contents in all the
space compartments (�x) along the arterial path and the
tissue compartment at finite (�t) time intervals over the
experimental period. The updates were computed follow-
ing the Lax-Wendroff algorithm. To update the tag con-
tents, the perfusion and velocity functions were up-
sampled to �t. The system was modified to include the
effect of the tag “destruction” that occurs during imaging
by setting the amount of built-up label to zero in both the
arterial and tissue compartments.

The ASL signal was calculated by downsampling the
tissue function back to TR seconds, and separating the
samples from every other acquisition into “tagged” and
“control” time series. These two time series were sinc-
interpolated and subtracted to yield the final ASL signal,
as is typically done in ASL protocols (15,16). We then
compared the flow to the ASL signal over time to assess the
systematic errors in each approach.

Estimation: Determining an Appropriate Roughness
Penalty

We estimated the perfusion function from the simulated
Turbo-CASL signals under noiseless and 10% white
Gaussian noise conditions. We used the Levenberg-Mar-
quardt search algorithm, as implemented in Matlab’s (The
Mathworks, South Natick, MA) lsqnonlin function. We
specified the cost function to be Eq. [7]. The upper and
lower bounds allowed for the solution were 0.0075 and
0.038 mL/s/g (50% and 250% of the original guess). The
maximum number of allowed iterations was set to 10 in
order to limit the computation time while taking advan-
tage of the fast convergence of the algorithm. It must be
noted that the estimation algorithm could be trapped in
local minima if the initial guess was far from the true mean
perfusion (a difference of more than �0.005 mL/s/g (30
mL/min/100 g)) over the function. To avoid this issue, we
initially estimated the mean perfusion over the experiment
as a single parameter, and used that single perfusion value
as the initial guess for the estimation algorithm.

We assumed knowledge of the acquisition parameters,
T1 of arterial blood and tissue, inversion efficiency, and
Mart

0 . The initial guess consisted of a flat line of 0.015 mL

Table 1
Simulated ASL Acquisition and Physiological Parameters

TR 1.0 s (turbo), 3.7 s (CASL)
Tagging time 0.8 s (turbo), 3.5 s (CASL)
Tagging distance (xd) 12 cm
Spatial sampling of path (�x) 0.5 cm
Temporal sampling period (�t) 1/25 s
T1art 1.6 s
T1tis 1.2 s
Inversion efficiency, � 0.85
Resting mean arterial velocity,

Vart(0) 10 cm/s
Arterial magnetization Mart

0 6000
Resting perfusion, f(0) 0.015 ml/s/g (90 mL/min/100 g)
	 (or dVart/df) 0.2
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s–1 g–1 (or 90 mL/min/100 g), which was known a priori as
the baseline perfusion, and is near the mean perfusion. We
explored the roughness penalty by calculating bias-vari-
ance curves for values of 
 between 0 and 1000 in both the
noisy and noiseless cases. The noisy case’s curve was
repeated 20 times, over which the bias and variance were
averaged.

Estimation: Determining the Optimal Acquisition
Parameters

Using the same perfusion and velocity functions, we used
the model to generate an ASL signal at a range of TRs (0.6,
1.0 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, 2.8, 3.2, 3.6, and 4 s). Subse-
quently we added a constant level of Gaussian noise to the
signal, and estimated the original perfusion function from
the generated signal as described. We then computed the
mean squared error of the estimated perfusion function.
This procedure was repeated 25 times and the errors were
averaged for each TR.

Human Subjects

All human volunteers (N � 4) were scanned in accordance
with the regulations of the University of Michigan IRB.
Imaging was carried out at 3 T on a Signa LX system (GE,
Milwaukee, WI, USA). ASL was accomplished by a sepa-
rate transmitter coil placed on the subject’s neck, as de-
scribed in Ref. 17, while imaging was carried out using the
standard GE birdcage coil. The labeling coil was a custom
figure-8 coil (6-cm-diameter loops), which was built such
that the two loops were at a 130° angle relative to each
other. The labeling coil was powered by a separate signal
generator (PTS 500; Programmed Test Resources Inc.,
Littleton, MD, USA) and RF amplifier (custom-built by
Henry Radio Supply, Los Angeles, CA, USA), which was
in turn gated by TTL pulses from the MRI scanner. No
significant RF bleed-through or coupling between the tag-
ging and imaging coils was found.

Resting Transit Time Measurement

Tagged-control image pairs were collected from the motor
cortex using a spin-echo spiral trajectory (matrix size �
64 
 64, three slices, FOV � 22 cm, slice thickness �
7 mm, NEX � 16 pairs, TE � 17 ms, tagging pulse fre-
quency offset � 10 KHz, tagging distance � 17–21 cm, flow
crushers � b�4 s2/mm). Our previous work (1) showed
that the maximum signal in ASL is obtained when a steady
state of tag accumulation is reached, and the second high-
est ASL signal is obtained when the tagging time ap-
proaches the transit time. Hence, in order to measure the
ATT, the tag duration was varied between 600 and
2300 ms and TR was always 180 or 200 ms longer than the
tagging time. These tagging time durations typically en-
compass the ATT from the inversion plane in the neck to
the slice of interest in humans (1). The mean ATT from the
tagging to the imaging location was determined by fitting
the data to the model presented by Buxton et al. (5) using
the approach presented in Ref. 1. An additional scan with
TR � 4 s was included to improve the fit, and also to serve
as a steady-state CASL measurement for reference.

Active Transit Time Measurement

The transit time during activation was measured by repeat-
ing the procedure while the subjects performed a self-
paced finger opposition task. Because the steady-state
CASL technique is more insensitive to transit time changes
and the signal is largely proportional to perfusion, these
long TR scans also served to measure the relative change in
perfusion during prolonged activation.

T1 Maps

T1, and M0 maps of the slices were calculated from the
resting transit time data curves. By averaging only the
control scans at each TR, the flow effects were eliminated,
which made these data essentially the same as those ob-
tained in a saturation-recovery experiment (i.e., the same
scan repeated with a range of TRs). We estimated M0 and
T1 by fitting the saturation recovery equation M(TR) � M0

(1 – exp(-TR/T1) ) at each voxel.

ASL Activation Experiments

Perfusion-weighted images were then collected during a
motor cortex activation paradigm consisting of an event-
related finger-tapping task (2 s tapping followed by 18 s
rest, repeated 30 times). The ASL data were collected
using the Turbo-CASL scheme with a TR that was approx-
imately equal to the active transit time of each subject.
This transit time was approximated as the TR that yielded
maximum contrast (this is also the most negative ASL
signal after the subtraction, while the longest TR yields the
most positive ASL signal) in the above active transit time
measurement experiment, as demonstrated in Ref. 1. The
tagging time was 200 ms shorter than the TR. Note that this
approach optimizes the Turbo-CASL sequence for the ac-
tive case, and hence exaggerates the perfusion responses.
This exaggerated response occurs because the Turbo-CASL
sequence is not optimized during the resting state. How-
ever, since the transit time is reduced during the activa-
tion, the Turbo-CASL sequence becomes optimal because
the transit time is roughly the same as TR during activation
but not during rest.

Both control and tagged images were sinc-interpolated
in time at every acquisition, effectively upsampling the
time series from two to one TR. The resulting tagged-
control pairs were subtracted to yield a perfusion-
weighted time series of images. Active voxels were iden-
tified from the blocked design (standard CASL) data
through correlation to a boxcar reference function, and
time courses were extracted from the selected voxels from
the activation experiments. The time courses were aver-
aged over the selected active voxels.

Estimation of the perfusion time series in the event-
related paradigm: The perfusion function was estimated
from the event-related experiment’s extracted time course
by the numerical procedure described above using a reg-
ularization parameter of 300. Inversion efficiency was as-
sumed to be 0.85, T1 was averaged over gray matter, and
T1art was assumed to be 1.6 s (18). M0

art was approximated
from the M0 map using the relationship M0

art � (M0
tissue)/��,

where �� is the blood–brain partition coefficient, adjusted
for T2 decay of both blood and tissue, as described by
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Buxton et al. (5). The instantaneous change in velocity was
assumed to be 24% of the change in perfusion during
activation (	 � 0.24). This approximation is based on the
estimated slope of the mean velocity and perfusion in-
creases (see Results section). The relative perfusion change
was obtained from the steady-state CASL experiment
(TR � 4 s) acquired at rest and activation. Under steady-
state conditions of labeling and perfusion, the ASL signal
is directly proportional to perfusion. The resting mean
arterial velocity was computed from the distance to the
tagging plane and the ATT.

A perfusion impulse response function was calculated
from the estimated perfusion function by deconvolving a
comb function from the perfusion function (19,20). The
comb function was created such that its value was one
during the activation times, and zero otherwise.

RESULTS

Simulation

The results of our simulations can be seen in Fig. 2, for the
Turbo-CASL regime, and in Fig. 3 for the standard CASL
regime. The amplitude of the Turbo-CASL signal was non-
linearly related to the underlying flow function as a result
of the varying transit time. For the acquisition parameters
chosen, this nonlinear relationship makes the ASL signal
exaggerate the true flow increases in the activation. We
also observed a hysteresis in the signal caused by the lag in
the amount of tag in the tissue relative to the perfusion rate
(it takes a nonzero amount of time to reach the new equi-
librium point when perfusion changes).

In the standard CASL experiment, we observe that the
relationship between the amplitude of the signal and the
flow changes is closer to linear, but the lag, and conse-
quently the hysteresis, is more pronounced.

The estimated perfusion obtained from the Turbo-CASL
simulated data can be seen in Fig. 4, which shows the

perfusion estimates overlaid onto the underlying true per-
fusion in the noiseless and 10% noise cases at different
regularization levels (
 � 0, 200, 400, 600, 800, and 1000).
Figure 5 shows the variance-bias plots for regularization
levels of 0–1000, at 100 intervals. It is apparent from the
figures that the estimation process is unstable without the
regularization parameter, and produces artifactual ringing
in the perfusion function estimate.

Indeed, with zero regularization, perfusion estimates
from noisy simulations produced very high variance and
bias (3.6e-3 and 4.0e-5). At regularization levels of �100,
the variance-bias plot follows the usual pattern. In other
words, as we increase the regularization parameter, the
estimation is more biased toward a smoother model and
the mean residual variance of the fit is also reduced. The
noiseless case also behaves in an unstable pattern when
the regularization is less than 200, but returns to the ex-
pected pattern above that level.

Figure 6 shows the results of the estimability tests. In
this figure, the percent error in the estimation is the least
when the choice of TR is within 200 ms of the resting
transit time. The error also becomes smaller as the choice
of TR gets closer to the steady-state continuous ASL range.
The worst error occurs when the choice of TR is signifi-
cantly lower than the transit time of the arterial blood.
There is another local maximum of the estimation error
where the ASL signal changes sign. These findings reflect
the SNR properties of the ASL signal as a function of TR
(1).

Human Studies

Table 2 shows the parameters obtained from the resting
and activation steady-state measurements of perfusion and
transit time. T1 and M0, obtained from the fit of the satu-
ration recovery curve were found to be 1.24 � 0.12 s and
3960 � 557 (a.u.). The relative perfusion increase was

FIG. 2. Simulated Turbo-CASL time series with
three “events.” The top left panel shows in detail
the normalized tag concentrations in the arterial
and tissue compartments at the uptake (imaging)
site. The concentrations are superimposed onto
the labeling function over an 8-s time window. The
top right panel shows the flow and velocity func-
tions over time along with the calculated ASL sig-
nal all normalized to their baseline level. Note how
in the Turbo-CASL regime, the ASL signal increase
exaggerates the true flow response. The bottom
left panel shows a correlation plot of the normal-
ized ASL signal vs. the true underlying perfusion.
The bottom right panel shows the same relation-
ship as the ratio of the normalized ASL signal to the
underlying flow. Note the hysteresis of the mea-
surement.
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obtained from the steady-state CASL measurements (TR �
4 s), since that measurement is less sensitive to dynamic
transit time changes and is easily corrected when perfu-
sion and transit time remain steady during the experiment.
The transit times were reduced by 14.2% � 12.6% during
activation, which means that there was an increase in
mean velocity between the tagging plane and the tissue of
interest of 18.8% � 20.2%. After correction for T1 decay
during transit time, perfusion was found to increase by
85.1% � 61% during activation. The ratio between the
change in velocity and perfusion (	 in Eq. [6]) was 0.21 �
0.097. The same parameter was also computed through
linear regression of the perfusion and velocity changes,
producing a value of 	 � 0.24.

The event-design experiment in the CASL regime
yielded an activated region in the motor cortex, as ex-
pected. A typical activation map can be seen in Fig. 7. The
time series from those voxels that were found to be active
were averaged and analyzed together. The perfusion func-
tion was estimated from the whole time series using the
procedure described above. The resulting time courses can
be seen in Fig. 8, in which the raw ASL subtraction over
the whole Turbo-CASL event-related experiment is shown
in blue. The estimated perfusion function is overlaid on
top of it in green. The dashed blue line represents the ASL
signal that results from modeling the ASL signal given the
extracted perfusion function and the measured constants.
They show excellent agreement.

A perfusion impulse response function was obtained by
deconvolving (18,19) the stimulation paradigm, repre-
sented by a spike train, from the perfusion time series
obtained from the estimation procedure. The mean perfu-
sion impulse response function obtained from all the sub-
jects pooled together can be seen in Fig. 9. The resting
perfusion was found to be 0.017 � 0.0033 mL/s/g (or 102 �
20 mL/min/100 g), and the peak perfusion was 0.022 �
0.0024 mL/s/g (or 134 � 14 mL/min/100 g) approximately

6 s after the onset of the activation. The rise in perfusion
was followed by a long slow undershoot to approximately
12% from the baseline at 13 s. Perfusion did not com-
pletely recover until approximately 25 s after the stimulus
onset.

DISCUSSION

In our previous work (1) we introduced Turbo-CASL, a
rapid ASL technique that offered SNR gains over standard
CASL techniques. Turbo-CASL offers an added benefit of
increased sensitivity to cerebral activations because of the
added sensitivity to transit time changes (14). The main
drawback of the technique is that it is difficult to quantify
the dynamic perfusion function from the Turbo-CASL
data. In this article we present a model that addresses that
issue and enables us to quantify perfusion from Turbo-
CASL data. Although the motivation for developing this
nonlinear model was to be able to quantify perfusion in
transit-time sensitive schemes such as Turbo-ASL and
Turbo-CASL (1,21), one can easily extend the numerical
approach to other acquisition schemes that behave more
linearly by adapting the RF input function’s temporal pro-
file and location. For example, in the case of FAIR, one
could simply set the tag contents of all the arterial com-
partments in the tagging region (i.e., from x � 0 to x � xd

minus the inversion gap) to be determined by the input
function. Note that using this numerical approach is com-
putationally expensive, so it may not be advantageous to
do so in the slower ASL implementations that are not
sensitive to transit time effects.

The perfusion responses obtained from the model esti-
mation procedure were in good agreement with the typical
perfusion values reported in the literature. Despite this
agreement, however, there are a number of issues involv-
ing this technique that must be taken into consideration.

FIG. 3. Simulated CASL time series with three
“events.” The top left panel shows the normalized
tag concentrations in the arterial and tissue com-
partments at the uptake (imaging) site. The con-
centrations are superimposed onto the labeling
function. The top right panel indicates that the
standard CASL method does not exaggerate the
responses as much as the Turbo-CASL method,
but the ASL signal lags the flow change and is
sampled at a low rate. The bottom left panel shows
shows a correlation plot of the normalized ASL
signal vs. the true underlying perfusion. Note that
the hysteresis of the measurement gets worse in
the slower labeling scheme. In the bottom right
panel the ratio of the normalized ASL signal to the
underlying flow indicates less discrepancy in the
flow increase, and the error is dominated by the
delay in response detection.
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Since the turbo techniques are quite sensitive to changes
in transit time, as we previously showed (1), it is crucial to
obtain an accurate measurement of the resting ATT. Al-
though a full error analysis of the technique is beyond the
scope of this article, we noted that this parameter plays a
crucial role in the measurement, and the relationship be-
tween the error in transit time and the error in the modeled
signal is nonlinear. We also noted in our simulations that
error in the parameter 	 (increase in velocity relative to
increase in perfusion) has a relatively small effect on the
estimated perfusion. In our simulations, for example, a
40% increase in perfusion yields a 90% increase in ASL
signal at the peak of the activation when 	 � 0.20. If 	 is
assumed to be 0.25 (i.e., overestimated by 25%), the signal

increase becomes approximately 105% (not shown). Con-
versely, the signal increase is 80% if 	 is assumed to be
0.15 (i.e., underestimated by 25%). The baseline ASL sig-
nal is independent of 	, so it does not affect the estimation
of baseline perfusion.

For the estimation data presented here, we used the
value of 	 measured at steady state in the activated clus-
ters, but it may not always be feasible to make such a
measurement in all clusters because many paradigms do
not lend themselves to a blocked design. Hence, it may be

FIG. 4. a: ASL signal (not shown) was modeled from an arbitrary
perfusion function (black). The perfusion function was then esti-
mated from the ASL signal using different levels of regularization. In
the noise-free simulations, the estimation proved to be unstable
without any regularization. Including a roughness penalty proved to
be very beneficial. b: In the noisy simulations, the roughness penalty
was helpful in removing the instability, and had the beneficial effect
of filtering high-frequency noise.

FIG. 5. Variance-bias plots for regularization levels 0–1000, at 100
intervals from noiseless and noisy simulations. As the roughness
penalty is increased, the variance (caused mostly by high-frequency
noise) of the estimate is reduced, but the estimate is also more
biased toward a flat line. At zero regularization, the variance and
bias of the noisy estimation are 3.6e-3 and 4.0e-5, respectively,
which are outside the plotted range.

FIG. 6. Simulated estimation errors (MSEs) at different TRs given a
single, known transit time. The worst error occurs at very short TRs,
as well as the TR at which the ASL signal crosses over from positive
to negative (2–2.5 s in this case). In both cases, there is little ASL
signal.
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more practical to make measurements of 	 from visual or
motor stimulations, or to use tabulated values from the
literature. Using Yang et al.’s (11) human transit time data,
and accounting for tagging distance in a pulsed ASL
(PASL) experiment, we obtain a value of 	 � 0.25 � 0.026
in the motor cortex. Gonzalez-At et al.’s (10) transit time
and perfusion data using a CASL setup yield values of 	 of
0.66 � 0.52 and 1.2 � 0.97 (depending on which model) in
the motor cortex, and 	 � 3.8 � 3.6 and 3.0 � 2.2 in the
visual cortex. While data from the first study yield results
in agreement with our own, those from the second study
do not. Gonzalez-At et al. (10) reported changes in perfu-
sion that were much lower than ours (about a 20% change
in perfusion during activation), likely because they se-
lected a much broader ROI that was not defined by statis-
tical tests, from the which perfusion and transit times were
averaged together. We hypothesize that the discrepancy
arises from the averaging of transit times and perfusion
values over a broad range of values in Ref. 10, but there
may be other ASL implementation issues. Having said
that, it is also possible that the relationship between transit
time and perfusion changes is not linear at the lower
activation levels (i.e., small perfusion increases). We are
currently investigating this issue in our laboratory using
gradual stimulation and graded hypercapnia experiments.
A potential confound of this technique is the inhomoge-
neity of transit times over the region of interest (ROI). In
general, the strategy outlined here requires measurement
of a transit time map in the resting state so that variation of
transit times can then be accounted for by the model, but
large variation of the transit time over the region means
that the optimal Turbo-CASL acquisition parameters are
not the same for the whole region. In that case, the exag-
gerated responses that make Turbo-CASL so appealing can
be lost if the choice of timing parameters is in great dis-
agreement with local transit times. One should note the
range of TR for which perfusion can be estimated using
this model for a given transit time is quite large, as dem-
onstrated in Fig. 6. The bias in that example is less than
5% when TR is chosen to be greater than 1 s for a region in
which the transit time is 1.6 s. The bias becomes quite
large, however, when TR is below that value. Hence, there
is an ample range for which the method can be used to
estimate the perfusion function, whether the perfusion
responses observed are exaggerated or dampened, as long
as a transit time measurement is made.

We must also consider the dispersion of the arterial tag
over the trajectory from the tagging to the imaging location
because of laminar, turbulent, and pulsatile flow. It should
be pointed out that the dispersion effect of the arterial tree
is typically neglected in the predominant ASL models

(5,7) because it is masked by the dispersion of the input
function that occurs during the uptake of the tag by the
tissue, and is hence a small effect. However, the dispersion
effect of the arterial network can be observed in uptake
curves when no flow crushers are employed (4,10). By
inspecting these uptakes curves, one can approximate the
dispersion either by smoothing the input function with a
Gaussian kernel, or including additional higher-order de-
rivative terms (diffusion) in the transport equation. In our
simulations, which did not include any dispersion terms,
we accounted for the dispersion by smoothing the input
function with a Gaussian kernel of 0.25 s SD. This approx-
imation is based on previous measurements at our labora-
tory (unpublished data). Although the width of the disper-
sion kernel has a small effect on the ASL signal, we are
currently investigating in greater depth the effects of the
arterial dispersion, and alternative ways to include the
dispersion into the model. Hrabe and Lewis (22) recently
examined dispersion effects in an analytical model of spin
labeling for PASL. Their simulations modeled the disper-
sion as Gaussian kernel applied to the input function,
given that in a PASL experiment the dispersion in the
trailing edge of the tag bolus is greater than in the leading
edge, since it has longer time to travel to the imaging slice.
This is, in essence, the approach we have taken in our
work: we convolve the input function with a Gaussian
kernel. It should be noted that in our CASL experiment,
the dispersion of the input function does not need to be
asymmetric, as it does in the PASL experiment.

In our numerical simulation, we also included the effect
of sampling the tag at the slice of interest. In practice, the
accumulated tag is destroyed each TR when the different
slices are excited by the RF pulses of the acquisition se-
quence, and the model must be revised to account for this
effect. If the individual slices are sampled quickly enough
(�50 ms), the destroyed tag will not have time to affect the
adjacent slices. Thus, we need to “reset” the accumulated
tag to zero every time the slice is acquired. The effect of
destroying the tag at the voxel of interest proved to be
negligible.

Computation time is an issue in this technique, as is
usually the case for iterative techniques in imaging. To
give a sense of the computation time, it took a 2.4 GHz,
512 MB RAM Pentium computer approximately 10 min to
perform the necessary iterations of the model in order to
estimate the perfusion function, given the ASL signal’s 354
time points. It should be noted that the estimation proce-
dure was performed using Matlab, and that the algorithm’s
estimate did not improve significantly after five iterations.
Hence, the computation time can be significantly reduced
by implementing the algorithm in C and reducing the

Table 2
Measurements from SR Curves

Subject T1 (s) M0 Ttrest (s) Ttact (s) % r�TT % r�Vart % r�F k

1 1.40 3647 1.87 1.70 –9.32 10.3 37.0 0.28
2 1.16 3662 2.36 1.59 –32.8 48.9 182 0.27
3 1.30 4795 1.92 1.83 –4.72 4.96 72.0 0.069
4 1.13 3738 1.83 1.65 –9.99 11.1 49.1 0.22
Mean � SD 1.24 � 0.12 3960 � 557 2.00 � 0.25 1.69 � 0.10 –14.2 � 12.6 18.8 � 20.2 85.1 � 6 0.21 � 0.097
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number of iterations to approximately 1 or 2 min. While
under our current paradigm it is not practical to estimate
the perfusion function at every voxel, it is certainly prac-
tical and useful for estimating perfusion responses over an
ROI. In a typical fMRI experiment, the activated regions
can thus be detected through linear regression of models
based on a canonical perfusion impulse response function
(23), which in turn could be measured on an individual
basis. Perfusion time series could then be extracted and
estimated from the identified ROI only.

In terms of numerical error and stability, it is apparent
that without the regularization term, the estimation prob-
lem is not stable and produces a ripple on the estimation
even in the absence of noise. We believe this to be because
the problem is not a well determined one (i.e., there are a
large number of data points, but also a large number of
unknowns in the equation). Fortunately, the addition of
prior information and regularization terms alleviated the
problem dramatically.

Having considered these issues, the model presented
here allows us to take advantage of Turbo-ASL techniques
not only to detect rapid activation events, but also to
quantify perfusion given the Turbo-ASL signals. Turbo-
CASL is very advantageous for event-related fMRI experi-
ments not only because of the high temporal resolution,

but because by optimizing the acquisition to the active
state (shorter transit time) the perfusion responses to neu-
ronal events appear exaggerated and are easier to detect.
We find that the iterative strategy proposed in this article
is very well suited for estimating perfusion from those
exaggerated responses when a regularization term is in-
cluded in the cost function.

Based on our experience, one can carry out a typical
perfusion-based fMRI experiment by collecting a set of
eight or 10 perfusion-weighted images at different TRs
during the resting state. This data set yields measurements
of the M0, T1, and ATT, and hence the optimum acquisi-
tion parameters for Turbo-CASL. The TR should be chosen
to be approximately 200 ms shorter than the transit time in
order to achieve the exaggerated activation effect shown
here. This procedure takes approximately 10–15 min, after
which the stimulation paradigm can be carried out while
Turbo-CASL images are acquired. After reconstruction,
motion correction, and ASL subtraction are performed,
active voxels can be identified through correlation analysis
(or some other method of choice), the time series can be
extracted from those voxels, and the true perfusion func-
tion can be estimated through an iterative search over the
model, as shown in this article.

FIG. 7. Sample activation map overlaid onto ana-
tomical images, which shows activity in the motor
cortex during finger-tapping. Time courses were
extracted from the active voxels to estimate the
perfusion function.

FIG. 8. Raw ASL signal extracted from the selected pixels (blue
solid). From this function we estimate the perfusion function (green
solid). This estimated perfusion was used to simulate the original
signal (dashed blue), giving a sense of the error in the estimate.

FIG. 9. Perfusion impulse response function obtained by deconvo-
lution of the stimulus function from the ASL signal. The stimulation
period is depicted by the thick, horizontal black bar.
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