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Iterative RF Pulse Design for Multidimensional, Small-
Tip-Angle Selective Excitation

Chun-yu Yip,"" Jeffrey A. Fessler,"? and Douglas C. Noll?

The excitation k-space perspective on small-tip-angle selective
excitation has facilitated RF pulse designs in a range of MR
applications. In this paper, k-space-based design of multidi-
mensional RF pulses is formulated as a quadratic optimization
problem, and solved efficiently by the iterative conjugate-gra-
dient (CG) algorithm. Compared to conventional design ap-
proaches, such as the conjugate-phase (CP) method, the new
design approach is beneficial in several regards. It generally
produces more accurate excitation patterns. The improvement
is particularly significant when k-space is undersampled, and it
can potentially shorten pulse lengths. A prominent improve-
ment in accuracy is also observed when large off-resonance
gradients are present. A further boost in excitation accuracy
can be accomplished in regions of interest (ROIs) if they are
specified together with “don’t-care” regions. The density com-
pensation function (DCF) is no longer required. In addition,
regularization techniques allow control over integrated and
peak pulse power. Magn Reson Med 54:908-917, 2005. © 2005
Wiley-Liss, Inc.
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The design of RF pulses for multidimensional, small-tip-
angle selective excitation is facilitated by the excitation
k-space perspective developed by Pauly et al. (1) under the
small-tip-angle approximation to the Bloch equation. k-
Space-based selective excitation has been used in a range
of MR applications, such as functional MRI (fMRI) artifact
correction (2), brain imaging with reduced field of view
(FOV) (3), blood velocity measurement (4), parallel exci-
tation using multiple transmit coils (5,6), and excitation
inhomogeneity correction (7). The k-space perspective is
popular because it provides a fairly accurate linear Fourier
relationship between the time-varying gradient and RF
waveforms, and the resulting transverse excitation pattern.
The Fourier relationship can also be established for rota-
tion angles (possibly large), provided that certain symme-
try conditions are satisfied (8).

A common approach to small-tip-angle RF pulse design
is to predetermine the gradient waveforms and thus the
k-space trajectory, and then obtain the complex-valued RF
waveform by sampling the Fourier transform of the desired
excitation pattern along the trajectory. Afterwards, the
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sample values are compensated for density variation in the
trajectory. Some researchers have designed pulses by
adopting the conjugate-phase (CP) approach from image
reconstruction (9,10), which accounts for off-resonance
effects and thus can correct for it to some extent (11,12).

These conventional approaches are nonideal in several
regards. First, in terms of minimizing excitation error, they
generally produce pulses that are suboptimal even with
respect to the linear design model. This design subopti-
mality is an eradicable source of excitation error, on top of
the intractable amount of error due to the small-tip-angle
approximation underlying excitation k-space. The excita-
tion error due to design suboptimality is particularly large
when the trajectory undersamples k-space, or when large
spatial variations of off-resonance are present (11). To
compensate for the effects of off-resonance gradients to
some extent, Noll et al. (13) suggested the use of a sophis-
ticated density compensation function (DCF) in the CP
method; however, that function is spatially variant and
may not be readily extended to the excitation case. In fact,
it is generally difficult and time-consuming to obtain an
accurate DCF evaluation (see, for example, Ref. 14). Erro-
neous DCF evaluations contribute significantly to excita-
tion error.

In addition to their suboptimality, the current design
approaches cannot handle the secondary objective of min-
imizing integrated RF power due to specific absorption
rate (SAR) considerations (15,16), or the hard constraint of
peak RF power due to amplifier limitation (17). Also, they
are unable to exploit the possibility of assigning spatial
weighting to excitation error. These issues suggest that
there is room for improvement in small-tip-angle RF pulse
design methodology, which would benefit current appli-
cations and possibly foster future ones.

The inverse-problem nature of small-tip-angle RF pulse
design suggests that an optimization approach can be ben-
eficial. In fact, a range of optimization schemes have been
used by researchers to design slice-selective 90°, inver-
sion, and spin-echo pulses (e.g., Refs. 15-20). Those opti-
mal pulses, designed with respect to the exact Bloch equa-
tion system, achieve very accurate slice profiles. It is a
natural extension to apply some of those schemes to the
small-tip-angle design problem. Another inspiration for a
better design method is the recent development of iterative
image reconstruction algorithms (21,22) that are also opti-
mization schemes. Iterative reconstruction methods pro-
duce improved image quality relative to the CP and grid-
ding methods (21-23). The analogy between image recon-
struction and small-tip-angle RF pulse design (11) suggests
that similar iterative optimization schemes can be applied
to the latter.

In this context, we propose that small-tip-angle RF
pulses can be designed via minimization of a quadratic
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cost function that consists of an excitation error term and
regularization terms that control pulse power. The mini-
mization problem can be solved iteratively via the conju-
gate-gradient (CG) method (22). Off-resonance during ex-
citation, particularly in the case of long pulses, has a
significant impact on the excitation accuracy (11,12), and
thus its effects are included in our design model.

In the following section we formulate small-tip-angle RF
pulse design as an optimization problem, and discuss its
numerical solution. We then present the results of a Bloch
equation simulation results, which show quantitatively
the benefits of the iterative design method in terms of
excitation accuracy when excitation k-space is under-
sampled or off-resonance is present. We also investigate
the trade-off between excitation accuracy and pulse
power. Finally, we present results from scanner experi-
ments.

THEORY

Let us define the complex function M(x; b) as the trans-
verse magnetization pattern resulting from the Bloch equa-
tion, with input complex RF pulse envelope b(t) and pre-
determined real gradient waveforms g(t) = [g.(t) gy
(1) g, ()17, t € [0, T]. We assume that all magnetization is
initially fully relaxed and aligned with the +z axis, and
has equilibrium magnitude M,. For tip angles of 0-90°,
the complex representation can unambiguously specify
magnetization. In the small-tip-angle regime, one can de-
sign an optimal RF pulse by minimizing a cost function
that includes an excitation error measure and a pulse
energy term that allows for a soft constraint on the inte-
grated RF pulse power:

b, = argmin J |M(x; b) — D(x)|*W(x) dx
b

T
+Bf [b(t)|* dt}, [1]

which is subject to the peak RF power hard constraint:

b(t))*=C, telo, T]. [2]
In Eq. [1], the complex function D(x) is the desired mag-
netization pattern, the real function W(x) is a user-defined
error weighting pattern that can cover the FOV or any
arbitrary ROIs, and B is a regularization parameter that
controls integrated power (IP) based on (SAR) consider-
ations. C is a certain constant that depends on the RF
amplifier peak power (PP) limitation. A similar version of
this problem for large-tip excitation was solved in Refs.
15-17 for the 1D and constant-gradient case, but it was a
difficult and time-consuming optimization problem due to
the Bloch equation nonlinearity. In the small-tip-angle
regime, linearization of the Bloch equation can reduce Eq.
[1] to a more easily solvable form.

Using the small-tip-angle approximation, Pauly et al. [1]
derived that M(x; b) can be approximated by a Fourier
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integral, and off-resonance during excitation can be easily
incorporated by an extra exponential factor (11,12):

T
M(X; b) ~ i"/Moj b(t)eik(t).xHAm(x)[t—T] dt, [3]
0

where vy denotes the gyromagnetic ratio, Aw(x) represents
resonance frequency offsets, and k(¢) is any realizable
excitation k-space trajectory given by the integral of the
remaining gradient area:

k(t) = —yf g(7) dr. [4]

An RF pulse is generally defined discretely in a pulse
sequence, processed by a digital-to-analog (D/A) converter,
and then played out in the coil via RF circuitry. Let b;, j =
0, ..., N, — 1 be the pulse samples in the pulse sequence,
and At be the sampling period. If the temporal point
spread function (PSF)' in the pulse that is physically
played out is narrow, then we can approximate Eq. [3] as

Ni—1
M(x; b) = iyM, D, e/t +ideli-TIxg, (5]
j=0

We sample M at Cartesian spatial locations {x,;} =, *, and

express Eq. [5] in matrix-vector multiplication form:
m ~ Ab (6]
where m = [M(x,; b) -+ M(xy _,; b)1", b = [b, -~

bNt,l]T, and the elements of the N, X N, system matrix
are

a;= j,yMueik(t,)-x,+iAm(x,)[t,‘f T]At. [7]
Now we can obtain the RF pulse samples by solving

b = argmin {|Ab — d|}, + Bb’b}, [8]
b

subject to
bl*<=C, j=0,...,N—1, (9]

in which d is a vector that contains samples of the desired
pattern at the corresponding spatial locations, ' denotes
the complex conjugate transpose, and W is an N; X N,
diagonal matrix containing the user-selected error weight-
ing {W(x,;)}¥:5*. The W-weighted 2-norm denotes (Ab —
d) '"W(Ab — d). W can be used to specify spin-free regions
as “don’t care” regions.

'The RF pulse being physically played out can be modeled as a pulse sample
weighted “train of Dirac impulses” convolved with a time-invariant PSF. The
temporal spreading can arise from D/A converter characteristics and RF
circuit impulse response functions. In the present analysis we ignored this
spreading effect, although it could have been incorporated easily.
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The dimensions of matrix A depend on the sample spac-
ing in m and d, and the length of the RF pulse being
designed. Indeed, sample spacing in m and d dictates
whether the system of equations Ab = d is overdetermined
or underdetermined when no regularization is applied. We
found that it is generally beneficial, in terms of excitation
error evaluated over the continuous spatial domain, to
sample D(x) finely (with higher resolution than that sup-
ported by the trajectory) so that the unregularized design
problem Ab = d is overdetermined.

We can invoke the Karush-Kuhn-Tucker (KKT) theorem
in nonlinear optimization theory (24) to solve Egs. [8] and
[9], as detailed in the Appendix. The optimal solution
suggests that a magnitude-constrained RF pulse can be
designed via

b = arg min {|Ab — d|} + pb’b + b’Ab}, [10]
b

where A = diag()\j), and Ny j=0,...,N —1 denote
regularization parameters that control the magnitude of
individual RF pulse samples. One can describe b’Ab as the
“local” regularization term for controlling PP, whereas
Bb'b is the “global Tikhonov regularization term, often
used in other imaging applications, for controlling inte-
grated RF power. Regularization may degrade the fit be-
tween the resulting and desired patterns in exchange for
reducing pulse power. The trade-off can be tuned by the
regularization parameters. Slight Tikhonov regularization
is generally needed to ensure that pulses are physically
realizable.

For a certain set of regularization parameters, the de-
signed pulse can be constraint-violating, and thus the pa-
rameters must be incremented. One heuristic approach
used to search for a good set of parameter values is to
iteratively check IP and PP, increment B in the case of an
IP violation, and \; in the case of a PP violation at pulse
sample b;, and then redesign until the IP is acceptable and
the PP is within amplifier limitation. This “check-and-
redesign” process is sensible because for practical pulse
design problems the RF power constraints are often not
violated. The PP constraint violation may occur at very
few time points, if at all. Thus all or most of the regular-
ization parameters can be zero. In such cases, the heuristic
approach is computationally economical because it avoids
the need to simultaneously solve for the optimizing pulse
and KKT multipliers (see Appendix).

For Eq. [10], if the regularization parameter values are
fixed, then b = (A’'WA + R)"*A’Wd , where R = If + A.
This analytical solution involves a matrix inversion,
which is a computationally intensive O(N §) operation. To
reduce the complexity, we instead apply the O(N7) itera-
tive CG algorithm (22), which converges to the optimizing
pulse over iterations. The complexity reduction can be
highly significant for the design of long pulses. One can
initialize CG with a CP design for a good initial guess.
Alternatively, one can initialize with a zero pulse without
loss of excitation accuracy, provided that enough itera-
tions are used.

Yip et al.

MATERIALS AND METHODS
Pulse Computations

RF pulses were computed offline with Matlab 6.5 (Math-
Works Inc., Natick, MA, USA). They were spatially selec-
tive in the two transverse dimensions. In all cases we used
single-shot spiral-out excitation k-space trajectories (25)
with the following gradient parameters: maximum magni-
tude = 4 G/cm, maximum slew rate = 18000 G/cm/s, and
sampling period = 4 ps. Unless otherwise stated for spe-
cific experiments, we used a trajectory that supported
0.5 cm X 0.5 cm resolution, and an excitation field of view
(XFOV) of 18 cm diameter, resulting in a pulse duration of
9.01 ms.

The desired patterns had a common resolution of
0.25 cm X 0.25 cm. In the simulations, the desired pattern
was a 15 cm X 5 cm block, with magnitude 0.5 (unit
magnitude corresponded to 90° tip angle), perfectly sharp
edges, and zero phase everywhere. Excitation error was
equally weighted within either a circular ROI (20 cm di-
ameter) or an elliptic reduced ROI (with the length of the
major and minor axes being 18 cm and 12 cm, respec-
tively). Outside the ROIs were “don’t-care” regions as-
signed with zero error weighting. This setup simulated
inner volume excitation of a block inside a human skull for
spectroscopic imaging (26), for which the elliptic ROI cov-
ered the head within the FOV. The desired patterns and
ROIs in the scanner experiments are detailed in the Scan-
ner Experiments section.

The CG algorithm in the iterative method was initialized
with a zero pulse and run for 15 iterations for sufficient
convergence. Except in simulation III, we used Tikhonov
regularization with B = 2.25 to avoid physically unrealiz-
able pulse designs. Off-resonance effects were considered
in simulation II and scanner experiment II.

For comparison with the iterative method, we used the
CP algorithm as the standard. DCFs were calculated based
on the Jacobian formula (27). When resonance frequency
offsets are not incorporated, CP is equivalent to the
method of sampling the Fourier transform of the desired
pattern along the trajectory, provided that no interpolation
error is introduced in the sampling step. Such interpola-
tion errors can be made arbitrarily small by zero-padding
the target pattern before transformation.

Numerical Simulations

To evaluate the RF pulses, we performed numerical sim-
ulations of the Bloch equation with Matlab. The Bloch
simulation was over a 2D grid covering a 20 cm X 20 cm
region, with 0.25 cm X 0.25 cm resolution. Relaxation
effects were ignored. In simulation II, a field map was
incorporated in the Bloch simulator. For each excitation
result from the Bloch simulator (m,;), we calculated the
normalized root-mean-square excitation error (NRMSE)
with respect to the desired pattern. The NRMSE was de-
fined as ||m;, — d|/[dlw. Note that in each simulation
study the same W was used for both the CP and iterative
methods, and it covered the same ROI incorporated in the
iterative scheme.

Simulation I: k-Space Undersampling

The goal of simulation I was to compare the CP and iter-
ative methods used in conjunction with trajectories that
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FIG. 1. Field map incorporated in the Bloch simulator and design
methods in simulation II.

undersample excitation k-space. The spiral-out trajectories
that were tested covered a fixed range in k-space, while the
sampling interval was varied, leading to XFOV diameters
ranging from 10 cm to 22 cm. For each XFOV diameter
value, we computed the corresponding RF pulse designed
via the CP and iterative methods. The iterative methods
used either the circular or elliptic ROIL Gradient and RF
pulse waveforms were then fed into the Bloch simulator,
and the within-ROI NRMSE was computed.

Simulation 1l: Off-Resonance Correction

We compared the abilities of the design methods in cor-
recting for off-resonance effects during excitation. In the
Bloch simulator, we incorporated a field map with flat
regions in the center (+60 Hz) and background (-60 Hz),
bridged by a linear transition region (Fig. 1). The width of
the linear transition region was varied to represent differ-
ent roughness values of the field map, with the central
+60 Hz region fixed. For each transition steepness value,
we simulated pulses designed with the field-map-incorpo-
rated CP and iterative method, using either the circular or
elliptic ROL In all cases the NRMSE was evaluated only
within the transition region inside the ROIs.

Simulation Ill: RF Pulse Power Management

Simulation III demonstrated the use of regularization for
controlling IP and PP. The iteratively designed pulse in
simulation I, with circular ROI, XFOV = 13 cm, and B =
2.25, was treated as the original pulse. In two separate
studies we investigated reducing its IP by 50% and its PP
by 75%.

To reduce the IP we redesigned the original pulse by
iteratively incrementing B by 1.0 and rerunning the itera-
tive scheme until the IP was below 50% of the original. To
reduce the PP we redesigned the original pulse by itera-
tively locating pulse samples that violated the peak mag-
nitude constraint (50% of the original peak), incrementing
the local regularization parameters {\;} at those violation
points by 1.0, and rerunning the iterative scheme until the
peak RF power was below 50% of the original. While the
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local regularization parameters were varied, we kept the
original Tikhonov regularization (B = 2.25).

We compared the NRMSE penalty induced by regular-
ization with that induced by simply scaling the original
pulse by 1/V/2 or clipping at half of its maximum magni-
tude.

Scanner Experiments

Scanner experiments were performed on a GE 3 T Signa
Scanner (GE Healthcare, Milwaukee, WI, USA) using a
spherical homogeneous water phantom (GE Healthcare).
2D excitation patterns were imaged by a spin-echo (SE)
spiral-out pulse sequence in which the slice-selective sinc
pulse was replaced by the 2D pulse designs. The 180°
pulse was slice-selective for refocusing the slice being
imaged. Prescans for ROI and field map (experiment II)
were acquired by a gradient-echo (GRE) spiral-out se-
quence. Eight acquisition interleaves were used in all se-
quences to minimize the off-resonance effect during acqui-
sition. Common imaging parameters were as follows: slice
thickness = 3.0 mm, FOV = 20 cm, matrix size = 64 X 64,
TR = 1 s, and TE = 40 ms (SE) or 7.6 ms (GRE). In each of
the two experiments, flip angles of the patterns being com-
pared were matched via proper scaling of the pulses. For
the 2D pulses, gradient waveforms for excitation were
shifted forward by 145 ps to compensate for the delay
between RF and gradient channels. Images were recon-
structed from the scanner data using a fast implementation
of the off-resonance compensated CP method (9). The im-
plementation used field maps estimated from two images
acquired with a TE difference of 2 ms (28). The use of an
SE sequence with multiple interleaves and an off-reso-
nance compensated reconstruction scheme ensured that
image artifacts due to off-resonance during acquisition
were insignificant.

Experiment I: Variable-Density Trajectory

Variable-density spiral trajectories (29,30), which under-
sample k-space regionally, can be useful for reducing
pulse length. We investigated whether aliasing could be
alleviated when those trajectories were used in conjunc-
tion with the iterative design method. Excitation patterns
produced by an identical variable-density trajectory but
different RF pulse designs were imaged and compared.

The variable-density spiral-out trajectory we deployed
adequately sampled excitation k-space near the origin
(XFOV = 18 cm), and undersampled by a factor of 2.5 in
the high-frequency region (Fig. 2). The pulse length was
4.65 ms, and the durations of the adequate-sampling and
transition (from adequate-sampling to undersampling) seg-
ments were 1.0 ms and 0.8 ms, respectively. To simulate
ROI determination in human scanning, we prescanned the
phantom with a GRE spiral sequence with a slice-selective
sinc pulse, and thresholded the resulting image at 0.3 of its
maximum magnitude. CP and (ROI-incorporated) iterative
methods were then applied to compute two RF pulses for
the desired pattern, which was a uniform disc (6 cm in
diameter) with sharp edges. Selective excitation of discs is
useful in applications such as inner volume excitation (26)
and 2D navigator pulses (31).
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FIG. 2. Variable-density spiral trajectory deployed in scanner exper-
iment |.

Experiment Il: Off-Resonance Correction

We experimentally compared off-resonance correction by
the design methods. Three ferromagnetic metal pieces
were attached to the phantom surface to create main field
inhomogeneity. With the same 9.01-ms trajectory used in
the simulations, we designed one pulse using the iterative
method without field map incorporation, and two other
pulses using CP and iterative methods with field map
incorporation. As in the previous experiment, we pres-
canned the phantom and performed image thresholding to
determine the ROI The resulting excitation patterns were
then imaged and compared.

The field map was estimated from two GRE images (28),
with TE values of 7.60 ms and 8.60 ms. We masked it with
the ROI and then smoothed it using a regularized weighted
least-squares method (32) before incorporation. The de-
sired pattern was an arbitrary “stripes” pattern that cov-
ered the entire phantom and demonstrated off-resonance
correction well.

RESULTS
Simulation I: k-Space Undersampling

Figure 3 shows the within-ROI NRMSE vs. XFOV diameter
for each design method in simulation I. Compared to CP,
the iterative method, regardless of ROI specification, led to
lower within-ROI NRMSE for all XFOV diameter values
considered. When the XFOV diameter was 18 cm (an ad-
equate XFOV for our desired pattern) the iterative method
with the circular ROI outperformed CP, whereas the iter-
ative method using the elliptic ROI outperformed CP by a
slightly larger margin. The margins became significant
larger when k-space was undersampled, revealing the ex-
citation accuracy advantage of the iterative method and
the further benefit of reducing the size of the ROI. With CP,
k-space undersampling led to excitation aliasing within
the ROL The iterative method was efficacious in suppress-
ing the aliasing effect because the effect was accounted for
in the optimization cost function and was thus minimized.
ROI size reduction gave extra degrees of freedom toward
better excitation accuracy.

Yip et al.

These results also suggest that a given desired excitation
accuracy can be achieved with a shorter trajectory by using
the iterative method instead of CP. The iteratively de-
signed pulse at point iv in Fig. 3 produced within-ROI
accuracy close to that obtained by CP at point i, but its
pulse length was significantly shorter (6.62 ms at iv, and
9.01 ms at i).

Figure 4 shows the excitation patterns corresponding to
points i—iv in Fig. 3, and Fig. 5 displays the gradient and
RF (magnitude) waveforms corresponding to points ii—iv.
Although the same k-space trajectory was deployed, the
design methods produced significantly different RF
pulses. The iteratively-designed pulse at point iii had a
spike corresponding to a k-space location close to the
origin, which could lead to a PP violation. Simulation III
illustrates modification of the regularization for suppress-
ing the spike.

Simulation II: Off-Resonance Correction

Figure 6 shows the within-ROI NRMSE in the transition
region plotted against the off-resonance gradient magni-
tude. Pulses designed with CP produced increasingly dis-
torted excitation in the transition region as the region
became steeper. The degradation was consistent with re-
sults from other research studies that reported that the
analogous CP reconstruction method did not correct well
for rough field maps (22). On the other hand, the iteratively
designed pulses were relatively immune to large off-reso-
nance gradients. The excitation performance degraded rel-
atively slowly as the gradient increased. Specification of
the elliptic ROl in the iterative method did not have much
effect on excitation accuracy.

Figure 7a shows the excitation pattern obtained by a
pulse designed with CP without field map incorporation,

Pulse length (ms)
5.19 6.14 7.10 8.06 9.01 8.97 10.92

—e~ Conjugate—phase
== |terative (circular ROI)
-& lterative (elliptic ROI)

10 12 14 6 8 20 2
Diameter of XFOV (cm)

FIG. 3. Within-ROI excitation error resulting from RF pulses de-
signed for spiral trajectories with different XFOVs (resolution held
fixed). For a given trajectory, higher excitation accuracy was
achieved by the iterative method, especially when the trajectory
undersampled k-space. Reduction in the size of the ROI in the
iterative method led to better within-ROI accuracy and higher tol-
erance of k-space undersampling. The excitation patterns and
pulses at points i-iv are shown in Figs. 4 and 5.
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FIG. 4. Simulated excitation patterns correspond-
ing to points i-iv in Fig. 3. Interior regions of the
solid lines represent the circular or elliptic ROI. a: a
Pattern obtained by an adequate-sampling trajec-
tory and a CP-designed pulse (). b-d: Patterns
obtained by a common trajectory that under-
sampled k-space (XFOV = 13 cm), accompanied
by pulses designed with CP (ii) or the iterative
method, with different ROl specifications (iii and iv).

Iterative with circular ROI (jii) :
Pulse length = 6.62 ms
C NRMSE = 0.28

at gradient magnitude 75 Hz/cm. Without field map incor-
poration the pattern was blurred due to off-resonance. The
patterns that underlie points i-iii in Fig. 6 are juxtaposed
in Fig. 7b—d. In regions with a zero off-resonance gradient,
both design methods led to apparently equal excitation
accuracy. However, the off-resonance gradient in the tran-
sition region differentiated the pulses. It is surprising that
degradation in Fig. 7b turned out to be spatially localized.

Simulation lll: RF Power Management

Figure 8a shows the original pulse (blue; the same pulse as
in the third panel of Fig. 5), and its redesigned versions

0.4 Iterative pulse design with circular ROI (jii)
U W D AP VO W T P S U S
4

a 0.2
0‘; AR
0 1 2 3

0.2 T T T T T T

Iterative pulse design with elliptic ROI (iv)

4 5 6

3
Time (ms)

FIG. 5. Gradient and RF (magnitude) waveforms used to produce
excitation patterns in Fig. 4b—d, corresponding to points ii-iv in Fig.
3. Although the same gradient waveforms and desired patterns
were used, the RF pulse designs differed significantly (G = Gauss).

CP (i) : Pulse length =9.01 ms
NRMSE = 0.18 b
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CP (ii) : Pulse length = 6.62 ms
NRMSE = 0.50

lterative with elliptic ROI (iv):
Pulse length = 6.62 ms
NRMSE =0.18

(green and red) with Tikhonov regularization parameter 3
incremented to 5.25 and 11.25, respectively. Tikhonov
regularization influenced the entire pulse, but predomi-
nantly on its early portion corresponding to the proximity
of the k-space origin. Thus, we zoom in the pulses over the
first half millisecond. The potentially unrealizable spike in
the original pulse was significantly reduced with g = 5.25.
It shrank by 50% with g = 11.25, while the IP was roughly
halved relative to the original pulse. The pulses were
significantly different from scaled versions of the original
pulse.

Simulated profiles of these three pulses (at y = 0 cm)
illustrated that IP was reduced at a low cost in excitation

0.55[-
—e— Conjugate—phase

051 === |terative (circular ROI)
@ =& |terative (elliptic ROI) )
_S 045}
j=4
e
c 04
2
z
& 035
=
w 03
%)
=
C 0251
=4

02

0.15F

. . 1 ! \
20 30 40 50 80 70 80 %0 100
Magnitude of off resonance derivative (Hz/cm)

FIG. 6. NRMSE in the transition region within the ROI vs. the re-
gion’s steepness. As the transition became more rapid, the perfor-
mance of the CP-designed pulses degraded, whereas the iteratively
designed pulses were relatively immune. Figure 7 shows excitation
patterns at points i-iii.
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CP without field map :

CP with field map (i):
a NRMSE = 1.38

b

lterative with field map,
circular ROI (ji) :

Cc NRMSE = 0.16 d

accuracy (Fig. 9). Scaling the original pulse by 1/V2 was
effective in cutting the original power by half, but the
accuracy cost was significantly higher than that obtained
with the Tikhonov regularization (3 = 11.25).

Figure 8b illustrates the use of local regularization for PP
reduction (spike suppression). The original pulse (blue) is
juxtaposed with its redesigned version (red), as computed

051 beta=2.25 (original)
beta=5.25

beta=11.25 (50% integrated power)

& 025k

0.2

0 v
do 0.3 0.4 05

0.1
0.5r ;

Without local regularization (original)
—— With local regularization (25% peak power)

G 025

Time (ms) .

FIG. 8. a: The original pulse (blue; same pulse as in the third panel
of Fig. 5) designed with Tikhonov regularization (3 = 2.25). The
pulse over the first half millisecond is plotted. Incrementing 8 re-
duced the spike height and integrated pulse power (green and red).
b: Original pulse (blue) and the pulse redesigned with local regular-
ization. Its PP was about 25% of the original. c: Local regularization
parameters used for the redesigned pulse in b. (Note: pulse mag-
nitude is plotted in Gauss (G).)

NRMSE = 0.44

Yip et al.

FIG. 7. a: Simulated excitation pattern obtained by
a pulse designed using CP without incorporation of
field map with transition region at 75 Hz/cm. b-d:
Patterns obtained by pulses designed with the
field-map-incorporated CP (point i in Fig. 6), and
field-map-incorporated iterative method, with dif-
ferent ROI specifications (ii and iii). Interior regions
of the solid lines represent the circular or elliptic
ROI.

lterative with field map,
elliptic ROI (iii) :
NRMSE =0.16

iteratively with local regularization parameters plotted in
Fig. 8c. The redesigned pulse had PP 75% lower than the
original compared to the original pulse clipped at half
maximum, it was subtly different, and a profile simulation
(at y = 0 cm) revealed that it led to significantly better
excitation accuracy (Fig. 10). Note also that 50% spike
suppression was achieved at a lower cost via local regu-
larization compared to the globally influential Tikhonov
regularization.

These two examples highlight how the optimization de-
sign approach modifies each pulse sample to seek an op-

= Desired profile
beta = 2.25 (original) IP=2.27 NRMSE=0.28
——— beta = 5.25 IP=1.51 NRMSE=0.29
061 beta = 11.25 IP=1.10 NRMSE=0.32
3 + == Original scaled by 1/sqrt(2) IP=1.14 NRMSE=0.41
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FIG. 9. Simulated pattern profiles at y = 0 cm, created by the
original pulse (blue in Fig. 8a), the pulses redesigned with increased
Tikhonov regularization (green and red in Fig. 8a), and the original
pulse scaled by 1/1/2 . With the regularized iterative design method,
IP reduction was achieved with a low penalty in excitation accuracy.
(Note: IP is in arbitrary units.)
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FIG. 10. Simulated pattern profiles at y = 0 cm, created by the
original pulse (blue in Fig. 8b), the pulse (red in Fig. 8b) redesigned
with local regularization parameters in Fig. 8c, and the original pulse
clipped at half maximum. With the regularized iterative design
method, a PP reduction was achieved with a low penalty in excita-
tion accuracy. (Note: PP is in arbitrary units.)

timal trade-off between pulse power and excitation accu-
racy.

Experiment I: Variable-Density Trajectory

An ROI was derived by thresholding a prescanned image
of the phantom (Fig. 11a and b). Figure 11c—e are respec-
tively the desired disc pattern and patterns excited by two
pulses designed with the CP and iterative methods. Notice
the aliasing effect in the CP pattern caused by undersam-
pling of the high-spatial-frequency region, which con-
tained significant energy because of the sharp disc edges.
With the iteratively designed pulse the aliasing effect was
significantly reduced, although the same trajectory was
deployed. This was consistent with the results of simula-
tion I, and likewise could be explained by inclusion of the
aliasing phenomenon in the optimization cost function
being minimized. Bloch simulation of the iteratively-de-
signed pulse (Fig. 11f) revealed that the extra degrees of

FIG. 11. (a) Prescanned image and (b) the
ROI obtained by thresholding. c: Desired
pattern. d: Measured pattern excited by the
CP-designed pulse, which is plagued by
aliasing excitation. e: Measured pattern ex-
cited by the pulse designed with the ROI-
incorporated iterative method. Compared to
the CP case, aliasing was significantly alle-
viated. f: Bloch simulation of the iteratively-
designed pulse used in e (dashed line: ROI).

an
@]
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freedom in the outside-phantom region led to enhanced
within-ROI accuracy.

Experiment Il: Off-Resonance Correction

Figure 12a and b show the “stripes” desired pattern and
the pattern excited by an iteratively-designed pulse before
the three metal pieces were attached to the phantom sur-
face. Figure 12c shows the field map of the axial plane
being imaged, which was inferior to the attached pieces. It
revealed global distortion of the main field. Such field
inhomogeneity is comparable to, for example, that found
in brain regions near air cavities in the human skull. The
same iteratively-designed pulse, now applied in a dis-
torted field, excited a distorted pattern (Fig. 12d). The field
map was then incorporated in the design methods. Figure
12e and f show patterns excited by pulses designed with
the field-map-incorporated CP and iterative methods, re-
spectively. The pattern distortion was significantly allevi-
ated in both cases, but the iteratively designed pulse per-
formed slightly better, as can be observed in regions with
a high off-resonance gradient magnitude (white arrows).
The accuracy in regions with low gradient magnitude was
comparable. These observations were consistent with the
results from simulation II. We expect the benefit of the
iterative method to be more prominent when longer pulses
are used (e.g., the 3D tailored RF pulse in Ref. 2).

DISCUSSION

We have formulated an optimization approach to the pulse
design problem for small-tip-angle selective excitation. We
have shown that it is beneficial in several ways. In our
simulations and experiments, iteratively designed pulses
optimal with respect to the linear design system model,
produced significantly more accurate excitation patterns
from the Bloch equation system compared to the conven-
tionally designed pulses. We found experimentally that
this was generally true, even though the iteratively de-
signed pulses were not optimized with respect to the non-
linear Bloch equation. The accuracy benefit was particu-
larly prominent when the trajectory undersampled
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k-space, since aliasing was taken into account by the op-
timization scheme when it sought the cost-minimizing
pulse. This important feature makes the iterative method
stand out from noniterative ones. Second, iteratively de-
signed pulses excited more accurately in spatial regions
with large off-resonance gradients. This was partially at-
tributable to the obviation of a DCF evaluation in the
design process. As mentioned above, it is generally diffi-
cult to obtain an accurate DCF evaluation in the presence
of large off-resonance gradients, and DCF errors contribute
significantly to excitation error. The iterative method sim-
ply does not require the separate task of DCF evaluation.

We have also demonstrated the use of excitation error
weighting for controlling excitation precision in different
spatial regions. With the iterative method, designers can
assign zero weights to “don’t-care” regions and large
weights to ROIs. In particular, assigning “don’t-care” la-
bels to uninteresting body regions, or regions with zero or
low spin density (for example, outside-body regions) can
boost precision in the ROIs.

In addition to improving precision, the iterative method
can potentially lead to shorter pulse lengths, since under-
sampled k-space can be used with a lower penalty of
excitation accuracy. In some applications (e.g., Ref. 2),
slightly compromised overall excitation precision may be
more tolerable than exceedingly lengthy pulses. Lastly,
regularization can be used to trade excitation accuracy for
a reduction in integrated and peak RF power. The global
Tikhonov and local regularization techniques enable the
designer to avoid suboptimal strategies (e.g., scaling or
clipping) to make pulses implementable. RF power man-
agement could be crucial for high-field MRI.

The cost of all of these benefits is an increase in algo-
rithm complexity and thus computational time. However,
computational time was only a minor issue for our 2D
designs. On our Linux system with a 3.2 GHz processor
and 2 GB memory, the 15-iteration computation of the
pulses in Fig. 5 took only 7.07 s. However, the computa-
tional time (and memory) required for pulse designs for
volumetric selective excitation (e.g., Refs. 2 and 7) could
be an issue. Algorithm acceleration can be achieved via
time and frequency segmentation schemes (9,22,33),

Yip et al.

Hz

100
FIG. 12. a: Desired excitation pattern. b:
50 Pattern obtained by an iteratively-designed
pulse before metal pieces were attached to
0 the phantom. c: Field map after attachment
of the metal pieces. d: Pattern obtained by
=50  the pulse in b, distorted because of the in-
homogenous field. e: Pattern obtained by
the pulse designed with CP with field map
incorporation. f: Pattern obtained by the it-
eratively designed pulse with field map in-
corporation. Field correction by the iterative
method was slightly better in regions with a
high off-resonance gradient (white arrows).

which make approximations to the off-resonance exponen-
tial factor in Eq. [3] so that the fast Fourier transformation
(FFT) can be utilized. These acceleration techniques are
currently under investigation.

There are several interesting possible extensions of the
iterative design method. Joint optimization of the excita-
tion k-space trajectory and RF pulse for a given desired
pattern, inspired by the work of Hardy et al. (20), could
potentially lead to a significant reduction in RF pulse
length. Physical phenomena, such as spatial variations in
RF coil sensitivity and RF field homogeneity, can be in-
corporated in the optimization formulation. This would
readily benefit small-tip-angle selective excitation in mul-
ticoil transmit systems (5,6) and high-field imaging.

At a low cost in computational time, the iterative RF
pulse design method offers advantages in terms of excita-
tion precision, DCF obviation, potential pulse length re-
duction, and pulse power management. Our approach can
benefit current applications of small-tip-angle selective
excitation, and possibly foster future ones.
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APPENDIX

Solution to the Inequality-Constrained Optimization
Problem

The inequality-constrained optimization problem de-
scribed by Egs. [8] and [9] can be solved using the KKT
theorem. The theorem states that if b* is a regular point
and a local minimizer to the problem, there exists non-
negative real Lagrange multipliers {\7}'" such that for j
=0,..., N, — 1,

N (b3~ O) =0, [11]
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and the gradient of the Lagrangian function evaluated at b*
equals 0:

Ni—1
V{|Ab* — d|f}, + Bb*'b* + > \{bf* - O} =0.

j=0

[12]

Equations [11] and [12] must be solved simultaneously
for the optimizer. One can use commercial optimization
packages (for example, the Optimization Toolbox in Mat-
lab) to tackle the problem, although conversion of the
problem to a real-valued one may be necessary, and the
process can be computationally expensive. If the multipli-
ers are known a priori, b* can be obtained, due to the
convexity of the Lagrangian function, via

b* = arg min {|Ab — d|}, + Bb’b +b’A*b},  [13]
b

where A* = diag(\7).
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