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Glioblastoma Multiforme (GBM) is the most invasive form of primary brain tumor. We propose a mathematical
model that describes such tumor growth and allows us to describe two different mechanisms of cell invasion:
diffusion (random motion) and chemotaxis (directed motion along the gradient of the chemoattractant
concentration). The results are in a quantitative agreement with recent in vitro experiments. It was observed in
experiments that the outer invasive zone grows faster than the inner proliferative region. We argue that this
feature indicates transient behavior, and that the growth velocities tend to the same constant value for larger
times. A longer-time experiment is needed to verify this hypothesis and to choose between the two basic
mechanisms for tumor growth. © 2005 Wiley Periodicals, Inc. Complexity 11: 53–57, 2005
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INTRODUCTION

T his article reports on an analysis of recent experiments

(Stein et al., unpublished results) on the in vitro growth

of Glioblastoma Multiforme (GBM). GBM is a highly

malignant brain tumor, the most common and the most

aggressive of the primary brain tumors. Despite major im-

provements in cancer treatment, the overall prognosis is

still very poor [1,2]. Such a high mortality and poor response

to treatment is due the fact that GBM is highly invasive [3].

Tumor cells are able not only to proliferate but also to

migrate in the extracellular matrix of the brain. (Note that

migration is not the same as metastasis, where cancer

spreads in the circulatory system.) A typical tumor consists

of an inner proliferation zone with a very high density of

cells and a larger outer invasive zone, where the cell density

is smaller (see Figure 1). Surgery can remove only the inner

solid tumor, but not the cells in the invasive zone, so that

secondary (recurrent) tumors are very common [3].

The growth of brain tumors in vivo is a complex biolog-

ical phenomenon. Therefore, many efforts were made to

investigate model systems where tumors grow in vitro. In

recent experiments, in vitro tumor growth starting with

tumor spheroids was investigated in transparent gels [4].
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The experimentally observed branching patterns can be
explained theoretically by homotype attraction [5]. How-
ever, these branching patterns are not always observed ex-
perimentally. For one of the cell lines studied (U87 wild
type) experiments showed a spherically symmetric growing
tumor (Stein et al., unpublished results). This is the case we
will consider here.

Though the cells within the invasive and proliferative
region have the same genotype, their phenotype is quite
different. The invasive cells migrate faster and have a lower
proliferation rate (Stein et al., unpublished results) than
those in the tumor core. This dichotomy between migration
and proliferation regimes was first observed by Giese and
coauthors [6,7]. To model these experimental observations,
Stein and coauthors (Stein et al., unpublished results) pro-
posed a two population model. In this scheme there are
densely packed cells within the tumor core and invasive
cells that are continuously shed from the surface of the
tumor. The approach we take in this work is different. Here,
we formulate a simple physical model with only one type of
cells and describe the dynamical switching of the cell phe-
notype by a density-dependent diffusion coefficient. We
include in two different possible mechanisms of tumor in-

vasion: diffusion (random motility) and chemotaxis (di-

rected motility).

In the next section we describe the model. Then we

present the results and consider two basic mechanisms that

lead to tumor invasion: diffusion and chemotaxis. The last

section includes a brief discussion and a summary.

MODEL AND GOVERNING EQUATIONS
The basic unit in our description will be a cancer cell.

Consider an initial tumor in a three-dimensional medium.

Each cell is able to proliferate and to perform random

motion (diffusion) and guided, directed motion (chemo-

taxis). Chemotaxis is the directed motion of a cell along the

gradient of a chemoattractant concentration. The chemoat-

tractant could be one of several chemical agents such as

glucose or various growth factors. In our model, these mol-

ecules bind to cell receptors. The gradient of chemoattrac-

tant concentration is caused by consumption by the grow-

ing tumor. As the result, a cell moves away from the tumor.

The governing equations for the cell concentration u(r̃,t)

and for the concentration of chemoattractant c(r̃,t) are as

follows:

FIGURE 1

Example of growing tumor from in vitro experiments in collagen gel (Stein et al., unpublished results). There is an inner proliferation zone with a very high
density of cells and a larger outer invasive zone, where the cell density is smaller. The diameter of the inner core is about 250 �m.
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�u
�t

� � � �D1�u��u� � gu�uc � u� � � � ���c�u�c�,

�c
�t

� � � �D2�c� � �uc. (1)

Here D1 and D2 are the diffusion coefficients of cells and of
chemoattractant, � the chemotaxis coefficient, uc the den-
sity of the close packed cells, g the rate of proliferation, and
� the rate of consumption of c. We assume that the cell
diffusion coefficient D1 depends on cell concentration. This
assumption is based on experimental observations that
showed that cell motility is larger in the invasive region,
where cell concentration is smaller [6,7]. We put D1 �

D0(u � u0)�1, so that D0/u0 is the diffusion coefficient far
from the tumor. The chemotaxis coefficient is given by the
receptor law: � � �0 (c � c0)�2 [8]. Chemotaxis decreases as
the chemoattractant concentration increases since for large
c(r̃,t) most of the cell receptors are saturated, and the cell is
not able to detect the chemical gradient. We assume an
infinite reservoir of chemoattractant, so that c(r̃,t) is con-
stant far from the tumor c � c�.

We introduce dimensionless variables. Measuring cell
density in the units of uc, chemoattractant concentration in
units of c�, time in units of ( guc)�1, and distance in units of
D0/( guc)2, we arrive at

�u
�t

� u�1 � u� � � � � �u
u � u1

� � �1� � � u�c
(c � c1)2� ,

�c
�t

� D� � ��c� � �uc. (2)

Here, the parameter �1 � �0/(D0c�) measures the relative
strength of chemotaxis and diffusion, D � D2uc/D0 is the
scaled ratio of cell and chemoattractant diffusion coeffi-
cients, � � �/g is the ratio of proliferation and consumption
rates, and u1 � u0/uc, c1 � c0/c� are two parameters that lie
in [0, 1].

DIFFUSION VERSUS CHEMOTAXIS
We assume radial symmetry and analyze a typical solution
of Eqs. (2): u � u(r,t), c � c(r,t). First, we need to specify
boundary conditions. At r � 0 we have

�u
�t

�
�c
�t

� 0. (3)

Far from the tumor, the cell concentration is zero, u(r �

�) � 0, and the scaled chemoattractant concentration is
unity, c(r � �) � 1. We start with uniform chemoattractant
concentration c(r,t � 0) � 1 and with an initially spherical

FIGURE 2

Time series of the density profiles of cells and of chemoattractant,
obtained from the numerical solution of Eq. (2). We start with a sharp
cell density profile (dotted line). After a short transient, one can see
two propagating fronts: the first one represents the growing tumor
(cell concentration, solid lines), the second one represents the con-
sumed chemoattractant (chemoattractant concentration, dash-dotted
lines). The profiles correspond to times t � 5, t � 10, and t � 15.
The parameters are D � 100, �1 � 10, u1 � 0.25, c1 � 0.3,
� � 700, and r0 � 4.5644. Also shown is an example of a pure
diffusion front (cell concentration, dashed lines). It is obtained by
putting �1 � 0 in the first of Eqs. (2). For the same diffusion
coefficients, the traveling front with diffusion and chemotaxis terms
moves faster.

FIGURE 3

Time series of the cell density profiles in the case of pure diffusion. An
initially sharp density profile is shown by the dash-dotted line. Due to
diffusion effects, the front becomes smoother with time; the profiles after
1 day of tumor growth (t � 0.86) and 7 days (t � 6) are shown by the
solid lines. One can see that the small density invasive region expands
faster than the large density proliferative zone, in agreement with exper-
imental data (Stein et al., unpublished results; the circles). However, this
occurs only in a transient regime. Also shown is the density profile after
14 days (t � 12) (the dashed line). As time increases, the expansion
velocities of the two zones tend to the same value. For convenience, the
distance from the center of tumor is measured in physical units (�m). The
parameters are: �1 � 0, u1 � 0.1.
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solid tumor. We assume also that the cells within this tumor
are densely packed: u(r � r0,t � 0) � 1, u(r 	 r0,t � 0) � 0.
In Figure 2 we give a time series of the density profiles of
cells and of chemoattractant from Eq. (2). After a short
transient, there are two propagating fronts. The first front is
the growing tumor: the cell density u(r,t) is shown by the
solid lines. The second front represents the consumed che-
moattractant: the chemoattractant concentration c(r,t) is
shown by the dash-dotted lines. Figure 2 also gives an
example of a pure diffusion front (cell concentration,
dashed lines) obtained by putting �1 � 0 in the first of Eq.
(2). For the same diffusion coefficients, the traveling front of
the full problem [Eq. (2)] with diffusion and chemotaxis
moves faster, as expected.

The propagating front solution means that the inner pro-
liferation region grows with the same velocity as the outer
invasive zone. However, in experiments, the invasive zone
grows faster than the proliferation region (Stein et al., unpub-
lished results, [4]). This suggests that the experiments (Stein et
al., unpublished results) must be in a transient regime. Indeed,
any initially sharp front becomes smoother with time due to
diffusion effects. It means that the region with small density
moves faster than the large density zone, as is seen in Figure 3
for sufficiently small times. Another experimental confirma-
tion (Stein et al., unpublished results) of this diffusion-based
argument is the fact that at small times the tumor core shrinks,
in agreement with Figure 3. To verify these predictions, a
longer-time (2–3 weeks) experiment would be needed.

We can calculate the experimental radial density profile
from the image shown on Figure 1. First we compute the
brightness of the image u� as a function of the distance from
the tumor center 	 in cylindrical coordinates. Then we as-
sume that the original light intensity decays exponentially:

u� �	� � I0� e�u�r�dz. (4)

Then, inverse radon transformation procedure (performed
in Matlab) allows us to obtain the experimental density
profile u(r). Figure 4 shows both the experimental density
profile from Figure 1 and two theoretical profiles, computed
from the numerical solution of Eq. (2), which correspond to
the two different scenarios. The first one includes both
diffusion and chemotaxis, whereas the second one includes
only diffusion (the diffusion coefficients are different in the
two cases.) Despite the similarity between the two theoret-
ical density profiles in the early stage (both of them are in a
good agreement with the experimental profile), the two
scenarios are distinguishable at larger times. It should be
noted that when grown in spinner flasks, tumor spheroids
stop growing when they reach 1–2 mm in radius [9]. This
phenomenon is likely due to mitotic inhibitors that are
produced by the necrotic core of the spheroid [9]. Our

models do not account for growth inhibition, and further
long-time in vitro experiments with brain tumor cells are
needed to check the significance of this effect.

SUMMARY AND DISCUSSION
In this work, we analyzed two different mechanisms of
tumor growth. The first is diffusion (random cell motion),
whereas the second is chemotaxis, directed cell motion that
occurs along the gradient of concentration of chemoattrac-
tant. In the experiments (Stein et al., unpublished results),
the radius of the invasive region grows faster than the radius
of the inner proliferation zone. Our results suggest that this
regime is a transient. The model supports a propagating
front, so as time increases, the expansion velocities of the
two zones should tend to the same value.

We have shown that the experimental density profile can
be reproduced both in the model that includes only diffu-
sion, and a model that includes both cell diffusion and
chemotaxis. However, the large time behavior is not the
same, and the velocities of the propagating fronts in these
two models are different. We believe our predictions would
be verified if long-time experiments (2–3 weeks) could be
performed beyond the transient regime.

FIGURE 4

Two scenarios for tumor growth. We start from an initially sharp density
profile (dash-dotted line). Time series of the cells density profiles, ob-
tained from the numerical solution of the full system Eq. (2) are denoted
by the solid lines. The profiles are obtained at times t1 � 5.5, t2 �

11.0, and t3 � 22.0. Profiles, obtained from the diffusion-only model
(�1 � 0) are shown by the dashed lines (t1 � 6, t2 � 12, and t3 �

24, correspondingly.) Circles denote the experimental density profile.
Despite the similarity between the two theoretical density profiles in the
early stage (note that both of them are in a good agreement with the
experimental profile), the two scenarios are distinguishable at larger
times. For convenience, the distance from the center of tumor is mea-
sured in physical units (�m). The parameters for the full model are: D �

100, �1 � 10, u1 � 0.25, c1 � 0.3, and � � 700. The parameters
for the diffusion-only model are: �1 � 0, u1 � 0.1.
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It is known that GBMs frequently contain amplification

of mutations of the epidermal growth factor receptor

(EGFR) gene. The most common mutation results in a trun-

cated receptor tyrosine kinase known as 
EGFR that signals

constitutively and promotes GBM growth. Experiments with

these mutant cells show a qualitatively different behavior

(Stein et al., unpublished results) from the wild type that we

have discussed here. Mutant type cells are organized in

tenuous branches (Stein et al., unpublished results; [4]).

This can be interpreted as an indication of an instability of

a spherically symmetric propagating front. Analogous insta-

bilities were studied in the theory of combustion [10], as

well as in the context of self-organization of microorganisms

[11,12]. One way of modeling this branching instability is

assuming homotype attraction between the cells [5]. An-

other possibility is to assume a nonlinear diffusion, where

the diffusion coefficient increases with the density of the

cells, as was proposed for growth of bacterial colonies

[11,12]. Understanding the mechanisms that lead to the

instability in the context of tumor growth can be an inter-

esting direction of the future work.
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