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Abstract. The exact solution (size distribution ck(t) and moments M ,  ( t ) )  of Smoluchowski’s 
coagulation equation (S-model) and of a modified equation (F-model) with a coagulation 
rate K,, = ij for i- and j-clusters is obtained for arbitrary Ck(0) in the sol ( t  < I,) and gel 
( I > [ , )  phases, where tc is the gel point. The behaviour of c k ( t )  and M,(t)  is given for 
k -+CO, t -+ CO and t + I,. The critical exponents, critical amplitudes and scaling function 
that characterise the singularities near the non-equilibrium phase transition are calculated. 
For short-range c k ( 0 )  (i.e. all M ,  <a) the F-model belongs to the universality class of 
classical gelation theories and of bond percolation on Cayley trees; the S-model does not. 

1. Introduction 

The kinetics of polymerisation, and in particular of gelation, has recently attracted 
considerable attention. Our main concern here is to present a kinetic description of 
the gelation transition, starting from arbitrary initial distributions. This will be done 
for the gelation models of Flory (1953) and Stockmayer (1943). The hypotheses of 
scaling and of universality (the latter refers here to independence of the initial size 
distribution) will be investigated for critical exponents and ratios of critical amplitudes 
(Aharony 1980, Stauffer et a1 1982), describing the singularities occurring in this 
kinetic phase transition. 

In the statistical theory of Flory and Stockmayer for branched polymers, and in 
the statistical mechanical methods for the comparable bond percolation problem on 
Bethe lattices (de Gennes 1976, Stauffer 19761, one always assigns equilibrium weights 
to the allowed distribution over cluster sizes, corresponding to the given value of the 
conversion CY (i.e. concentration of bonded reactive groups, 0 < a  < 1). The equilibrium 
weights of the standard theories correspond in a kinetic description to the very special 
monodisperse initial distribution, C k ( 0 )  = Skl for which the kinetic results are identical 
to the standard ones (Ziff and Stell 1980). 

In view of recent experimental tests of the kinetic theories on polymerisation (von 
Schulthess et a1 1980, Schmidt and Burchard 1981) it is also of interest to have 
theoretical predictions for general initial distributions. It will turn out that all physically 
relevant properties are determined by the first few moments of the initial distribution. 
Hence the cumbersome task of preparing monodisperse initial distributions can be 
avoided. 

The basic equation is Smoluchowski’s coagulation equation (Drake 1972, Cohen 
and Benedek 1982) which describes the evolution of a system of particles which are 
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continuously growing as a result of pairs of particles coming into contact and bonding 
or sticking together. Examples include the coagulation of colloidal suspensions and 
the formation of polymers. These systems may, in general, be described by the kinetic 
equation 

The size distribution ck(t) (k = 1 , 2 , .  . .) represents the set of concentrations of finite 
size clusters (sol particles) with k basic units. It is normalised such that kck(0) = 
M ( 0 )  = 1. The gain and loss terms contain Ki,cicj, representing the rate at which 
i-clusters and j-clusters combine to form (i +j)-clusters, and the sum extends over 
all sol particles. 

The coagulation rates Kii in our kinetic model are determined by the statistical 
probabilities of bond formation and by the diffusivity of clusters. Here the latter 
effect, discussed by Cohen and Benedek (1982) and Hendriks et a1 (1983), will be 
neglected. 

The coagulation rates depend upon the details of the physical process being 
considered. In the Flory-Stockmayer theory for branched polymers a k-  cluster will 
contain exactly (k - 1) bonds, and s k  = (f- 2)k + 2 free reactive groups, because it 
is assumed that only tree-like structures can form with no intra-molecular bonding 
allowedt. Since all free groups are assumed to be equally reactive the coagulation 
rate is Kij = sisi, and the kinetic equation for the sol particles can be written as 

where k-clusters are lost due to bonding with all available reactive groups ps  in the sol: 
m 

A fundamental property of (1.2)$ is the conservation of total mass of sol particles, 
M ( r )  = Z kck(t) = 1, for times smaller than some critical time t ,  (gel point). For 1 2  rc 
there is a loss of mass (A? # 0) to k =CO. This loss of mass is interpreted as the 
formation of the gel (infinite cluster), and the gel fraction 

G( t )  = 1 - M ( t )  (1.4) 
represents the probability of a unit to belong to the infinite cluster. Past the gel point 
the concentration of k-clusters will decrease due to reactions with all available reactive 
groups, p ( f ) ,  not only on sol particles p,( t ) ,  but also on the gel, p,(r) ,  where 

(1.5) 
The latter loss mechanism is, however, absent in (1.2) and one may modify (1.2) past 
the gel point to account for mass loss to the gel. This may be done by replacing ps 
in (1.2) by p,  and supplying a rate equation for pg(f) ,  which depends on the assumed 
interactions between sol and gel. Dusek (1979) and Ziff and Stell (1980) propose one 
model (to be referred to as the F-model) in which the rate equation for the total 

CL ( t )  = CL&) + F g ( f ) .  

+ Note the equivalence with bond percolation on a Bethe lattice or Cayley tree of coordination number f .  
Possible functional forms of K,, yielding a gelation transition have been discussed by Ernst et a1 (1982) 

and the corresponding (non-classical) critical exponents have been calculated. 
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number of free groups, ~ ( t ) ,  is the same before (g = p , )  and after (k = k s + k g )  the 
gel point. From the present kinetic equation one easily derives that the relevant 
equation in the F-model is CL = -p2. Ziff and Stell also show that the above F-model 
with monodisperse initial conditions corresponds to Flory's classical gelation theory. 

A second model (to be referred to as the S-model) with g = k ,  for all times (absence 
of sol-gel interactions, since k g  = 0) corresponds to Stockmayer's classical gelation 
theory:. This model has been solved for all times and monodisperse initial conditions 
by Ziff (f= 3), Ziff and Stell (general f ) ,  and Leyvraz and Tschudi (1981) (f+co).  
The explicit solutions of (1.2) in the sol phase ( t  < t,) for the mono-disperse initial 
condition have already been known for a long time and have been given by Stockmayer 
(1943) (general f )  and McLeod (1962) (f+co). For general initial conditions the 
solution is only known for t < t,, at which time the moments, defined as 

diverge for n 3 2  (Drake 1972). The time t ,  is given in terms of M2(0) .  A very 
different approach has been taken by Lushnikov (1978; Lushnikov et a1 1981); using 
standard arguments (see van Kampen 1981), he constructs a master equation for the 
probability distribution P { c l c 2 .  . .ck. . . , t } ,  in which the transition probabilities are 
determined by the coagulation rates Kij in the macroscopic rate equations. Thus he 
is able to account lor the fluctuations in ck. The macroscopic size distribution in 
Smoluchowski's equation is then an average Ek. Close to and past the gel point the 
fluctuations become of macroscopic size, and effectively modify the macroscopic rate 
equations. In the thermodynamic limit, i.e. to leading order in an expansion in inverse 
powers of the volume, Lushnikov's results for the size distribution, mean cluster 
number and sol mass are identical to the results of the F-model, as will be shown in 
this paper. 

In order to simplify the mathematics we consider monomers of high functionality 
f$, such that the number of free groups on a k-cluster is s k  = f k ,  and redefine pt 
as the new time variable. The general form of the coagulation equation, valid in the 
sol and gel phase becomes: 

where k ( t )  represents the total number of free reactive groups in the system (in 
redefined units). In the sol phase 

p ( t ) = p s ( t ) G 1  kCk(t)= 1, (1.8a) 
and in the gel phase 

k ( t )  = P A t )  + k g ( f ) .  (1.8b) 
In the F-model version of (1.7), ~ ( f )  satisfies the same equation in both sol and gel 
phase. Thus we have by virtue of (1.8a) = 0 for all t, or 

p ( t )  =M(O) = 1. (1.9) 
f A third model, proposed by Zlff and Stell (19801, coincides with the F-model in the limit of large f, to 
which we shall restrict ourselves in this paper. 

Von Schulthess ef a1 (1980) have performed experiments where f is large, and Cohen and Benedek 
(1982) emphasise the mathematical simplifications in this limit. 
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Note that the equation C; = -p * at finite f reduces in redefined units f t  + f and 
KIT-, p to C; = 0 in the limit f +  Co. 
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In the S-model version of (1.7), p g  = 0, so that for all f we have 

p ( t )  = M ( t ) .  (1.10) 

In order to clarify the differences between the kinetic models we briefly compare the 
statistical theories of Flory (F-model) and Stockmayer (S-model) in so far as is necessary 
for our purpose (see also Ziff and Stell 1980; Cohen and Benedek 1982, Donoghue 
and Gibbs 1979, Donoghue 1982). 

The size distribution for a macroscopic system, specified by M and MO, the number 
of monomeric units and clusters (per volume, say), respectively, is found to be 
c k  = ADkSk, where Dk is a combinatorial factor equal to the number of distinct ways 
a k-mer can be composed out of k monomeric units, each having f equivalent 
reactive groups, The normalisation constant A and fugacity 6 are determined by 
prescribed values of MO ( = A  X DkSk) and M ( = A  Z kDktk),  or alternatively by values 
of the mass M and the conversion: a = (2/f)( l  - M o / M ) .  The series for MO and 
M, defining a ( [ ) ,  have a finite radius of convergence tc, corresponding to  a,= 
( f -  l)-', The inverse function [ ( a )  = a ( l  --a)'-*/f is a single-valued function that 
reaches a maximum [, at a =ac.  Below the gel point a prescribed value of a fixes 
the fugacity [ ( E < [ , ) ,  so that the size distribution ck = A D k t k  is identical in the F- 
and S-models. 

In Flory's theory the value of a (a >a,) is also prescribed above the gel point ace 
To every a belongs a unique value of the fugacity [ (6 < &) through the inverse 
function [ (a ) .  The size distribution of sol particles is c k  = A D k l k  and all moments 
exist. As a increases from a ,  to unity, the increasing number of reactive groups on 
the gel causes the fugacity in the coexisting sol and gel phase to decrease to  zero as 
a + 1. As already discussed by Flory and Stockmayer, the gel can form cycles in the 
F-model, since a can exceed the value of 2/7 (which would be its maximum value 
if there were no crosslinks in the gel) reached when all monomers are coalesced into 
a single macroscopic cluster (gel) without crosslinks. 

A macroscopic structure containing a significant fraction of all reactive groups in 
the system can form crosslinks, because the probability that a given group reacts with 
another unit on the same structure is significant (Falk and Thomas 1974). The Flory 
theory of gelation can also be derived (see de Gennes 1979, Ziman 1979) from the 
theory of branching processes (Feller 1968). Stockmayer's theory above the gel point 
is very different. If a is increased by increasing the mass density of sol particles, the 
system will respond by transforming the added mass into gel in such a manner that 
the fugacity remains constant, [ = 5,. This implies that the growing gel fraction with 
its increasing number of reactive groups is not allowed to react with the sol, as 
otherwise the fugacity would necessarily decrease. The size distribution in the S-model 
is given by ck =A&[: with A OCM,,, (through (1.12); the relative amounts of k-mers 
and mean cluster size M,,I/M, in the sol remain fixed at their critical values, all 
moments M ,  with n 3 2  are divergent and the fraction of reacted groups in the gel 
remains constant, i.e. age] = 2/f (no crosslinks). 

The phase transition in the S-model is similar to Bose-Einstein condensation. The 
particles condensed in the ground state correspond to the gel, the excited particles 

+ In the corresponding bond percolation problem on a Bethe lattice, a is the probability for the presence 
of a bond. This model corresponds to the F-model of gelation. 
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to the sol, and the fugacity of the coexisting phases keeps the constant value ( = &. 
The previous discussion shows that the kinetic F-model will correspond to Flory’s 
theory and the kinetic S-model to Stockmayer’s. Past the gel point, in both models 
there will be a single macroscopic cluster (gel) of size ko=Mgel ,  so that ckoz 1/M. It 
contains a total number of reactive groups equal to / . L ~  = skocko0tMgeI/M = G. In the 
thermodynamic limit of the kinetic F-model the macroscopic cluster will contribute 
a non-vanishing term F g a  G to the total number of reactive groups Z s k c k ,  appearing 
in the loss term of the kinetic equation. In the S-model the contribution of the 
macroscopic cluster has disappeared from the loss term. An essential difference 
between the kinetic F- and S-models is that the gel interacts with itself (cyclisation) 
in the F-model, whereas it does not in the S-model, as was shown by Ziff and Stell. 
Recently Donoghue and Gibbs (1979; Donoghue 1982) have presented a statistical 
theory of gelation for a finite system containing a total of M monomeric units in 
which the assumption of acyclic structures is strictly maintained. Donoghue shows 
that the mass distribution for finite large k ( k  < M )  and a >a ,  has two well separated 
peaks, corresponding to sol and gel. In the limit as M + C O  at constant extent of 
reaction a the size distribution and all its moments approach the values derived by 
Stockmayer. 

The program of this paper will be to solve the kinetic equation (1.7) for the F- 
and S-models analytically for all t and arbitrary initial conditions. 

In § 2 we determine the generating function of the C k ( t ) ,  and discuss the properties 
of the sol mass in the sol and gel phase. Extensive use will be made of the graphical 
analysis of a plot of the generating function, as first introduced by Ziff and Stell. This 
helps to illustrate many properties of the solution, such as asymptotic behaviour of 
c k ( t )  and M,,(t), near both t = t ,  and t = CO. 

In § 3 Lagrange’s expansion is used to derive general expressions for c k ( t )  and 
M,,(t), valid for all k, n and t. The results for the moments are analysed in the vicinity 
of the gel point for different classes of initial distributions: namely short-range c k ( 0 )  
(exponentially cut off) and long-range ck (0 )  (with algebraic tails). The appropriate 
critical exponents and amplitudes are calculated, and tested for the hypotheses of 
scaling and universality. 

In § 4 asymptotic results for ck ( t )  are derived: for k + CO and fixed t ;  for t + CO and 
fixed k ,  and for the (coupled) scaling limit with k +CO and t + t,. Again the predictions 
of scaling and universality are tested. The final conclusions are summarised in 9 5 .  

Before concluding this section we briefly introduce the critical exponents and 
amplitudes, mainly following the notation of Aharony (1980), and quote the universal 
values for exponents and amplitude ratios in the classical bond percolation problem 
needed for a comparison with our results. In a non-equilibrium description of the 
gelation transition the distance to the gel point t ,  is measured in the dimensionless 
time 6 = (t/t,- 1) .  The quantities of interest are: the gel fraction (order parameter), 
decreasing for r l t ,  as 

G ( t ) = B B P ;  (1.11) 

the singular part of the mean cluster number MO (as defined in (1.6)) behaving for 
t + t ,  as 

{MO(f)Ising =A*161*-a (1.12) 

It is the analogue of the free energy in thermodynamic phase transitions, 
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The moments M 2 ,  M3 . . . , as defined in (1.6), diverge for t + t ,  as 

M2(t) = c*l8j-y, M3(t) -- D*18/-y-1'g, (1.13) 

where the superscript +(-) refers to the sol (gel) phase with 8 < 0 (8  > 0). Here M2(t )  
is the analogue of the order parameter susceptibility, and 

k* = M3(f)/Mz(f) (1.14) 

is a measure for the critical cluster size, related to the correlation length 6 by the 
relation 6 - kg, where p is a geometric exponent (see Stauffer et a1 1982) that will 
not be considered here. Introduction of a 'ghost' field H yields the analogue of the 
critical 'isotherm' (Aharony 1980): 

{f(-H, fc)}sing= (1 kCk(tc) e-',) 1 -EH"'. (1.15) 

An important concept in modern theories of phase transitions is the scaling hypothesis. 
It states that ck(t) for large clusters in the close vicinity of the gel point has the form 

(1.16) 

where the critical amplitude qo and scaling function @ ( x )  are defined such that @ ( O )  = 1. 
It follows from the scaling hypothesis that all exponents cy, P,  y and S can be expressed 
in 7 and U ,  

The classical values for the exponents in the bond percolation problem are obtained 
from Aharony by taking E = 0 in his results, corresponding to dimensionality d = 6: 

(1.17) cy =-1, P = 1, v = l ,  s = 2, U = z, r = 5. 

The corresponding values for the universal ratios of critical amplitudes? 

A + / A -  = -;, C'/C- = D+/D-  = 1, (A'+A-)C'/B2 = a ,  

sing 

ck ( t )  = qok-'@(k 1811'u), 

1 5 

C+B/E2 = C+B/41rqi = 1, (1.18) 

can be deduced from Aharony's equations (1.6)-(1.10) and (7.2), using the relation 
[=(k.J'. In (1.18) the sum (A'+A-) (which equals -4Af)  is convenient for later 
purposes. 

In our non-equilibrium theory of phase transitions quantities are called universal 
if their values are independent of the initial state of the system. 

2. General solution 

2.1. Generating functions 

In this section we solve the initial value problem for the coagulation equation 

+ Note that exponents and amplitude ratios are independent of the coordination number f of the Bethe 
lattice. 
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where 

(F-model) 
(S-model). 

We further determine the mass of sol particles M ( t ) ,  present a graphical analysis of 
the solution, and discuss some further properties of sol mass and gel fraction, as well 
as some examples. 

The time evolution of the size distribution ck(f) for a given initial distribution 
c k ( O ) ,  subject to the normalisation 

can be analysed best in terms of generating functions: 

where the subscript x denotes a partial derivative with respect to x. The moments, 
if they exist, can be obtained from 

m 

or from a similar relation for f = g,, yielding 

Mn(t) = [ ( a /ax ) "g (x ,  t ) ] ,=o  = [(a/ax)"-'f(x, t)l,=o. (2.6) 

The initial values of these functions are given by 

g(x ,  0) = 
oc 33 

c k ( 0 )  ekx = v(x) ,  

M"(0)  = v'"'(0) = U ( n - l ) ( 0 ) .  

f(x, 0) = 1 kck (0 )  ekr = v ' ( x ) =  u ( x ) ,  
k = l  k = l  

(2.7) 

The series are convergent for all x S O ,  since u ( 0 )  = 1 on account of (2.3) and a 
superscript n ,  as in u ' ~ ) ,  denotes the nth derivative. Multiplying (2.1) with k ekx and 
summing over k yields a quasilinear partial differential equation for f ( x ,  t ) :  

f i  = f x ( f  - p ) .  (2.8) 

Subscripts again denote partial derivatives. It can be solved by introducing the inverse 
function x = X ( f ,  t ) .  Using f x  = l / X f  and f t  = -X i /Xf  we find a simple equation X, = 
-f f p .  Its solution corresponding to the initial condition f ( x ,  0) = u ( x )  can be written 
in two equivalent forms: 

X = U  - 1  ( f ) - f f+! 'dTp(T) ,  f = u ( x + f f - j o ' d r g ( T ) ) ,  (2.9a,b) 

where u - ' ( f ) = x  is the inverse function of f = u ( x ) .  For later purposes it is also 
convenient to have the solution in parametric form: 

(2.10a, b )  
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These equations enable us to calculate g(x, t )  by means of (2 .4):  

g(x, r )  = 1-L dx' f(x ' ,  t )  = I-: ds'  U (s')[l - tu'(s)] = v (s) -$tu 2 ( s )  (2.1 1) 

where dx' lds '  Eollows from (2.10a).  
The above equations implicitly determine f(x, r )  and g(x, t )  for a given initial 

distribution. Once p ( f )  in (2.2) is given, all c k ( t )  ( k  = 1, 2 , .  . .) and all k f , ( t )  
( n  = 0 , 1 , 2 ,  . . .) can be deduced from the behaviour of the generating functions around 
x = --CO and x = 0 respectively. In principle one has to determine s(x, t )  from ( 2 . 1 0 ~ )  
and insert the result in (2.106) to obtain f as a function of x and t, where the latter 
quantity occurs only parametrically. 

2.2. Sol mass in the F-model 

To calculate the sol mass M ( t )  = f ( O ,  t ) ,  one has to determine s(0, r ) .  Its value will 
be different in the F- and S-models. In the F-model (where p ( t )  = 11 

~ ( 0 ,  t )  = t{u[s(O, t ) ] -  1). (2.12) 

This equation has two solutions for all t :  sa(t) = O  and S b ( t ) ,  provided the initial 
distribution U (s) is regular for s <so (so > 0) and U (so) = a. The graphical construction 
of the roots is shown in figures l ( a )  and 2 ( a ) .  They are found as the intersection 
points of f = u ( x )  (broken curve) and f = t - ' x  +1 (straight line). The property 
u(s0) = a3 guarantees the existence of two roots for arbitrarily small t t .  The two 
solutions correspond to  different branches of f(x, t ) ,  of which the corresponding values 
of f(0, t )  are 

(2.13) M a ( t )  = u(sa)  = u ( 0 )  = 1, Mb(f) = U(sb)* 

Having constructed sa and sb, one can read off the values of Ma and M b  in figures 
l (a )  and 2 ( a ) .  Which solution represents the physical mass depends upon the value 
of t. The physical branch of f(x, t )  approaches c l ( t )  ex as x -cc (see (2.4)),  and is a 
monotonically increasing function of x (all c k  > 0). Thus, if x TO on the physical branch, 
sT( =min(O, s b ) .  Due to the convexity of u(s ) ,  sb is always decreasing with time. For 
small t we have sb>O, hence 5 = 0 (see figure l(a)) .  At the time t = tc= l / u ' (O)  the 
curves'f = t-'x + 1 and f = U(X) are tangent, and the two roots coincide (see figure 3) .  
At a still later time, sb 4 0 and 5 = s b  and the sol mass (now given by Mb)  starts to 
decrease. Asymptotically s b  + --CO and k f b  + 0. 

In summary: the physically relevant root of (2.12), s(0, t )  = f ;  in the F-model is 

t s t,, 14, t 2 I,. 
5 ( t )  = min(0, sb) = 

The mass of sol particles, M ( t ) ,  is given by 

(2.14) 

(2.15) 

t If u(sO)<co,  the second solution sb only exists for r>sO/[u(sU)-l], where s b < s g .  An example of an 
initial distribution with so = m is one in which c k ( 0 )  = 0 for all k > k,,,. 
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and the gel point t ,  is 

t,= l / U ’ ( O )  = 1/M2(0) (2.16) 

where (2.7) has been used. Thus, M(t)is a constant before t, (sol phase), and decreases 
past t, (gel phase). The loss of mass at t = t, is associated with the formation of an 
infinite cluster or gel. It is a loss to infinity due to the cascading growth of larger and 
larger clusters, where the process accelerates as the clusters grow larger, since the 
rate is given by K,, = ij. Past t, the sol mass decreases through bonding by the gel. 
An equivalent way of determining the mass in the F-model is to put x = 0 in (2.96), 
yielding 

M = u [ t ( M -  l)]. (2.17) 

where the physical mass is the smallest root of this equation. The gel fraction G ( t )  
defined in (1.4) is the maximal root of 

(2.18) G = 1 - U (-tG). 

2.3. Sol mass in the S-model 

In the S-model G ( t )  = M ( t ) ,  and the solution s(0, t )  of ( 2 . 1 0 ~ )  depends on the yet 
unknown M ( t ) .  It must be combined with (2.106) for x = 0 to yield a closed equation 
for M ( t ) :  

M ( t )  = U [s (0, t,l, ( 2 . 1 9 ~ )  

~ ( 0 ,  t ) = t M ( t ) -  dTM(t )=  dTT&f(T). (2.196) 

This functional equation can be solved by differentiating with respect to t ,  with the result 

I: I: 
n;r = tn;ru’[s(O, t ) ] .  (2.20) 

This equation combined with ( 2 . 1 9 ~ )  has two solutions for all t ,  provided u ‘ (s0)  = CD 

with so > 0. The first one is the constant solution 

M,(t) =M(O)  = 1, ( 2 . 2 1 ~ )  

corresponding to 

S , ( t )  = 0. (2.216) 

The second one is 

Mc(O = u(sC),  ( 2 . 2 2 ~ )  

where s,(O, t )  is determined from 

l / t  = U ’ ( S , ) .  (2.226) 
The graphical construction of sc and M,  in figures l (6 )  and 2(6) shows that the property 
u’(s0) + CC (with SO > 0) guarantees that the solution s, of (2.22b) exists for arbitrarily 
small timet. The physically relevant solution for the S-model is given by 

t =i t,, 

t 3 t,. 
7 = min(0, s,) = (2.23) 

* If u ’ ( s 0 ) < c o ,  the solution s, only exists for I > l / u ’ l s o )  (see figure l (a ) ) .  
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The sol mass M ( t )  is 

(2.24) 

and the gel point is again given by (2.16). The derivation closely parallels that in the 
F-model and will not be repeated here. Since the sol particles in this model cannot 
be bonded by reactive groups in the gel (see introduction), the sol mass in the S-model, 
M J t ) ,  decreases only through cascading growth. This loss mechanism acts more slowly 
than that in the F-model, ( M b ( f ) < M , ( t )  in figures 2(a,  b ) ) .  The analogue of (2.17) 
follows by inserting (2.19b) into (2.19a), and the analogue of (2.18) is 

(2.25) 

In view of the gelation transition associated with violation of sol mass conservation, 
it is instructive to reconsider the usual derivation of this conservation law. The partial 
moment M'L'( t )  = C;=, kck(t) ,  where L is some constant, satisfies the following 
equation in the sol phase: 

(2.26) 

as can be derived from the kinetic equation (2. 1 with p ( t )  = 1. The limit L .+ 00 yields 
the mass loss rate n;i(t), which is vanishing L less M 2 ( f )  diverges. The latter is the 
case as t + t,, as we shall see in 0 3.3. 

0 x. s: 

Figure 1. For r < rc (sol phase) and given f ( x ,  0) = u ( x )  (broken curve) ( a )  represents two 
branches ~ F I ,  F2) of few, t i  in the F-model, and r b )  two branches (S I ,  S2i  of f ( x ,  t )  i n  the 
S-model. The branches F, and SI  with M ( r )  = f ( O ,  t i  = 1 are the physical branches. 



Kinetics of gelation and universality 2303 

I f  

I \  

I f  I 
I 
f u i x )  

I 

5 0 x:, 5 ,  x = o  X r J  x 

Figure 2. For t > t ,  (gel phase) and given f ( x , O ) =  u [ x i  (broken curve) ( a )  represents 
two branches (F1, F2) of f ( x ,  t )  in the F-model, and ( b )  two branches (SI ,  Sz) of f ( x ,  t )  in 
the S-model. The physical branches F, and Si yield a sol mass Mb(t) and M J r )  respectively. 

- 
0 X 

Figure 3. The full curve shows the physical (FS,) and unphysical (FS2) branch of f ( x ,  t,) 
at the gel point for given f ( x ,  0 )  = u i x )  (broken curve). 

2.4. Graphical analysis of the solution 

After the graphical construction of the physical mass in the F- and S-models, we give 
a graphical analysis of the solution f ( x ,  t ) .  At the initial time f ( x ,  0) = U ( x )  is represen- 
ted by the broken curve, marked u ( x ) ,  in figures 1, 2 and 3, where (2.4) implies that 
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u ( x )  and all its derivatives approach cl(0) ex as x + --CO. First we restrict ourselves to 
initial conditions where U ( X )  is regular for x <so and u ( s 0 )  = 00 (sa is positive and 
may be illfinite). 

In the F-model, where p ( t )  = 1, the evolution of f ( x ,  t )  is best exhibited using 
(2.9), i.e. 

x = u - ’ ( f ) - t ( f - l ) .  (2.27) 

For a given f the corresponding x changes from its initial value u - ’ ( f )  by an amount 
- t ( f -  1). Thus, the curve of f ( x ,  r )  shifts to the left for f >  1 and to the right for f < 1 
by an amount x = t ( f -  l), represented by the straight line in figures l (a )  and 2(a).  
The point f =  1 remains stationary, The resulting plot of f ( x ,  t )  is shown as the full 
curve, marked F1, F2. Note that f ( x ,  t )  has a vertical segment at x =xo, and is a 
double-valued function for all x < x o .  The point xo is determined by the condition 
( a ~ / a f ) ~  = 0, or because of (2.10) by (ax/as), = 1 - t u ’ ( s )  = 0. Its solution equals sc (see 
(2.226)), corresponding to sc = u - ’ [ f ( x o ,  t ) ]  or f ( x o ,  t )  = u ( s , )  = u [ x o + t u ( s , ) - t ] .  In 
the last equality (2.10) has been used. Hence, we have the relation 

X o = S c - t [ U ( S , ) - l ] ,  (2.28) 

as shown explicitly in figure l (a ) .  
The evolution of f causes U ( X )  to fold over onto itself at x o  for all t > O .  This 

folding over is the origin of the singularity that appears in f ( x ,  t )  at x o ,  and causes the 
appearance of two branches of f ( x ,  t ) ,  marked F1 and FZ in figures l (a)  and 2(a).  
One branch intersects the f axis at f(0, t )  = 1 and one at f ( 0 ,  t )  = Mb(t).  The branch 
F1 is the relevant one with f(0, t )  = M ( t ) ,  since it decreases exponentially at x = --CO, 

and determines the c k ( t )  through the expansion (2.4). The moments are determined 
by the derivatives of the same branch F1 at x = 0 or s(0, t )  = defined in (2.14). They 
exist for all t different from r,. At the gel point t,= l /u’(O) both x o  and 5 are zero, 
the singularity in f ( x ,  t,) is located at the origin (see figure 3) and all M, (t,) for n 2 2 
are infinite on account of (2.6). 

In the S-model, where p ( t )  = M ( t ) ,  the situation is somewhat different. Here we 
have from ( 2 . 1 0 ~ )  

x =u-’( f ) - t f+T 
with 

(2.29) 

(2.30) 

For a given f the corresponding x changes by an amount T - rf, where T is different 
for the two solutions Ma( t )  = 1 and A&(?), defined in (2.21) and (2.22), each yielding 
a different branch of f ( x ,  t )  (referred to as S-branches). For the branch with f(0, t )  = 
Ma( 1) = 1, the quantity in (2.30) equals T, = t ,  and (2.29) is identical to (2.27) in the 
F-model. Thus the F- and S-branches with f(0, t )  = 1 are identical. 

The S-branch of (2.29) with f(0, t ) = M c ( t )  has a vertical line segment at x l ,  
determined by ( a x l d f ) ,  = 0 or by (ax/as)r = 1 - tu ’ (s )  = 0. The solution of this equation 
is scr and corresponds to f ( x  I ,  t 1 = U (s,) = u [ x  + tu (s,) - T,]. Thus x 1 = sc - tus (s,) + T,. 
On the other hand, it follows from ( 2 . 2 2 ~ )  that f(0, t )  = M,(t) = u(s, ) ,  so that x 1  = 0, 
and 

T,  E dT M,(T) = tu (s , )  - s,. (2.31) 6’ 
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Consequently, the second S-branch of f(x,  t )  is obtained by shifting the curve of f ( x ,  t )  
by an amount Tc-tf =-t(f-l)+(T,-t)  (see figures l ( 6 )  and 2(b)). The first shift, 
- t (  f - l ) ,  transforms the initial value u ( x )  into the two F-branches. The second shift 
is a parallel displacement of the F-branch with f ( 0 ,  t )  f 1 over a distance (Tc-r),  such 
that the resulting S-branch becomes tangent to the f axis at M,. In the S-model the 
branch marked S I  in figures 1 ( b )  and 2(b) is the physically relevant one with f(0, t )  = 
M ( t ) ,  since it determines the c k ( t )  through its behaviour at x = -a. The moments 
are determined by the values of the derivatives of the S-branch at x = 0 corresponding 
to s(0, t )  = 7, defined in (2.23). The moments M,,(t) with n 3 2 only exist in the sol 
phase ( t  < tc ) ,  and are divergent in the gel phase ( t  3 r c ) .  

As t -+ CO, M + 0 in both models, and the physical branch off (x ,  t )  collapses towards 
the x axis. 

The initial conditions considered so far, i.e. u(so )  + m or u ’ (so)  + CO with so > 0, 
guarantee the existence of two solutions for all times to each of the equations (2.12) 
and (2.20). Consider now initial distributions 

c k  (0) - k - n  ( k  +CO). (2.32) 

Then U (x) is only defined for x s 0. 
Since M is finite we must have n > 2. If we further require u ’ (0 )  = M z ( 0 )  = ti’ to 

be finite, we must have n > 3 .  The evolution of f ,  described by (2.27) or (2.29), is 
essentially the same as discussed above, but the curves stop at f =  1. The graphical 
analysis is qualitatively the same as in figures 1, 2, 3, provided all curves above the 
line f = 1 are deleted. Consequently, the points xo, s b  and sc do not exist for t < t ,  
(see figure l), and the solution of the kinetic equation has only one branch (F, or SI) .  
For t > t ,  the points xo,  s b  and sc exist and a second branch appears. The case 2 < n s 3 
where M2(0)  = u ‘ ( 0 )  + CO corresponds to instantaneous gelation ( tc = 0), and no further 
transition occurs. 

2.5. Further properties and examples 

Here we investigate the behaviour of the sol mass and gel fraction as t + t ,  and t + m, 
and consider some special examples. 

The behaviour of the gel fraction in the vicinity of the gel point (tJt,; is summarised 
in table 1 for two typical examples of short- and long-range initial distributions, 
characterised by the constants m and A and the exponent A .  We note that the critical 
exponent p, defined in ( l . l l ) ,  has the classical value p = 1 in the F- and S-models 
for all initial distributions with M3(0)<co. However, as soon as M3(0)+m,  the 
exponent p has a non-universal value, depending on the initial distribution, as shown 
in table 1. 

At long times the sol mass in the F-model, as determined by (2.17), exhibits 
exponential decay, i.e. 

M 2 c1(0) e-‘ + [ c :  (o)t + 2cZ(0)] e-2r + . , . (2.33) 

since u ( x )  = c1(0) ex as x + -W. In the S-model, however, the decay is algebraic, i.e. 
for t + CO 

(2.34) M = t-’ - 2c2(o ) / c : (o ) t2  + . . . 
as follows from (2.22). 
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Table 1. Behaviour of moments near t , .  For two classes of initial distributions: short 
range (case I, all M,,(O) finite) and long range (case 11, c t ( 0 )  - k-"' fork -+a, correspond- 
ing to a small-x singularity ( -xIA in u ( x ) ) ,  the table shows the behaviour of sb ((2.12)), 
s, ((2.22b)) and xo ((4.56)) and the moments M , ( f )  ( n  =0 ,  1, 2, 3, see (1.6)) for B = 
( r  - t , ) / t c  -+ 0 in the sol ( t  < f,) and gel ( t  > t , )  phase for the F- and S-models. The symbol 
(?) indicates that the corresponding quantity is undefined. 

Case Initial distribution 

~ 

Construction points sb,  s, and x o  (figures 1, 2) 

I sb = -2t,8/m x o  = t,02/2m 
s,= -t,O/m a = i t  - t c ) / t c  

s, = - f , ( B / A  

B P fCC* Y tZD' U 

I sol 0 ? 1 1 m 
I F-gel 2/m 1 1 1 m 2 

I1 sol 0 ? 1 1 CO ? 

1 
2 
1 

I S-gel 1/m 1 CO ? 03 ? 

I1 S-gel [A l l l ' l l -A '  - CO ? CO ? 
1 

A - 1  

The most important example corresponds to the monomer initial condition, ck(0) = 

g(x, 0 )  = u ( x )  = ex, (2.35) 

and where the gel point is t ,  = l / u ' (O)  = 1. In this case the gel fraction in the F-model 
obeys a simple transcendental equation (2.18): 

G = 1 -e-tG, (2.36) 

This equation has also been derived by Lushnikov (1978) using the master equation. 
In the S-model, on the other hand, the gel fraction is given by (2.22) as 

8k where 

f ( x ,  0) = U (x )  = ex, 

G = 1 - t-' ( f  > f c ) .  (2.37) 

In a similar way initial distributions of the form Ck(0) = (1 -d)Skl ++ d&Z can be 
analysed. Another example is one in which the initial mass distribution is exponential, 

kck (0) = a a = - 1 ( S O > O ) ,  ( 2 . 3 8 ~ )  
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implying 

U ( X )  = a ex-'"/( l  -e"-'"), (2.386) 

where a is determined through the normalisation M ( 0 )  = U (0) = 1. Here u ( x )  is only 
defined for x <so, and has the property u(so)+ CO, guaranteeing that (2.12) has two 
solutions for all t > O .  Note that for s O + a  we recover the monodisperse initial 
condition. The gel point in this case is given as t ,  = [l - exp(-so)]-', illustrating that 
among all initial distributions the monomer one yields the largest gelation time. 

The example may also be used to illustrate how the parametric representation 
(2.224 6 )  can give a closed expression for M ( t )  in the gel phase of the S-model, namely 

M ( t )  = ;a[(1+4/at)1'2- 13. (2.39) 

Also note that M(t)=t- '  for t+a, which is the same as for the monomer initial 
distribution. In figures 1 and 2 appear the intersection point s b ( t ) ,  defined in (2.12), 
the tangent point s,(t), defined in (2.226) and the location x o ( t )  of the singularity in 
f ( x ,  t ) ,  defined in (2.28)). The behaviour of these points in the vicinity of t ,  is shown 
in table 1 for two typical classes of initial distribution. For the monomer case sc and 
x o  are given by 

(2.40) sc = -log t, x o =  t -log t - 1, 

and similar expressions for the example in (2.38). 

3. Size distribution and moments 

3.1. Lagrange's expans ion  for  ck 

In this section the size distribution and its moments will be calculated for a general 
initial distribution. We further study the asymptotic behaviour of M,,(t) as t + t ,  and 
t +Co.  

Once the generating function f ( x ,  t )  is known, the C k ( t )  can be found by expanding 
f in powers of z = ex. Since the solution (2.104 b )  is given in parametric form, the 
desired expansion of f  can be obtained using Lagrange's expansion (see Abramowitz 
and Stegun 1974). For convenience we define 

m m 

f(z, t )  = f ( x ,  = 1 kz k C k ( t ) ,  u ( z ) = U ( x ) =  c kzkCk(0), (3.1) 
k = l  k = l  

where z = ex. In this notation the general solution (2.10a,b) is given by 
- 

z = y exp[-tE(y) + TI, f = f i ( y ) ,  (3.2) 
where y = e' and 

(3.3) 

For any given (differentiable) f'= E ( y )  and z ( y ) ,  such that z (y0 )  = 20,  Lagrange's 
expansion off  in powers of (z - zo) is 
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To calculate C k ( t )  one has to expand f ( z ,  t )  about z o  = 0, where y o  = U ( y o )  = 0. Thus 
we obtain from the preceding equations 

R M Ziff, M H Ernst and E M Hendriks 

C k ( t )  = ( t k 2 k ! ) - l  e-kT([d/dy)k ek'li(y']y=O. (3.5) 

In the F-model T = t ,  and in the S-model T =Si dTM(r) ,  with T = t in the sol phase 
and T = T, in the gel phase by virtue of (2.24) and (2.30). Expression (3.5) gives a 
closed form solution for a given initial distribution, determined by G ( z ) .  In the 
F-model Ck(t) has the same functional form in the sol and gel phases, whereas in the 
S-model the additional factor exp[-k(T,-t)] appears in the gel phase. For the first 
few k one readily finds 

c l ( t )  = cl(0) exp(-T), c z ( r )  = [cz(O)+~tc:(O)] exp(-2T), (3.6) 

c 3 ( t )  = [ C ~ ( O ) ~ ~ ~ C ~ ( O ) C ~ ( O ) ~ Z ~  c 1  (011 exp(-3T). 1 2  3 

We note that such equations also follow from (2.1) directly, by solving iteratively for 
c1, c 2 , .  . . Both methods rapidly become cumbersome. 

As an example, where the size distribution for general k can be calculated in 
closed form, we consider monodisperse initial conditions (2.35) where U ( x )  =ex and 
U@) = z .  In the F-model, where T = t ,  one finds from (3.5) for all t 

C k ( t )  = ( k t ) k - l  e - k ' / k k ! .  (3.7) 

The same result has been obtained by Lushnikov (1978). 

( M ( t )  = r - ' ) ,  the result is 
In the S-model, where T = t in the sol phase, and T = 1 +log t in the gel phase 

The Ck(t) are in both cases continuously differentiable across t , .  Both results follow 
from Ziff and Stell's expressions for monomers of functionality f in the limit of large 
f with pt  pc finite. The result for the F-model has also been obtained by 
Lushnikov (1978) and that for the S-model by Leyvraz and Tschudi. 

The large k behaviour of ck and its behaviour for r + t c  and t +cc will be studied 
in O Q  4.4 and 4.5. 

3.2. Lagrange 's expansion for Mn 

The moments of the size distribution can be derived, in a similar manner, from the 
general solution f ( x ,  t )  = g,, using the expansion (2.5), i.e. 

m 
f ( x ,  r )  = M n t l x n / n  !. 

n = O  
(3.9) 

In this case we use the parametric representation (2. loa,  6): with x = x ( s )  and f = U (s). 
We want to expand about x = 0, corresponding to s(0, t) = ( in the F-model (see 
O2.2), and to s(0, t )  = 7 in the S-model (see 3: 2.3) for the physical branch of f ( x ,  t ) .  
Consider first the F-model, and apply Lagrange's expansion (3.4) with y o + ( ,  z ( y ) +  

+ I is considered as a constant parameter. 
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x ( s ) ,  z ( y ~ ) + x ( f ) = O  and i ( y o ) + u ( f ) .  The result is 

where u ( x )  = 2 1 ' ( x ) .  The preceding equations give a closed form solution for Mn(t) 
for a given initial condition u ( x )  and for all times. The moments as given by (3.12), 
(3.13) are in fact the solutions of the moment equations. Away from the gel point 
(see discussion below (2.26)) these can be derived from the kinetic equation (2.1) 
with ,U([) = 1, by multiplying with k" and summing over all k, i.e. 

(3.14) 

In the sol phase, where the gel fraction G = 1 - M  vanishes, the above equations 
reduce to the usual moment equations (see Drake 1972). In the gel phase, where 
GZO, one can verify that (3.12)-(3.13) indeed satisfy (3.14). It is of interest to 
observe that Lushnikov (1978) also obtains the equation for &fo in (3.14). In his 
approach the additional term, iG2,  in the gel phase originates from the fluctuations, 
which become of macroscopic size at and past the gel point in the limit of macroscopi- 
cally large systems, In the sol phase, where the fluctuations behave normally, their 
contributions to MO vanish in the above limit of macroscopic systems. 

Next, we turn to the S-model. Here, f in (3.10)-(3.13) should be replaced by v, 
defined in (2.23). In the sol phase 77 = 0, and all results are identical to those in the 
F-model. In the gel phase, where 7 = s,, the results are very different, since the 
denominators [l -tu'(s,)] in (3.10)-(3.12) are vanishing for all r by virtue of (2.226). 
Thus, M,(t) + 00 for n 2 2 and all r 2 t,, as is also clear from figure 2(b), where the 
physical branch has a vertical line segment at the point (0 ,  Mc).  The total number of 
clusters, Mo(r), given in (3.13), is still a well defined quantity in the gel phase, where 
it satisfies the moment equation 

M -  0 - - 2 M 2 ,  1 (3.15) 

1 

as can be verified using (3.13) (with f replaced by 77 = s,) and U (s,) = M. 
As an example we consider again the monomer initial condition (2.35). Initially 

the moments are given by Mn+l(0) = ~ ' " ' ( 0 )  = 1. Since u ( s )  = u ( s )  =es  we have 
u ' " ' ( J )  = u ( f )  = M  (in the F-model), and ~ ( ~ ' ( 7 )  = u ( q )  = M (in the S-model), valid 
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for all times. Consequently (3.12) and (3.13) lead to 

MO = M (  1 - $tM), M2=M(1- tM)-’ ,  M~ = ~ ( 1 -  t ~ ) . . ~ .  (3.16) 

In both models M = 1 for t < t, = 1. For t > 1, M is the solution of the equation 
M = exp(tM - t )  with M < 1 in the F-model, and M = t- ’  in the S-model. In  the latter 
model 

MO = 1/2t (3.17) 

and all M,, with n 3 2 are infinite. 

3.3. Asymptotic properties of M,, ( t )  

In this subsection we mainly discuss the behaviour of M,(t) in the vicinity of the gel 
point, and investigate for which initial distributions the exponents and amplitude ratios 
are universal. We briefly indicate the long-time properties of M,,(t). The results are 
summarised in table 1. We start with the F-model, where 5 = 0 in the sol phase, and 
the coefficients in (3.12)-(3.13) are given by the initial moments ~‘“’(0) =M,,+,(O) 
and o(0) =Mo(0).  We have in particular, for t <t,= l / u ’ (O) :  

(3.18) 

As t t t ,  all M,, +00 for n 2 2. In the gel phase, where by virtue of (2.14H2.18) 

all moments are finite, since the zero of the denominator in (3.10)-(3.12) is located 
at sc (see (2.226)), which is different from 5 = sb. However, at t b , ,  one sees in figure 
2 that s b t o .  Hence the denominators approach zero, and M,(t,) + CO for n 2 2. In 
particular, for initial distributions with M3(0)  = mt,’ < 00 one finds for t J t ,  

1 
5- 

u’(-tG) 
1 - tu (- tG ) - t - t,’ G ( t )  = 1 - M ( t )  = 2(t - t,)/mt,, M2(f) = 

The last equality may be derived by expanding (3.13). It can be derived in a simpler 
way by integrating MO in (3.14). Using the definitions of critical exponents and 
amplitudes in (1,13), we identify from (3.18) and (3.20): C’= C-=  l / t c  with y = 1, 
and D’=D- = m / t :  with cr = 1/2. By comparison of (3.18) and (3.20) one sees that 
the mean cluster number Mo(t)  has a jump in its third derivative at t,, i.e. 

M o ( r )  = M ,  ( r )  - M O ’  ( r )  -- (2tc/3m2)o3, (3.21) 

where M i  ( r )  is an extrapolation into the gel phase of the function (3.18) for Mo(t)  
in the sol phase; M i  ( t )  is the function (3.20) for the mean cluster number MO(?) in 
the gel phase, and 8 = t / t c  - 1. Thus, the critical exponent a in (1.12) has the value 
a = -1. However, in the case of integer non-positive a the amplitudes A’ and A -  
cannot be identified separately, because the singular terms in Mo(r) are confluent with 
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regular terms, and it is only meaningful to compare AMo in (3.21) with AM*= 
(A'+A-)f13 in (1,12), yielding A'+A-=  2tc/3m2. Thus, the critical exponents a, y 
and U have the classical values (1.17). One easily verifies that the ratios of critical 
amplitudes also have their classical values (1.18). Consequently, for all initial distribu- 
tions: with M3(0)  < CO, exponents and ratios have universal (classical) values. 

Next, we consider long-range initial distributions, in which ck (0) - k - A - 2  ( k  + CO) 

has an algebraic tail with 1 < A  < 2. It is introduced through the generating function 
(2.71, 

u ( x ) =  1 +X/t,+A(-X/tc)* (XtO), (3.22) 

which contains the parameters A and A (for relations between small-x singularities in 
u(x) and algebraic tails in c k ( 0 ) ,  see (4.13)). 

As an illustration we calculate M 2 ( f )  from the expression (3.12), containing U'([) 
with [ defined in (2.14). In the sol phase where [ = O  and u ' (O)=  l / t c  we find 
M2( t )  = l/tc181. Hence the M2 amplitude, defined in (1.13), is C'= l / tc .  In the gel 
phase we first determine [=sb (see (2.14)) by solving (2.12) for small 5 (since t J f c ) ,  
with the result [ = -fc(8/A)1"A-*) for 840. The last expression is inserted in (3.12) 
and yields to dominant order M2( t )  = l / [ ( A  - l)t,8]. Hence, the M2 amplitude in the 
gel phase is C -  = l / [ t c ( A  - l)] and the ratio C'/C- = A - 1 does not have the universal 
value 1 of (1.18), but depends on the parameters A occurring in the initial distribution. 

Similar calculations (for long-range initial distributions) of all moments M, ( t )  
( n  = 0 ,  1 ,2 ,3 )  in the vicinity of the gel point have been performed for the F- and 
S-models, and the results are summarised in table 1 (case 11). In the gel phase of the 
F-model M3( t )  approaches a form like (1.13) with a non-universal exponent u =  
(A - l)/A, and the amplitude D' of M 3 ( t )  below the gel point is not well defined here, 
since the initial tail distribution remains until the gel point, as we shall see in Q 4.3. 
The mean cluster number, which can be calculated from (3.12) and table 1, yields a 
non-universal exponent a = (A - 3)/(A - 1) and a non-universal value for the ratio 
(A' +A-)C' /B2.  

In the S-model, where M2 and M3 are divergent for t 2 t,, the amplitudes C -  and 
D -  are not well defined, and the amplitude ratios do not exist. The mean cluster 
number M O ( [ )  behaves differently from the F-model. For initial distributions with 
M3(0)  = m/t: < CO as t J t ,  one finds 

Mo(t) =Mo(O)-tt + ( t  -tc)*/2mt,, (3.23) 

which should be compared with (3.20) in the F-model. Here the exponent, a =0 ,  
although still universal for the class of initial distributions considered, is different from 
the classical value a = -1 for bond percolation. The amplitude ratio will also be 
different from the classical value in (1.18). 

At large times one finds from (3.12)-(3.13) for the F-model 

Mo(r) =M2(t)  = M 3 ( t )  -cI(O) e-', (3.24) 

and in the S-model (where M,,(t) with n 2 2  is not well defined in the gel phase) 

Mo(t) = (2tI-l. (3.25) 

t For short range initial distributions M,(O) < CO for all n 



2312 R M Zif, M H Ernst and E M Hendriks 

4. Asymptotic properties of C k ( t )  

4.1. Saddle point method 

In this section we derive asymptotic properties of C k ( f ) .  First the behaviour at fixed 
t and k + 00 will be considered using the saddle point method or the moving singularity 
method, at least for short-range initial distributions. For long-range initial distributions 
we need the method of stuck singularities to calculate the large k behaviour of C k ( t ) .  

Secondly, we investigate a coupled (scaling) limit for k +00 and t-,t,; thirdly we 
consider the limit t + 00 and k fixed. 

In order to obtain the large k behaviour of C k ( t )  we write (3.5) as a contour integral: 

where the path of integration is a closed contour around the origin. Choosing for the 
contour a circle of radius ex] and substituting z = e x  and G ( z )  = u(x)  (see (3.1)), the 
integral becomes 

where x = x1 + ix2. To obtain an asymptotic expression for I k  by the saddle point 
method (which is a standard tool in analysing the solutions of the coagulation equation 
(Drake 1972)), we choose x1 such that F (x )= tu (x ) -x  is at a maximum when the 
contour-the straight line between the two integration limits-crosses the real axis. 
Thus, x1  is determined by F ' (x l )  = tu'(xlj- 1 = 0, i.e. x1 = s, as defined in (2.226). 
Letting x = s, + ixz, the integral (4.2) becomes 

(4.3) 

Expanding F about sc and introducing y = x2, we find that I k  for large k is approximated 
by 

.x 

where F(s,)  = T, on account of (2.31). Thus we find for k -, 00 

c k ( t )  = k-s '2 [2~r3~"(~ , ) ] -1 '2  exp[k(T,- TI]. ( 4 . 5 ~ )  

In the F-model 

T - T,= t - ttu (s,) + s , = x ~ ,  ( t 3 U " ( s c ) ) - '  = x'o. (4.5b) 

In the first equation of (4.56) we used (2.28); the second equation is obtained by 
differentiating the first one twice, and eliminating S, from (2.226). Note that 
u(s,) =M,(t)  in the sol phase has no connection with the physical mass M ( t )  = 1. In 
the S-model 

Here we used (3.3) with ~ ( t )  = M ( t ) .  This implies for the gel phase T = T,, since 
M = M ,  on account of (2.24). 
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As an example we consider again the monomer initial condition (2.35), where 
u(s,) =M,( t )  = l / t  by virtue of (2.22), and xo = t - 1 -log r. The resulting expression 
for the F-model, valid for fixed t and k +CO,  is 

exp[-k(t - l)]. (4.6) - 1 / 2 k - 5 / 2 t k - 1  ck ( 2 r )  

In the sol phase of the S-model (4.6) applies again, and in the gel phase we have for 
fixed t > t c  and k +CO 

(4.7) 

The above analysis can only be used if the function F ( x )  in (4.3) has a saddle point, 
i.e. if sC exist. The latter condition is satisfied for initial distributions u(x), regular 
for x <so ( s 0 7 0 )  with u’(so)+co (see 9 2.3). 

The asymptotic behaviour of ck ( t )  depends upon the behaviour of u(x) around sc, 
and on the location of the singularity on the physical branch of f(x,  t ) ,  i.e. on the 
location of the vertical line segment in figures 1 , 2  and 3. In the F-model this singularity 
is located at xo for all t, and the general asymptotic solution (4.5a, 6) has the following 
properties: the large-k behaviour of ck is dominated by the exponential factor 
exp(-kd)  except at the gel point where xo = 0 and C k ( f c )  - k-’12. The transition from 
the exponential to k-5’2 is accomplished as follows. Away from the gel point, we 
have ck - k-’12 exp(-kxo) for k >> l /xo,  while in the intermediate range O<< k << l / xo  
we have ck - k-’12 . As t + t,, x o +  0 and the k-’12 behaviour extends to infinity. 

In the S-model the behaviour of C k ( t )  in the sol phase is identical to that in the 
F-model. In the gel phase the singularity on the physical branch of f(x, t )  is always 
located at the origin. Hence ck - k-’l2 for all r 2 I,. 

ck (2 , . ) -1 /2k-5/2f -1  

4.2. Moving singularity 

The asymptotic behaviour (4.5) of C k ( t )  can be derived directly from the generating 
function (2.96) without using Lagrange’s expansion and the subsequent saddle point 
method. We further investigate what can be learned about the asymptotics without 
explicitly solving the partial differential equation for the generating function. 

Differentiating (2.96) with respect to x and solving for f x  yields 

f x  = u ’ ( X + f t - T ) [ l - r u ’ ( x + f t - T ) ] - ’ .  (4.8) 

Hence f has a (moving) singularity in x = xo(t) (where f x  becomes infinite), and xo(r) 
satisfies 

(4.9) u’(x0 + rf(x0, t )  - T )  = l/r. 

If the solution of (2.226) exists, then one finds using (2.10a, 6 )  

xo(t) = S, - tu (3,) + T, (4.10) 

identical to xo in (2.28). In the vicinity of xo(r) we try to represent f as 

f k ,  t )  -f(xo, t j  - 6 (xo - x I*, (4.11) 

where 6 is positive, since f(x, t )  is increasing as xTxo. By inserting the ansatz (4.11) 
into (4.8), and expanding the argument of U‘ around so we readily obtain A = 1/2 
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and b = [2/t3~f’(sc)]”2. In particular, at t,, where xo = sc = 0, and f(xo, tc) = 1 we have 
for xT0 

(4.12) 

The singularity (4.11) in f(x, t )  yields indeed the asymptotic result (4.5), as can be 

1 nt ekx =b(xo-x)* (x b o )  ( 4 . 1 3 ~ )  

R M Zif, M H Ernst and E M Hendriks 

f(x, t,) -- 1 - ( - 2 ~ / m t , ) ’ / ~  

where the relation u” (0)  = M3(0) = m/t: has been used. 

verified from the following relation, derived by Hendriks et a1 (1983): if 

then 

nk = ( b / T ( - A ) ) k - A - ’  exp(-kxo) (k + 00). (4.13b) 

More limited information on the singularities in f(x, t )  can be obtained directly from 
the differential equation (2.8) without solving it explicitly: 

fr = f x ( f - c L ) .  (4.14) 

We try to represent singular solutions in the vicinity of the singularity as 

f(x, r )  = a - b (xo - x ) *  + . . . , (4.15) 

where a ( t ) ,  b( t )  and xo(t) (moving singularity) are unknown positive functions of r. 
For A < 1, (4.15) is a consistent solution of (4.14) if 

x o = g - a ,  ci=-Tb, A = 1  2 .  (4.16) 1 2  

In the F-model, where = 1, we have 

U = 1-x 0, b = (2x0)1’2. (4.17) 

A solution with lo = 0 does not exist, as it implies b = 0. With the help of (4.13) we 
obtain the following asymptotic expression as k + 00: 

c k ( t )  = ( X 0 / 2 ~ ) 1 / 2 k - 5 / 2  exp(-kxo). (4.18) 

The result is in agreement with (4 .54  b ) .  However, one needs to solve (4.14) to 
obtain xo(t) explicitly. In the S-model, where g ( f ) = M ( t ) ,  we find in the sol phase 
again (4.18). There exists also a second solution with 

xo = 0, a = M ,  b = (-2&f)’”, (4.19) 

provided kf # 0 (gel phase). It yields for k -00 

c k ( t )  = (-&f/2.rr)1i2k-5/2 (4.20) 

in agreement with (4.5a,c). However, in the present analysis M ( t )  is an unknown 
function of t, to be determined by solving (4.14). Notice, however, that here we do 
not have any a priori reasons to exclude xo f 0 in the gel phase. 

4.3. Stuck singularity 

The general asymptotic solutions (4.5), (4.18) and (4.20) in terms of a moving 
singularity at xo(t) are only valid as long as sC in (2.226) can be found. If u(x) is 
regular for x <so (so>O) and u’(so)<oo, then s, does not exist for t <  l/u’(so) (see 
below (2.22)), and the singularity is stuck at so for t G l/u’(so), as can be simply 
understood from the graphical construction in figure l ( a ) .  In this category the most 
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singular class of initial distributions is one in which u ( x )  has a singularity at so = 0, 
with u ' (0 )  = l/t,<cot, as given by (3.22). 

An explicit example of a long-range initial distribution is given through the generat- 
ing function 

m 

u ( x ) =  k c k ( ~ ) e k x = - 1 + 2 e x + ( 1 - e x ) 3 / 2 ,  c (z)  = -1  + 2~ + (1  - z 13/*, 
k = l  

(4.2 l a  ) 

where the parameters in (3.22) have the values t ,=& A = $  and A = 1.  The size 
distribution follows from the binomial formula as 

Cl(0) = 112, C k ( 0 )  = (3/4&)T(k -3/2)/kk! ( k  2 2 ) ,  (4.21b) 

and has an algebraic tail ~ ~ ( 0 ) = ( 3 / 4 J i ) k - " ~  ( k  +a), in agreement with (4.13). The 
exact solution C k ( t )  for this example is given in its most explicit form by the contour 
integral (4.1) combined with E ( z )  in ( 4 . 2 1 ~ ) .  

In order to determine its large-k behaviour it is more convenient to use the 
generating function, and we shall now proceed to do so for the more general long-range 
initial distribution, defined through (3.22). 

Here the singularity is stuck at x = 0 for t S t ,  (sol phase). The behaviour of 
f = U (x + tf - r )  close to the stuck singularity can be obtained by expanding the solution 
for small argument with the result, valid for xT0 and t s t,, 

f = l + [ ~  +t ( f - l ) ] / t ,+A{[-~  -t(f-1)]/fc}*. (4.22) 

For t < t ,  one finds 

f ( x ,  t )  = 1 + x / ( t c - t ) + ( - x / t c ) A ( A / ~ e ~ A + l ) ,  (4.23) 

where 8 = t / tc  - 1. Thus at all fixed t below t ,  the algebraic tail, c k  ( t )  - k - 2 - A ,  remains, 
but it increases in strength with an amplitude (1  - t / f c ) - A - ' .  The asymptotic expression 
for C k ( f )  is listed in table 2. 

Table 2. Behaviour of size distribution near r,. Properties of the size distribution in the 
scaling limit ( k - r o o ,  @ = ( f - t , ) / r , + O  with klBI'/v=constant) in the sol ( B < O )  and gel 
( B  > 0 )  phases for the F- and S-models with initial distributions (case I, 11) defined in 
table 1 .  The symbol (?) indicates that the corresponding quantity is undefined. 

Ck =qok-'[exp - q l k l e ~ ' ~ " ]  

Case 40 41 7 U 

+ Initial distributions with ~ ' ( 0 )  + 03 produce instantaneous gelation. 
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At t = t ,  the preceding analysis is not correct, since the terms in (4.22), linear in 

(4.24) 

, at the gel point, the coefficient which implies a different algebraic tail, C k ( t c )  - k 
of which is given in table 2. 

For t > t, the results of 8 9  4.1 and 4.2 can be applied, and (4.18) and (4.20) yield 
the tail distribution ck - k-5/2 exp(-kxo) in the F-model, and ck - k-5'2 in the S-model, 
valid for all initial distributions with u"(0) + CO or 1 < A  < 2 in (3.22). 

For initial distributions of the form (3.22) with A > 2 (so that u"(0)  = m/tz <CO) ,  

one verifies similarly that the algebraic tail, C k ( t )  - k-2-A, remains for all fixed r below 
t,. However, at t = rc we find as xT0 

(4.25) 

with a leading singularity equal to (4.12), and not to the behaviour in (4.24). 
Initial distributions of the form C k ( 0 )  - k-'-" exp(-kso) with so > 0 (where  SO) < 

CO) produce stuck singularities and corresponding asymptotic behaviour of ck only for 
t < l/u'(so), which is smaller than t,. 

(f- l), cancel. Here we find for xT0 

f(x, t,) = 1 - ( - x / A t , )  1 / A  , 
- Z - l / A  

f(x, t,) = 1 - (-2x/mt,) 1 / 2 + o ( I X / ( A - 1 1 / 2 )  

4.4. Scaling properties near t, 

An interesting limit is the scaling limit of the size distribution C k ( t ) ,  in which k +CO 

and t + t ,  with It - tJk" kept fixed. The purpose of this subsection is to investigate 
for which class of initial distributions C k ( t )  has the scaling property (1.16) in that limit. 

For short-range C k ( 0 )  (case I of table 1 with all M,(O)<CO) the large-k behaviour 
is given by (4.18) and (4.20), and we need the behaviour of x o ( t )  and M ( t )  close to 
t,, as has already been calculated in table 1. The result for the F- and S-models in 
the sol phase and for the F-model in the gel phase is 

c k ( t )  = ( 2 ~ m t , ) - ' / ~ k - ~ / ~  exp[-k(t - t,)2/2mr,], ( 4 . 2 6 ~ )  

whereas the gel phase of the S-model gives 

c k ( t )  = ( 2 T m t , ) - 1 / 2 k - 5 / 2 .  (4.266) 

These expressions? only depend upon r c =  1/M2(0) and m =tfM3(0). Note that the 
crossover between exponential and k - 5 / 2  behaviour occurs at k = k,, where kS is the 
critical cluster size (1.14), behaving for t + f, as kt = mt,/(t - t,)'. Thus, the scaling 
limit of C k ( t )  in the F-model gives the scaling form (1.16) with exponents T = 3, U = $, 
critical amplitude q o  = ( 2 ~ m t , ) - ' / ~  and scaling function @(x) = exp(-qlx). The 
exponents and the amplitude ratio C'B/4~qi  = 1 have their classical values (1.17) 
and (1.18) and are universal. 

In the S-model this is only true in the sol phase. In the gel phase C k ( t )  in (4.266) 
does not have the scaling form; the exponent U is not well defined; the amplitude 
ratio C + B / 4 ~ q i  = t does not have the classical value (1.18) for bond percolation, as 
discussed in § 1, but exponent T and amplitude ratio are universal. The results are 
summarised in table 2, together with those for the long-range initial distribution, 
denoted as case I1 in table 1. The leading singularity in the generating function f ( x ,  0) 

f For c k ( 0 )  = SI, I one finds 1, = m = 1 
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for case I1 is of the form h ( - x / r J A  with 1 < A  < 2, and the scaling property does not 
hold. If the results in the sol and gel phases (given in table 2), which are only valid 
at a fixed value of t (with t # tc) ,  are extrapolated towards the gel point, one finds the 
following behaviour of C k ( t ) :  as t r t ,  the exponent T = 2 + A ,  the critical amplitude 
q0+ ~3 and cr does not exist; as t J t ,  one has T = $, qo+ 0, and cr does not exist in the 
S-model, whereas cr = (A  - l ) / A  in the F-model; at the gel point T = 2 + l / A  and qo 
has a finite non-vanishing value. 

Consequently, universality does not hold for long-range initial distributions. 
Similar conclusions apply to long-range initial distributions with A > 2, as briefly 
discussed around (4.25).  

We finally remark that the scaling limit and scaling property may be discussed 
equally well in terms of the generating functions g(x, t )  or f ( x ,  t ) ,  as has been done 
by Aharony (1980). Here we only mention the analogue (1.15) of the critical isotherm: 

(4.27) 

where E is related to qo in (1.16) through E = --qOr(-l/S), as follows directly from 
(4.13). By comparison of (4.27) with (4.12) and (4.24) the values for S and E can be 
identified. For initial distributions with M3(0)  = m/t: < 00 we find S = 2 and E = 
(2/mtc)1’2, yielding a universal and classical exponent, S = 2, and amplitude ratio 
C’B/E* = 1. For initial distributions (4.21) with M3(0)  + CO we find from (4.24) that 
S = A and E = 

It is also of interest to investigate corrections to scaling. The scaling form (4.26) 
was obtained from the large-k results (4.4), (4.5) as the leading contribution if 
0 = t / t , -  1 approaches zero with x = k/O/”“ kept fixed. It applies to short-range initial 
distributions defined in table 1 (case I). Inclusion of the next correction term in 
orders of l/k yields an asymptotic expression of the general form 

c k ( t ) = q O k - r @ ( x ) + k - ’ - n ~ ( x ) + ,  , . . (4.28) 

As an illustration we consider only the sol phase ( t  < r c ) ,  but the results for the F- 
and S-models at and past the gel point can be obtained similarly. The first term on 
the right-hand side is the universal scaling form with 7 = $ and @(x) = exp(-qlx), 
already discussed above and listed in table 2 (case I). In  the correction to scaling 
appear the new-exponent n, which equals 5 ,  and the function q ( x ) ,  which has the 
general form Jx(a +bx)  exp(-qlx) with constants a and b. For the monodisperse 
initial condition the above results can be easily verified using (3 .7) .  

In  the case of long-range initial distributions (3.22) corrections to scaling can be 
calculated using the methods of $4.3.  In  the sol phase ( t  < t,) the leading correction 
to (4.23) gives 

f(x,  t )  = 1 +x/ t , /q  + ( -x / tc )A~j i / le lA+l)  - ( - x / t , ) ’ ” - ’ ( A  .4*/10/*”~’) +. , . , (4.29) 

The term with (-xIA yields with the help of (4.13) the non-universal behaviour (4.28) 
with T = A  1 2  and @(XI  = 1, as already discussed and listed in table 2 (case 11). The 
term with (-x)**-l yields through (4.13) the correction to scaling in (4.28) with 
R = A - 1 and “ ( x )  = constant. 

1 /a  f(x, t c )  = 1 +(-XI , 

and universality does not hold. 

4.5. Long-time behaviour of C k ( t )  

The graphical analysis in figure 3 shows that the physical branch of f ( x ,  t )  becomes 
small for large t ,  and can be obtained from a perturbation calculation. For the F-model 
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we obtain from (2.96) as t + 43 

(4.30) Zx+2rf-2r f = u ( x  + t ~ - t ) ~ c 1 ( 0 ) e + + r ~ - ' + 2 c 2 ( ~ ) e  + . . .  
where we assume cl(0) # 0. Solving for ex yields 

ex = ( f / c l ( o ) )  expit - f ( r  - ~ c ~ ( o ) / c ? ( o ) ) I  (4.31) 

where the last term in the exponent is always small compared with t. Application of 
Lagrange's expansion finally yields for t + CO 

(4.32) 

The correction term in braces depends on the relative magnitude of k and t. For 
fixed k the relative correction is O(l / t ) .  

The size distribution in the S-model differs for t >t ,  (gel phase) from that in the 
F-model by a factor exp k ( t  - T,), and follows from (3.5). According to (2.31) and 
( 2 . 2 2 ~ )  the exponent is 

t - T, = t - tu ( s,) + sC = t - tM ( t ) + s 
-t - log(c1(0)t) - 1 - 2CZ(O)/C? (0)t. 

(4.33a) 

(4.336) 

The approximate equality (4.336) is only valid for long times. It can be obtained 
from (2.34) and the relation 

(4.34) 

which is the long-time solution to (2.226).  The resulting expression for the long-time 
behaviour in the S-model is 

S c =  - l O g ( c l ( O ) t ) - 4 C 2 ( 0 ) / C : ( O ) t  +.  . . 

(4.35) 

Here the dominant term is independent of the initial distribution, and identical to the 
solution (3.8) for the monodisperse case. For fixed values of k the leading correction 
is of relative order l / t  and independent of k. For k-values proportional to t the 
correction factors cancel, and the solution (3.8) for the monodisperse case is recovered. 

5. Summary 

On the basis of Smoluchowski's coagulation equation we discussed the kinetics of the 
gelation transition in systems of branched polymers, starting from arbitrary initial 
distributions, for a model in which no cyclisation is allowed. 

The standard theories-Flory and Stockmayer's statistical theory of the most 
probable distribution, and the statistical mechanical treatment of random bond perco- 
lation on Bethe lattices or Cayley trees-can only assign equilibrium weights to the 
size distribution of polymers, corresponding in our kinetic description with the very 
special monomer initial distribution. 

We presented two models (F- and S-models) that differ only in the gel phase. 
Which one of these non-equilibrium models is appropriate will depend on the 
experimental circumstances. In the F-model all reactive groups on both sol and gel 
are available for bonding of sol particles, whereas in the S-model only the reactive 
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groups on sol particles can form chemical bonds. The latter model corresponds to 
the situation in  which the gel is continuously removed from the reacting polymer 
system (e.g. precipitation). The post-gelation solutions in the F- and S-models are 
respectively identical to Flory’s and to Stockmayer’s classical results in the gel phase. 

The asymptotic form of the size distribution C k ( t )  for large k and t -* t, depends 
only on the initial moments M2(0)  and M,(O), at least for short-range initial distribu- 
tions (i.e. with all M,,(O) < a). The dominant behaviour of C k ( t )  at large t is determined 
by the initial concentrations of monomers and dimers, cl(0) and ~~(0). 

Concerning scaling and universality we have shown by calculating scaling functions, 
critical exponents and critical amplitude ratios that the F-model falls in the same 
universality class as the classical bond percolation problem on Cayley trees, provided 
the initial distribution is of short range. For long-range ck (0) (having algebraic tails) 
the form of c k ( t )  in the scaling limit ( k  +CO,  t +?,, such that kit  - t , l l ’u  =constant) 
depends on parameters of the initial distribution and is therefore non-universal (see 
$ 0  3.3 and 4.4). 

In the S-model the scaling property does not hold in the gel phase, where C k ( t )  = 
4 ° K ’ .  Here the ‘susceptibility’ M2, and the critical cluster size kS = M 3 / M z  or correla- 
tion length 6 remain infinite for tat,, so that the exponents y and U, and critical 
amplitudes C -  and D -  are undefined above t,. The ‘specific heat’ exponent a, 
describing the singularity in the mean number of clusters MO, has the value cy = 0 ,  
and differs from the classical value (a = -1) bond percolation. Furthermore, none of 
the ratios of critical amplitudes in the S-model have the classical values (1.18) for 
bond percolation. 

For short-range initial conditions the results for the S-model are independent of 
initial conditions. Thus the S-model falls into a different universality class from the 
classical bond percolation problem. 

Recently (Herrmann et a1 1982, 1983, Bansil et a1 1983) several kinetic gelation 
models have been discussed that do not belong to the universality classes of random 
percolation or to the classical gelation theories (F- and S-models). 
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