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Canonical orthonormal Wigner supermultiplet basis 
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Abstract. The explicit construction of an orthonormal basis for states of good spin, isospin 
and SU(4)  Wigner supermultiplet symmetry is given in a Bargmann representation space. 
A complete set of quantum labels is provided by a Sp(3, !HI 3 U ( 3 )  complementary sym- 
metry. 

1. Introduction 

The classic supermultiplet of Wigner (1937) is the prototype of most of the higher 
symmetry groups used in modern particle and nuclear physics and continues to play 
an important role in nuclear spectroscopy. Despite this fact, there has been no complete 
solution for the Wigner-Racah calculus of this important symmetry. This is related 
to the internal labelling problem which arises from the insufficiency of the spin and 
isospin quantum numbers S and T to unambiguously identify all states in the SU(4) 3 

[SU(2) x SU(2)] reduction and consequently makes it difficult to construct a group 
theoretically sound orthonormal basis. 

In principle, many solutions have been given to the missing labels problem of the 
Wigner supermultiplet. The integrity basis SU(2) x SU(2) scalars belonging to the 
enveloping algebra of SU(4) has been analysed by Quesne (1976,1977) who constructed 
a complete set of commuting operators with the use of the cubic and quartic operators, 

and @, first introduced by Moshinsky and Nagel (1963), and gave the eigenvalues 
of these operators for many of the SU(4) irreducible representations of interest in 
nuclear spectroscopy. 

Non-orthogonal bases which lead to simpler additional labels have also been 
proposed. Draayer (1970) introduced the labels K s  and K T  and S,  T-projection 
techniques in analogy with Elliot’s physically meaningful solution of the missing label 
problem in the SU(3) 3 SO(3) scheme. Brunet and Resnikoff (1970) labelled the 
SU(4) 3 [SU(2) x SU(2)] basis states through the exponents of the elementary per- 
missible diagrams (Moshinsky and Devi 1969) used in a construction procedure which 
is of particular interest because it is based on the Littlewood (1950) reduction scheme 
for the U( N )  = O( N )  chain. However, all these solutions are somewhat cumbersome 
and do  not lead to a simple explicit construction of an unambiguous orthonormal 
SU(4) 2 [SU(2) x SU(2)] basis. 

Recent progress has been made by Deenen and Quesne (1983) and Quesne (1984a, b)  
who proposed an unambiguous group theoretic solution for the labelling problem of 
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the general SU( N )  3 SO( N )  chain which reflects the operation of Littlewood’s branch- 
ing rule in a much simpler way than the method of permissible diagrams. In the new 
method, a U( N )  2 Q( N )  basis is constructed for D-rowed representations of U( N )  
by a classification of states in the fundamental unirreps of Sp(ND,!H). Using the 
complementarity of the subgroups Sp( 0, !H) and  O( N ) ,  an  equivalence is established 
between the state labelling problems for SU( N )  3 O( N )  and Sp( D, ?H) 3 U( D )  which 
can then be exploited for the general D S ( N  - 1)-rowed representations of SU( N ) .  
This idea was exploited by Le Blanc and Rowe (1985a, b) to give a very explicit 
construction of a canonical orthonormal basis for the SU(3) 3 SO(3) chain of relevance 
for the nuclear collective model. The construction uses recent advances (Rowe er a1 
1984, Rowe 1984, Castafios er a1 1984) in the representation theory of the non-compact 
symplectic groups Sp( 0, ?H) whereby an orthonormal basis for Sp( 0, !H) 3 U( D )  can 
be given by a very explicit method of construction through the coupling of U( D )  
intrinsic and  collective states using the Biedenharn-Louck (see, e.g., Louck 1970, Le 
Blanc and  Rowe 1986) canonical reduction for the U ( D )  outer products. 

It is the purpose of the present investigation to show that this method can be taken 
over directly to give a very explicit construction of an  unambiguous orthonormal 
SU(4) 3 O(4) 2 [SU(2) x SU(2)] basis for the Wigner supermultiplet scheme. The con- 
struction process is a reversal of the Littlewood SU(4) 3. O(4) reduction process. The 
Littlewood branching rule involves the removal of all possible symmetrically zero- 
coupled pairs from the three-rowed representations of SU(4) to leave O(4) states with 
definite S and T entirely free of zero-coupled pairs. The zero-coupled pair in this case 
is a two-particle state coupled to S = 0, T = 0. In the state construction process on the 
other hand, an  O(4) solid harmonic of definite S and T (the ‘intrinsic’ state) is coupled 
with a symmetrically coupled state of S = 0, T = 0 pairs (the ‘collective’ state) to make 
a state of good SU(4) symmetry. The equivalence between the SU(4) x O ( 4 )  and 
Sp(3, M) 3 U(3) chains is then exploited through the analogous symplectic state con- 
struction (Rosensteel and Rowe 1980) whereby an  Sp(3, !H) intrinsic state is coupled 
with a symmetrically coupled state of collective excitations to make a state of good 
SU(3) symmetry. A central feature of the Sp(3, !H) 3 U(3) state construction is the K’ 

or overlap matrix which is vital for the construction of an orthonormal basis. Elegant 
techniques have recently been developed (Rowe er a1 1984, Rowe 1984, Castafios et 
a1 1985a, b) for the evaluation of this matrix which therefore also make it possible to 
give a very explicit construction of an  orthonormal basis for the complementary 
SU(4) 1 O(4) chain. 

A number of detailed applications and  examples are given which show that the 
powerful recent advances in the construction of the discrete series unirreps of Sp(3, !H) 2 

U(3) can also lead to a complete implementation of the Wigner-Racah calculus of the 
SU(4) 3 O(4) 3 [SU(2) x SU(2)] symmetry. 

2. An example 

To understand the nature of the labelling problem, it may be instructive to start with 
a specific example. For this purpose, we consider the supermultiplet representation 
(422). (Note that this is an  important representation both in the nuclear A = 12 and 
A = 24 systems.) The conventional way of carrying out the SU(4) 3 .0(4)  3. SU(2) x 
SU(2) reduction to determine the number of occurrences of a particular ( S T )  pair 
within a given supermultiplet proceeds via Littlewood’s rules. The reduction is given 



Wigner supermultiplet orthonormal basis 259 

for the {422) representation in equation (2.2). The rule states that the possible O(4) 
symmetries [ A ]  contained in a given SU(4) { h )  symmetry are given by the tableaux 
which remain after the removal from the original tableau of all the possible symmetri- 
cally coupled zero-coupled pairs. The zero-coupled pair in this case is a two-particle 
state coupled to S=O and T=O belonging to an SU(4) representation (2). The 
symmetrically coupled states of n such pairs belong to SU(4) representations labelled 
by tableaux (n1n2n3) with only even values for n, ,  n2 and n3 and n ,  + n2+ n3 = 2n.  

However, in this reduction process non-standard O(4) tableaux appear with as 
many as three rows. They must therefore be converted to standard tableaux with at 
most two rows through the use of modification rules. For O(4) the modification rules 
are simply 

( i )  [Alh22lE - [ A , A , I  

(ii) [Alll l=[A,I (2.1) 

(iii) [ A l A 2 A 3 ]  = 0 for all other cases with A 3  # 0. 

Thus for the (422) representation we obtain (removal o f )  

(422) J. [ 4 2 2 ] ( ~  -[422]) (0) 

+ r221 (4) 
+[22]+[31]+[4] (22) (2.2) 
+PI (42) 
+PI (2221 

+[42]+[321](= 0 ) + [ 2 2 2 ] ( ~  -[22]) 

+ CO1 { 422). 
Note that the application of rule (i) eliminates two allowed two-rowed tableaux in our 
example, while rule (iii) eliminates the tableau (321). 

The final O(4) .1 SU(2) x SU(2) reduction is given through the simple rule 

0(4)JSU(2) X SU(2) : [AIA~IJ(ST)  = ( ; (Ai  + A2), f ( A i  - A z ) )  + ( f ( A i  -A213  ! (AI  + A2)) 

The (422) multiplet thus contains the ( S T )  values (22), (21), (12), (20), (02) and (00) 
once each whereas ( S T )  = ( 1  1 )  has a double occurrence. 

The construction of states in the SU(4) = O(4) basis is the reverse of the above 
Littlewood reduction: first, a ( A ,  +A2)-particle state of SU(4) and O(4) symmetries 
{A,  AZO) and [ A l A 2 ]  respectively is constructed which is entirely free of zero-coupled 
( ( S T )  = (00)) pairs, i.e. it is a generalised harmonic polynomial (solid harmonic) 

[ A : A i ] ( S T )  = &f in the four-dimensional space (cf 0 3). This generalised solid 
harmonic is then combined with a 2n-particle state ZI,"&(A) of symmetry {n11/2n3} built 
from n symmetrically coupled ( S T )  = (00) pair states A[&: 

@ A  A 0) - ${A A 0 )  

(2.4) [ z { n l  ( A )  @ A  AZO) { h ) p  
(00 )  CSk) I[AlA2l(ST) 

where, in (2.4), the square bracket denotes the SU(4) 2 O(4) 1 [SU(2) x SU(2)] coupling 

SU(4): {n) x { A )  + { h )  

O(4): [OI x [ A I  + [ A I  
SU(2)xSU(2): (00) x (ST) + (ST) 
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where the O(4)  2 [SU(2)  x SU(2)]  coupling is actually trivial. Note that a three-rowed 
tableau { h }  can in general occur with a multiplicity g in the product {n} x { A }  necessitat- 
ing the multiplicity label p ( p  = 1 , 2 , .  . . , g). (We will assume here that the label p is 
in correspondence with Biedenharn and Louck’s canonical resolution of the outer- 
multiplicity problem in terms of operator patterns (Louck 1970, Le Blanc and Rowe 
1986).) 

The transformation of the non-orthonormal basis (2.4) to an  orthonormal basis of 
states is greatly facilitated by considering the image of the above states in a Bargmann 
space and  by using the Chac6n-Moshinsky-Quesne complementarity theorem (Mosh- 
insky and  Quesne 1970, 1971). The theorem states that, in a Bargmann space of N x D 
complex variables zDN or  equivalently in the space of the simple ND-dimensional 
harmonic oscillator, states that belong to a unirrep ( N / 2 (  A )) of Sp( D, %) also belong 
to a unirrep [ A ]  of O ( N ) ,  where we define 

(2.5) 

Likewise, states that belong to a unirrep { N / 2 (  h ) }  of U(  D) also belong to a unirrep 
{ h }  of U( N )  (Biedenharn et al 1967). 

As a consequence of the complementarity theorem, U( D )  x O( N )  states for the chain 

N/2 (A)  ( A I  + N / 2 ,  A z +  N / 2 , .  . . , Ad + N / 2 ) .  

can be identified with 

basis states. The state labelling problem for the chain U(  N )  3 O( N )  is thus identified 
with the Sp( D, !H) 3 U( D) labelling problem which has been fully studied by Rowe et 
al (1985). For the supermultiplet problem, we have N = 4  and D = 3  for the most 
general unirrep of SU(4)  3 O(4). Details of the construction in the Bargmann space 
will be given in the following section. Thus in the Bargmann space, the SU(4)  3 O(4)  2 
[SU(2) x SU(2)]  coupling in (2.4) will become a complementary U(3) x O(4)  2 
[SU(2) x SU(2)] coupling and the orthonormal Bargmann states (see equations (3.15), 
(3.22), (3.23) and (3.25)) will be denoted 

(2.8) 

where m stands for a U(3) labelling scheme such as a Gel’fand pattern. The expression 
Iw or hw in the place of m in (2.8) will signify that the state is a U(3) lowest or highest 
weight respectively. 

(The notation introduced in (2.8) will be the standard notation in the following, 
i.e. all upper tensorial labels refer to the transformation properties of the states under 
U(3) (thus U(4) )  while the lower ones refer to their O(4 )  (thus Sp(3,!N)) properties. 
Similarly, a square bracket 

will denote the U(3)  x [SU(2)  x SU(2) ]  coupling of the enclosed tensors T, 

[*I x 9*1W) 
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will denote their [SU(2) x SU(2)] coupling only while 

[VI  x V p  
will denote their U(3) coupling only.) 

The states (2.4) are generally non-orthonormal. Also, since {n} and p cannot be 
associated directly with the eigenvalues of Hermitian operators, they merely serve as 
labels (but see the discussion following equation (3.23)). At this stage, however, it 
appears from the branching rule that the construction procedure of equation (2.4) 
might be invalid. In the {422} multiplet there are two independent ( S T )  = ( 1  1 )  states 
corresponding to the two possible { n }  values {222} and {42}. However, only a single 
occurrence is predicted for the state ( S T )  = (20) (or (02)), and yet there seem to be 
two ways of constructing such a state through polynomials Z’“ ’  with {n} = {4} or {22}. 
Is there an inconsistency? 

The answer comes at once from evaluation of the overlap matrix K ? .  For given [ A ]  
and { h } ,  the overlap matrix ~ ’ ( [ h ] ;  { h } )  for the non-orthonormal basis (2.4) will be 
defined by (see equations (3.15) and (3.19)) 

This matrix is evaluated very quickly using the techniques developed for the com- 
plementary Sp(3, ?H) = U(3) chain (Rowe et a1 1984, Rowe 1984). We find for the 
states of O(4) symmetry [22] ( ( S T )  = (20) or  (02)) of our example that the K ‘  matrix 
has the numerical value (for an ordered { n }  basis {4}, {22}) 

~ ‘ ( [ h ]  = [22]; { h }  = {422}) = 

which has diagonal form 

14 0 
d a g =  ( o). 

One of the eigenvalues of K’ is zero. Thus, one of the two states has zero norm and  
there exists only one independent state with ( S T ) = ( 2 0 )  (or (02)).  The K’ matrix 
immediately signals this important fact. 

The K *  matrix can also be used to understand the disappearance of the subgroup 
O(4) unirrep [42] in our example. In fact, the K ‘  matrix shows in a very general way 
that the O(4) symmetry [h ,A ,]  does not exist in the Wigner supermultiplet symmetry 
{A,A22}. For one-dimensional matrices K ’ ,  the value K : , , ~ ~ . )  is obtained from the 
eigenvalues Cl of the U(3) scalar operator of Rowe (1984) through the recursive relation 

K ~ ~ ’ ) ( ~ ’ ) ( [ A I A ~ I ;  { A ’ } )  
K f n ) {  n ) (  [ A  1 ~ 2 1 ;  { h 

= (R(An’h’)  - f l ( A n h ) )  

=$(Ah:+Ah:+Ah:)  + (h l  - h,  - l ) A h ,  + (hz  - h3 -2)Ahz 

-3Ah3 + 2 h 3 + 4 +  ((n) ( 2 . 9 ~ )  
with 

((n) = -n1 A n ,  = 2  

((n) = - n , +  1 An2 = 2 

(( n )  = - n ,  + 2 An,  = 2 
(2.9b) 
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where Ah,  = h : -  h,, An, = n : - n ,  and the number four gives the dimension of the 
spin-isospin space. With { n }  = {0}, we see at once that 

= O  

regardless of the values of A I ,  A 2 .  The O(4) state [ A l A 2 ]  in the supermultiplet { A l A 2 2 }  
has a zero norm in accord with the branching rule obtained from the Littlewood 
reduction (cf equation (2.1)). 

3. State construction in a 3 x Cdimensional Bargmann space 

The simplest way to give the explicit construction of the states (2.3) is through states 
of a 3 x 4-dimensional oscillator basis in a Bargmann space of 3 x 4 complex variables 

ZOI (Y = 1 , 2 , 3 ; j  = 1 , 2 , 3 , 4  (3.1) 

where z,, serve as oscillator creation operators while the d/az ,  are the corresponding 
annihilation operators with respect to the Bargmann measure. Note that (Y ranges 
from 1-3 to make it possible to construct the states of three-rowed tableau symmetry 
needed for the most general SU(4) symmetry. The four possible orientations of spin 
and isospin are given by 

Ij = I )  = I++) = (m,  = +;, m, = +;) 

(3.2) 

(3.3) 

- - ( z , + + z p ~ ~ + z , - ~ z p + + - z z , + - z p - + - z z , - + z p + - )  

= 2 C ( imsf-  m,loo)(fm,t- m,IOO)zmm\m,zp-m\-m( (3.4) 

where the last form shows the S = 0, T = 0 character of the pair. We will take advantage 
of the isomorphism SO(4) - SU(2) x SU(2) and therefore of the angular momentum 
calculus by consistently using the spin-isospin basis (3.2) and the corresponding ST 
coupling instead of the Cartesian basis (3.3) and a corresponding O(4) coupling (but 
see the discussion following equation (4.7)). 

m,m, 
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The first step in the SU(4) =) SU(2)  x SU(2)  state construction process involves the 
construction of the states entirely free of ( S T )  = (00) pair states, i.e. generalised solid 
harmonics ?4/:;,( z )  in the four-dimensional Bargmann space. These must satisfy the 
equation (Lohe and Hurst 1971) 

(3 .5 )  

3.1. One-rowed solid harmonics [A,] 

The simplest are the totally symmetric solid harmonics of symmetry [ A , ]  which can 
be constructed in terms of a single four-dimensional variable z1 only when highest 
weight in the complementary U(3) group action. The condition (3.5) leads to the 
normalised solid harmonic (with S = T =;A 

simplifying to 

(3.6b) 

when Ms = S and MT = T. 

(3.7a) 

where 

and where N ( a ,  b, c )  is the normalisation factor for a U(3) x SU(4) highest weight 
Bargmann polynomial of dual rank {a + b + c, b + c, c } ,  i.e. the Bargmann norm of 

is unity when (Moshinsky 1962) 

( a  + 1 ) (  b + 1 ) ( a  + b + 2) 
( a + b + c + 2 ) ! ( b + c +  l ) ! c !  

N ( a ,  b, C )  = 

(3.9a) 

(3.96) 



264 K T Hecht, R Le Blanc and D J Rowe 

When Ms = S and MT = T, (3 .7a )  simplifies to 

Similarly, for S < T, we independently define 

9211^s‘=^$l”-”h2)/2, T = ( A  I +A,)/ 2)(  

where 

(3 .8b )  

The independent definition of the S < T solid harmonic is necessitated by the fact that 
we do not use lowering (raising) techniques to build a basis for the SU(4) unirrep { h }  
from its highest (lowest) weight state. Here, the basis is constructed ab  initio and the 
matrix elements of the SU(4) generators are calculated afterwards, as in 0 5. Since the 
states ( 3 . 8 a )  and (3 .8b )  correspond to different ST quantum numbers, they have to 
be defined independently. When Ms = S and MT = T, (3 .7b )  simplifies to 

A2 
9 ( / ( A l A Z 0 J h W  Z l + +  ZI-+ 

SSTT ( 2 )  = N ( A i - A 2 ,  A z ,  O)z:LA2 
l z 2 + +  z2-+I 

The states (3 .7)  can be given the alternative but equivalent expression 

(3.10) l S = ( A l * A ~ ) / 2 ( z ) , T = l A , F A 2 ) / 2 , ( Z )  ,h20)hw = [9:i;!2,A5/2)(zl) ~ ( , 4 \ 2 2 / 2 , A , / 2 ) ( z 2 ) 1 ( S , T )  1 

most useful in actual computations. 

3.3. Three-rowed solid harmonics [A,]*=[A,l  l ]  

The modification rule (ii) of equation (2.1) indicates that there are solid harmonics of 
symmetry [ A  J* = [ A ,  111 with S = T = $A This is verified by the explicit construction 
(similar to the construction (Quesne 1984b, Le Blanc and Rowe 1985a, b) of an SO(3)  
pseudo-vector of O ( 3 )  character [L]* = [Ll])  
q,{Al. l . l )hw 

( S =  A , / 2 , T =  A ! / 2 ) (  z, 

(3.12) 
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The state (3.11) can be given the alternative but equivalent expression 
~ { A l . l . l ) h W  

( S = A t / 2 . T =  A l / 2 ) (  ') 

= (-1/'d2)[ 3 : ; : ; 2 , A , / 2 ) ( Z l )  [3{: )2 ,1 /2) (z2)  3 / I : : 2 . 1 / 2 ) ( z 3 ) 1 ~ 1 0 ) l ( ~ ~ )  

{I} ( 1 )  + (1/'d2)[ 3 ~ ~ ~ ~ 2 , A l / 2 ) ( z l )  [ 9 ( 1 / 2 , 1 / 2 ) ( z 2 )  ~ ( 1 / 2 , 1 / 2 ) ( z 3 ) 1 ~ 0 1 ) 1 ( s 7 )  (3'13) 
most useful in actual computations. 

As indicated by the modification rules, attempts to make other three-rowed four- 
dimensional solid harmonics fail. With the exception of the state (3.11), states of 
three-rowed symmetry always contain some ST zero-coupled pairs. 

States (3.6), (3.7), (3.10), (3.11) and (3.13) are all U(3) highest weight states. Lower 
weight states are easily obtained through standard U(3) lowering techniques (Hecht 
1965). 

That the above functions 3:& are generalised harmonic polynomials in the sense 
of equation (3.5) is guaranteed by their explicit construction (Louck and Galbraith 
1972). They will generally be denoted 

(3.14) 

with E =0,  S, T = ~ ( A l * h 2 ) ,  t ( h l T h 2 ) ,  or with E = 1, (provided A ? =  1) and S = T = ; h , .  
With these solid harmonics the non-orthonormal states of equation (2.4) can now be 
constructed: 

9 ( ~ , ~ 1 ~ )  
f S T i  

(3.15) 

Note the round bracket on the left ket to signify its non-orthonormality. 
The symmetrically coupled polynomials 2'"' of zero-coupled pairs A are well 

known. The U(3) highest weight is given by 
Z { n , n p , } h w  ( A ( z ) )  

where (Quesne 1981) 

(2x+  1)!(2y + l ) ! (x  + y ) !  ( x + y  + l ) ! ( y  + z ) !  ) (3.16b 

n, = 2 x + 2 y + 2 z  n2 = 2y+2z n ,  = 2z. ( 3 . 1 6 ~ )  
The zero-coupled pairs z,z, belong to the basis of generators of the complementary 

2"'""[x!y l i  !] z !  (2x + 2y + l ) !  (2y + 2z + 1 ) ! ( x  + y + z + l ) !  
JV'(X, y ,  2 )  = 

and 

sp(3,B) algebra (Rosensteel and Rowe 1980) spanned by 

A,,, = Z , J p  6 Cartan raising operators 

a? 
B,, =- 

az,az, 
6 Cartan lowering operators 

(3.17) 
9 U(3) generators. 
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{ A  A E)hw The O(4) solid harmonics 9(&f (z) will also be, through equation (3.5), sp(3,%) 
symplectic highest weight states $ { h l h 2 h 3 ) h w  of U(3) rank {h lhZh3}  = { A , ,  h 2 ,  E }  defined 
by (Rosensteel and Rowe 1980) 

B ${h,hZhJhW = 0 
4 

c a@ $L(h,hA}hW = 0 a < P  (3.18) 

c aa ( ~ t h I h z h 3 ) h w  = ha+{hlhzh3)hw (with no sum on a). 

Since the zazp are sp(3,%) lowering operators, the polynomials Z'"', when applied to 
the solid harmonic 9(A1A2E', will generate a complete set of states for the sp(3,%) 
discrete series unirrep 2((A)) (Rowe et a1 1985). The states (3.15) are thus simul- 
taneously of SU(4) 2 O(4) 3[SU(2) x SU(2)] symmetry and of Sp(3, %) 2 U(3) sym- 
metry, where ( h , A 2 & }  characterises both the O(4) and Sp(3,%) unirreps while { h }  
characterises both the SU(4) and U(3) unirreps. 

The overlap of the non-orthonormal (round bracketed) states (3.15) is given by the 
K' matrix (Le Blanc and Rowe 1985a) 

(3.19) 

I f  a 1 x 1 K *  matrix is diagonalised by the unitary matrix U 

U'K'U = i i = d i a g ( A , , A ? ,  . . . , ,  2 , )  (3.20) 

then we can make the canonical choice 

and define the orthonormal basis 

(3.22) 

As already shown by the example of § 2, the power of this K' method is that it 
automatically reveals problems of overcompleteness (Rowe et a1 1985) through the 
appearance of zero eigenvalues. In those cases where K' has p zero eigenvalues, one 
may choose to define a basis canonically, i.e. to retain the meaning of the quantum 
labels { n } p ,  by truncating the 1 x 1 singular matrix K *  to a ( I  - p )  x ( I  - p )  non-singular 
matrix ( K ' ~ " " ~ ) ~  where p rows and the corresponding p columns have been deleted. 
One then defines 

The choice (3.23) has the advantage of explicitly enumerating the subset of the 
overcomplete non-orthonormal set of states (3.15) used in  the construction of the 
orthornormal states. Note too that the non-orthonormal (round bracketed) state (3.15) 
with the biggest contribution to the orthonormal state (3.23) is in most cases the one 
with { n ' } p ' = { n } p  (Rowe 1984). Thus  the quantum labels {n} and p then still retain 
a group theoretic significance. Alternatively, to avoid the arbitrariness of choosing 
which states of the overcomplete set to eliminate, one may restrict to the non-null 
vectors in the basis in which K' is diagonal and define 
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The corresponding orthonormal basis (used in this paper) will then be denoted 

Finally, i t  should also be mentioned that the symmetrically coupled raising poly- 

(3.26) 

where the doubly barred matrix element is the SU(3) reduced matrix element of the 
six-dimensional oscillator creation operator of symmetry {2} used in Quesne (1981) 
and Rosensteel and. Rowe (1983) and given by 

nomials Z‘“ ’  of equation (3.16) are normalised such that 

[z”’x ~ ’ ~ ’ 1 ’ ~  = ({n’}lla-l/{n})Z{n 1 

(3.27) 

4. SU(4) 3 O(4) Wigner coefficients 

4.1. SU(4) 3 O(4) Wigner coeficients for the fundamental tensor 

To show how the very explicit state construction of B 3 can be used to give a full 
implementation of the SU(4) 3 O(4) Wigner-Racah calculus, we indicate how the 
simplest type of SU(4) Wigner coefficient can be calculated in the Bargmann framework. 
The Bargmann variable z is the fundamental tensor for both complementary U(3) and 
SU(4) symmetries: 

(4.1) (100)m 
T [ ~ ~ m s / ~ , m , / ~ ( z )  = zamgn, 

where 

m = \ l  

The reduced matrix 
(3.2) can be written as 

element (with respect to U(3) x [SU(2) x SU(2)]) in the basis 

where the factor C (independent of the SU(4) subgroup labels) is a normalisation 
factor usually determined through the orthonormality of the reduced Wigner 
coefficients. However, for the Bargmann space, C can easily be deduced from normali- 
sation considerations and is given by 

- 
(We agree to take the positive square root of the normalisation factor, i.e. C = +JC’.) 
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To evaluate the reduced matrix element of equation (4.2), it is sufficient to re-express 
the various terms in the expression 

(4.4) 

in the standard form (3.13). The position of T'" in (4.4) is dictated by the standard 
conventions for reduced matrix elements. A simple recoupling transformation, requir- 
ing an SU(3) Racah coefficient (Draayer and Akiyama 1973) and reordering of the 
[ 9 x TI coupling yields 

[ [ z ' n )  9 { A ~ A 2 f )  { h ) p  ~ ( 1 )  {A',) 
(ST) 1 (112 i / z ) l ( s  rs) 

with Ah = h ,  - h,, F,, = h 2 -  h i ,  etc. Draayer and Akiyama's SU(3) Racah coefficients 
U(.  . .) used here are based on Biedenharn and  Louck's (Louck 1970) canonical 
resolution for the outer unitary coupling. 

There are only two possibilities for the product [ T x $1. Either 

(4.6) [ c:), x @ > ; f E ) ] { $ i T 1  = (-l) 'FF([AlA2~]; [ A ' , A ; E ' ] ) ~ ( ~ ! ~ ? ~  { A  ' A  I f ' )  

with { k }  = { A ' }  or 

x q g { h i A i f )  ( A !  [TI112 1/21 (ST) 1 , s  T') 

(4.7) 

Note that equations (4.6) and  (4.7) would be independent of the SU(2) x SU(2) labels 
S,  S ' ,  T, T' if the lower coupling were an O(4) coupling. But since SU(2)xSU(2)  is 
a subgroup of 0 ( 4 ) ,  these equations do  present an ST dependence in the form of the 
phase factors ( - l )d  included in table 1. 

The functional dependence of F and G on the labels [A], [ A ' ]  and { k }  is quite 
simple and can be extracted from the very explicit state construction. Furthermore, 
G can be related to F by application of the symplectic raising operator B (equation 
(3.17)) on both sides of equation (4.7): by reordering the resulting left-hand side, using 
the commutator relation 

= (-l)'GG([A1A2~]; [A',A\&']; { k } ) [ Z f 2 '  % l ( h ' A , ' E ' )  (S!T2)  ] ( S , T , ) .  { k )  

( 4 . 8 ~ )  
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+ Note that the quantum numbers S, T will be omitted whenever there is no possible ambiguity in the 
assignment of their values. 

where the U(3) Racah coefficients necessary to evaluate (4.9) are listed in table 1 of 
Vergados (1968). Altogether, there are 14 different possible cases for equations (4.6) 
and (4.7) which are listed in table 1. 

In case of equation (4.6), we are led directly to the needed reduced matrix element 
(4.2) and hence the desired SU(4)  Wigner coefficient: 
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4.2. Wigner coefficients f o r  the coupling {P+ 1, P} 0 {1} + {P+2, P} 

Equations (4.2), (4.3), (4.10) and (4.11) make it possible to evaluate the most general 
SU(4) Wigner coefficient for the coupling { h } @ {  1) + {h'}. For the SU(4) representation 
{ h }  (or { h ' } )  ={PP),  { P +  1, P}, {P}, {P, 1) and {P, 1, I}, S and T are sufficient labels 
and the Wigner coefficients for the fundamental tensor between representations of this 
type have previously been given in general algebraic form (Hecht and Pang 1969). 
The present method reproduces these results except for the new phase conventions. 

Representations of the type {P+2,  P}, { P +  1, P, l}, {P ,  2) have at  most twofold 
multiplicities in S, T. These cases exhaust most of the possibilities which may be 
needed for the nuclear p and  sd shells and  will illustrate how the new method can 
resolve the multiplicities. 

4.2.1. Coefficients f o r  the coupling {P+ 1, P}O {I} + {P+2, P} (P-A, odd). If P - A ,  is 
odd, the O(4) representation [AIA, ]  will appear only once in the decomposition 

SU(4) J O ( 4 )  : { P + 2 ,  P} J. [AlAz]. 

Equations (4.2), (4.3), (4.10) and (4.11) then lead directly to the results of table 3(a) .  
Note that the needed K matrices are then one dimensional and can easily be obtained 
recursively (Rowe 1984). They are listed in table 2. Note also that table 3 gives the 
Wigner coefficients in terms of the O(4) labels A ,  and A 2 .  To obtain the coefficients 
corresponding to the specific SU(2) x SU(2) subgroups S, T = ; (A ,  * A > ,  ; A ,  T A 2 ) ,  one 
only has to make the substitution A I  = S +  T and A 2  = &(S - T )  in these expressions. 
For example, one obtains (for P - A ,  odd)  

) { P +  1, PI i l ) ( (  I P S 2 9  P} 

=( ( P + 3 ) ( 2 S +  1) (2T+ 1) ) 
[Al ,Az+l] (S '=S+i ,  T'= T - $ ) ' [ l ]  [A,A,](S=i(Al+A2), T=i(A,-A2)) 

(P  - S + T +  2 ) S (  T + 1) 

( 

{ P + 2 ,  p> 
[ A l A ~ 1 ( S = ~ ( A I + A 2 ) ,  T=$(A,  - A 2 ) )  

{P+1, P} 
[ A , ,  A2-1](S'=S-!, T ' =  T+$) ;  

( P + S -  T + 2 ) T ( S + 1 )  
( P + 3 ) ( 2 S +  1) (2T+ 1) 
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2 ( P - A 2 ) / 2  [ ~ ( h ,  I + A2)]![$( P +  A ,  + 2 ) ] ! ( P +  A 2 +  l)!! 

{ PP1 { P - A 2 ,  P -  A I }  ( A 2 ) ! ( A l  + l ) ! (A,  + A 2 +  l)!! 
2 ( P - A z ) / 2  [I( 1 A I  + A2)]! [f( P +  A ,  +4)]! ( P +  A 2  + l ) ! !  

(A2)!(A,+2)!(AI+A2+1)!! 
{ P + l ,  P} { P -  A 2 ,  P - ~ I }  

2 ( P - A z - 2 J / 2  [ ? (Al  1 + A 2 ) ] ! [ f (  P +  A ,  + 2 ) ] ! ( P +  A2+3)!! 
( A 2 +  l)!(A, + l ) ! ( A , + A 2 +  l)!! 

2‘P-A2”2[$(A, + A, - 2)]! [$( P +  A ,  + 2)]! ( P +  A,+ I)!! 

{ P +  1, P }  { P -  A,, P -  A J  

{P+l ,P} { P - A 2 , P - A , + 2 }  
( A 2 ) !  ( A l ) !  ( A ,  + A 2 -  I)!! 

2 ( P - A z ) / 2  [ ? (A ,  1 + A 2  -2)]![4( P +  A ,  + 2)]!( P +  A 2 +  I)!! 
{ P + l ,  P }  {P-A2+2,  P-A,} 

( A 2 -  ] ) ! ( A l  + l)!(Al + A 2 -  l)!! 
2(P-A2-2)/2 [?(A,  I +A,)]![f( P + A ,  + 2)]!(P+ A 2  + l)!! 

{ P , P - l }  { P - A 2 , P - A , - 2 }  
( A 2 ) ! ( A l  + 2)!(A,+ A 2  + l)!! 

2(P-A2-2)/2 [2(A, I + A2)]! [ i ( P +  A ,  + 2 ) ] ! ( P  + A 2 +  I)!! 
{ P , P - 1 )  {P-A2-2 ,P -Al}  

(A,+  l ) !  ( A ,  + l ) !  ( A ,  + A2 + l)!! 
2‘P-*‘-2’ [I( I A ,  + A, - 2)]! [f( P + AI)]! ( P +  A,+ l)!! 

{P, P - 1 }  {P-A, ,  P-AI} 
(A2)!(Al)!(Al + A 2 -  I)!! 

2 ( P - A z / 2 J / 2  1 
[5(AI + A 2  -2 ) ] ! [ i (P+  A ,  + 2)]! (P+  A 2 -  1) 

{ P ,  P - 1 )  { P - A , ,  P - A I }  ( A , - ~ ) ! ( A , + ~ ) ! ( A ~ + A ~ - ~ ) ! !  

{P+ 1, P, I} 

{ P +  1, P, 1) 

2‘P~2)’2A,(A1 + 2)[$(A , - 2)]! [f(P + A ,  + 2)]! ( P  + I)!! 
( A , + l ) ! ( A , + l ) ! !  

2‘P-3’/2A,(A, + 2)[i(A - 2)]! [ $ ( P  + A I  + 1 )]! ( P +  2)!! 

{P ,  P - A l + 2 }  

{P + 1, P - A ,  + I} 
( A ,  + l ) ! (A ,+  l ) ! !  

2‘P-Z”2(fAl)![$( P +  A ,  +3)]!(  P + 2 ) ! !  
( A , + l ) ! ( A , +  l ) ! !  

{ P + l ,  P, l}  {P-1,  P - A , + l }  
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Table 3. Wigner coefficients of the type 

( b )  ( P  - A ,  e \en)  

4.2.2. Coeficients for the coupling {P + 1 ,  P} 0 { 1 }  + {P + 2, P} (P - A ,  even). If P - A I  
is even, the O(4) representation [ A 1 A 2 ]  will appear twice in the decomposition 

& [ A  , A r ]  

except if A ,  = A z  or A = P + 2 for which it appears only once. We find for the general 
twofold case the results of table 3(b) .  Note that the 2 x 2 matrix E' of table 3 ( b )  is 
defined in table 2 and is diagonalised by the Hermitian operator U with 

A =  uE2u' < { P I } , ,  = u{nl,,A:'2 (4.12) 

SU(4) 1 O(4) : IP + 2 ,  
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with 

U = U ' =  (4.13) 

For A I = P + 2 ,  only the zero-coupled pair polynomial of rank { n ,  , n,}  = { P - A , ,  0 }  

sin 0 e -cos s in  0 

occurs and the overlap matrix becomes one dimensional: 

K 2 + 2 ( P + 3 ) ( P + A , + 3 ) ( f  -A2+3) (4.14) 

(see table 2). The only non-vanishing Wigner coefficient is then given by 

(4.15) 

For A , = A z ,  only { n l ,  n z } = { P  - A l + 2 ,  P - A , }  occurs and 

K 2  + 2Al( P + A I  + 4 )  (4.16) 

(see table 2). The only non-vanishing Wigner coefficients are then given by 

( P + l , P }  (1) { f + 2 , P }  ( A , + l ) ( P - A l + 3 )  

(4.17) 
[ A I +  1, A I ] ;  [1l / /  [ A I A I ]  > = (  ( P + 3 ) ( 2 A l + l )  

E A , ,  A I  - 11; [ I 1  [ A I A I ]  ( P  +3)(2A, + 1) ' 

{ P + l , P }  {1} 1) { P + 2 , P }  ) = -( A l ( P + A l + 4 )  ) " ?  

4.3. Wigner coeficients for the coupling {P+ 1 ,  P} x { 1 }  + {P + 1, P, 1 )  

As a final example, we will give numerical values for Wigner coefficients with a final 
S U ( 4 )  of the type { f  + 1, P, 1) with S = T where a twofold multiplicity is resolved by 
the O(4) labels: one state being of O(4) rank [A, ] ,  the other being of O(4) rank [ A , l l ]  
so that the K' matrices are one dimensional. More specifically, we choose P = 2 ,  
( S T )  = (i i) because it is the only case where a twofold multiplicity can occur in the 
nuclear p shell. 

Since we know the general Wigner coefficient for the coupling: 

{ P + 1 ,  P } O { l } + { P  +2,  P )  

( $  4.2), we can write down the full 4 x 4  matrix for 

i K!) ; ;ill) I/ ( 4;: ; 1 1 ) ) 
as follows: 

(h'[A1i {321}[2] {321}[211] {42}[2]i = 1 {42}[2]i = 2 (SIT ' )  

cos 9 d A ,  - sin 9d.i- 
0 

2 J 2  ( t i )  - 
34.5 3v'lO 3 J 1 0  

( 4 . 1 8 a )  
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1 cos 6JA-  - 1 
( 5 2 )  - 

3 J 2  
I 1  

J 2  3J10 

1 cos 6JA-  -- 1 ( 1 3 )  - 
2 2  342 J 2  3J10 

with 

.I, = (57  * J369)  

and  

cos e = = [ ( ’  -*- 17 )]” 
sin 6 2 24369 

sin 6JA, 

3J10  

) JA+ 
sin 0 cos 6 
12J2  6J10  

(4.18 b )  

( 4 . 1 8 ~ )  

(Note that while Jahn and van Wieringen (1951) had to make an  arbitrary choice 
in their definition of the two {321}( ST)  = (1 1) states, the present resolution of the 
twofold multiplicity through the use of the [2] and  [211] O(4) labels gives an  unam- 
biguous definition of the states and therefore of the corresponding Wigner coefficients. 
Note that this choice automatically results in the vanishing of two coefficients.) 

5. Matrix elements for the SU(4) generators in an SU(4) 3 O(4) basis 

Matrix elements for more general SU(4) 3 O(4) tensors are easily obtained using a 
buildup process where the basic building block is the fundamental tensor TI;;.  In this 
final section, we give a simple algorithm for the computation of the generators of the 
Lie algebra SU(4) in an SU(4) = 0 ( 4 )  basis using such a technique. 

The generators E,, , ,  with ( s t )  = (1  l ) ,  (10) and (01) can be expressed as the tensorial 
coupled product of TI;?’( z ) (  - z )  with its Hermitian conjugate T/yy-”(z)( -a/az): 

E,”,\,,, =c c (-1)’-”*2-”5 
a m,lni,2m,lm,- 

(5.1) 

(Note that E is a U(3) scalar operator while i t  transforms as a { 100- I} - {21 l} tensor 
under U(4).) - S and of E,o ,  - T are easily obtained from angular 
momentum calculus (Hecht and Pang 1969), we only need to specifically work out 
those of E ~ , , l .  Using hermiticity, we find 

x ($m,l ; fmy2I .m) (~mr l  I 1  ; ~ ~ , ~ l ~ m ~ ) z , , , , ~ , , , ~ ~ ! ~ ~ , - , ~ , - n , , , .  
. -  

Since matrix elements of E ,  

[ A  ’]( S‘T’ )  
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from which we deduce the following SU(4) 3 O(4) reduced matrix elements for the 
generators: 
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