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Abstract. We discuss various asymptotic limits of the classical and quantum Heisenberg 
model. We give a new proof that the thermodynamic free energy of the quantum model 
converges to the free energy of the classical model in the limit of large spins. We also 
obtain Gaussian and free Bose gas limits for the classical and quantum models respectively. 

1. Introduction 

We are interested in the Heisenberg model on a lattice in three dimensions. For 
simplicity we shall assume our lattice is the integer lattice Z 3 .  Suppose A is a cube. 
Then lhl is the number of points of the lattice contained in A. Let S = (Sx, S , ,  S,) be 
a spin vector. For the classical Heisenberg model S is a vector on the unit sphere, whence 

s’ = Sf. + sf + sf = 1. (1.1) 

For the quantum model S is the angular momentum operator acting on an  irreducible 
representation of the ‘rotation group’ SU(2) with spin s, where 2s is a non-negative 
integer. Thus S satisfies the identity 

sz = s’,+ sf + sf = s(s + 1) 

[S,, S , ]  = iSz [S,,S:]=iS, [ S ; ,  S,] = i s , .  (1.3) 

(1.2) 

and the commutation relations 

If we introduce the operators S,  and S- given by 

S- = S, + i s ,  S-  = S ,  - i s ,  (1.4) 

the relations (1.3) can be reformulated as 

[S,, S,] = S, [Sz ,  S-]  = -S-  [ S,, S -]  = 2s;. (1.5) 

To define the Heisenberg model on a cube A we associate to each site R E 11 a spin 
vector S ( R ) .  The Heisenberg model is then given by 

$3 1 = - C J (  R - R ’ ) S (  R ) S (  R’) + h SI ( R ). 
R , R ’ c  $ R 

We shall assume from here on that J ( R )  = J ( - R )  5 0, J ( 0 )  = 0 and h 2 0. Hence we 
are considering a ferromagnetic system in which the ground state occurs when all spins 
are aligned along the negative z axis. If we wish to specify the representatation for 
the quantum model we write @ , , s  and if we wish to specify the classical model we 

0305-4470/90/143199+ 15$03.50 0 1990 IOP Publishing Ltd 3199 



3200 J G Conlon and J P Solovej 

write 
Thus 

The partition function for the quantum model will be denoted Z,(p, h, l\). 

ZAP, h, -1) = Tr exP[-P@ \,SI. (1.7) 

The classical partition function is denoted 2, whence 

and the integration is taken over the unit sphere. 
Our first goal here is to derive in a simple way a formula of Dyson [3] which 

identifies the partition function for the Heisenberg model with the partition function 
of an  anharmonic oscillator. This representation has two advantages. In the first case 
it exhibits the magnon approximation explicitly in the oscillator Hamiltonian as the 
dominant term at large values of p. Secondly, it shows that the magnon-magnon 
interaction is a two-body interaction. We also obtain the classical analogue of Dyson’s 
formula. Motivated by this we give a very simple proof that the free energy for the 
quantum Heisenberg model converges in the large-s limit to the free energy of the 
classical Heisenberg model. This result was originally proved by Lieb [6]. We also 
show that a large-s scaling limit of the quantum Heisenberg ferromagnet with nearest- 
neighbour interaction converges to a free Bose gas. For the classical model the 
corresponding limit gives the Gaussian approximation. Finally we prove some magnon- 
type bounds on the magnetisation for the Heisenberg model. This extends and  simplifies 
some work of Roepstorff [ 9 ] .  

2. Dyson’s formula 

We first consider the quantum case. To d o  this we need to compute the commutator 
of @ ,,s with S+( W )  where W E  >I. Using the fact that, for R # R‘, we have 

(2.1) S ( R )  . S (R‘ )  = !(S,( R ) S - ( R ’ )  + S _ ( R ) S + ( R ’ ) )  + S,(R)S,(R’) 

and the commutation relations (1.5) we have 

[4 \ . S .  S+( W ) l =  2 1 J ( R  - W ) ( S , (  W ) S + ( R )  - S , (R)S+(  W ) ) +  AS+( W ) .  ( 2 . 2 )  
R 

Commuting again with S+( W’) we obtain the relation 

E[@ \,s, S+( W ) l ,  S+( W7l 

= - 2 J (  W -  W’)S+( W)S+(  W’)+2S,,, C J ( R  - W)S+( W ) S + ( R )  (2.3) 
R 

where 6 denotes the Kronecker 6. It is clear from this that all higher-order commutators 
will vanish. 

The basic idea of Dyson is to come up  with a harmonic oscillator Hamiltonian 
which satisfies the same double-commutation relations as 4,  c .  To accomplish this we 
assign an  oscillator to each site R. Thus a * ( R ) ,  a ( R )  are creation and  annihilation 
operators satisfying canonical commutation relations [ a ( R ) ,  a*( R ’ ) ]  = 8 R R  . We look 
for an  oscillator Hamiltonian $3: L. which satisfies the commutation relation 

[[@?,\., a*( W ) l ,  a*( W’II 
= - 2 J (  W -  W’)U*( W’ )U*(  W)+28,, 1 J ( R  - W ) U * (  W ) a * ( R ) .  (2.4) 

R 
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It is evident that one solution to (2.4) is 

@\,,,= - J ( R  - R‘) [u*(  R ) a ( R ) a * ( R ’ ) a ( R ’ )  - U * (  R ) a ( R ) * a * ( R ’ ) ] .  
R , R ’ r  \ 

(2 .5 )  

The term in [ ] could of course have been written in a more symmetric way. We can 
add to this a constant plus a quadratic form in a, a* without changing the commutation 
relations (2.4). Thus we can take 

$30\,S=E\.5+ C a * ( R ) A R , R , a ( R ’ ) -  C J ( R - R ’ )  
R , R ’ r  \ R . R  E \ 

x [ a * ( R ) a (  R ) a * (  R’ )a (  R’ )  - a*(  R ) a (  R ) * U * (  R ’ ) ]  (2.6) 

where E\,, and A R , R s  are arbitrary constants. 
Next we choose E,,5 so that SO\,., acts on the vacuum in the same manner as a,,\ 

acts on its ground state. Let Im)R for O s  m s 2s be the state for which S , ( R )  = m - s. 
Correspondingly let Im), be the m-particle state for a * ( R ) a ( R ) .  The ground state of 
$3 \ s s  is then 

n l o ) ,  
R E  , 

and the vacuum for @“\., is 

n 1 0 ) R .  
R E  \ 

(2.7) 

It is clear then that if we choose E,.% to be given as the ground state energy of @ , , 5 ,  

E\s = - 1 J ( R - R ‘ ) s ’ - h  1 s 
R . R ’ E  \ R E  3 

then we have 

(2.9) 

(2.10) 

It is clear from the above that E,,? has been chosen in a unique way. The matrix 
elements A R , R ’  can also be chosen in a unique way by requiring that @\,s and a\,,, 
behave in a similar way on one-particle states. Let U = { u R :  R E A} be a set of non- 
negative integers uR = 0, 1,2, . . . . Then the state [ U )  is defined as 

(2.11) 

with a similar definition for [ U ) .  The one-particle state IR) is defined as IR) = [ U )  where 
uR = 1 and = 0 when R # R‘. The action of the Heisenberg Hamiltonian on one- 
particle states IR) is given by 

(J%,,+h)IR)+2s c J ( R  -R’)[lR)-IR’)l. (2.12) 
R ’  

If we now choose A R , R ’  to be given by 

(2.13) 
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Finally we observe that because of the identity of the double-commutator relation- 
ships (2.3) and (2.4) and the vanishing of higher-order commutators it follows that if 

@“,.,lu) =c  r H . , ” l W )  (2.15) 

then we must also have 
(2.16) 

Note that equations (2.15) and (2.16) are independent of the normalisation of the 
states l u ) ,  lu) .  In (2.16) we put lu )=O if any uR exceeds 2s. It follows immediately 
from (2.15) and (2.16) that 

Z,(P, h, =Try exp[-P40\.,3 (2.17) 

where Tr, denotes restricted trace in which one sums over states with particle number 
at most 2s at each site. Thus 

T r , ( A ) =  1 (ulAlu). (2.18) 

The formula (2.17) is Dyson’s formula [3]. The first two terms in the expression 
(2.6) for ay,,, give the magnon approximation for the Heisenberg model. 

We now move on to deriving the analogue of Dyson’s formula for the classical 
Heisenberg model. First we shall motivate the formula from the quantum problem. 
Then we shall derive it directly. Let F ( 5 )  be a real-valued function for -oc<(<co. 
Thus F is an ‘observable’. From (2.15), (2.16) it follows that 

(ulF(4 \,m = (u/F(@O,,,)lu) (2.19) 
where \U) and \ U )  are normalised states. Another way of writing (2.19) is 

R E ‘1. 

0s U R  -25  
R E  \ 

average value of F ( 4  \,,) on S2( R )  = uR - s 
= average value of F ( @ Y , s )  on a * ( R ) a ( R )  = uR 

R E ’1 
(2.20) 

We want to turn (2.20) into a classical formula. To d o  this we scale the quantum 
Hamiltonian so that it converges to the classical Heisenberg Hamiltonian. Thus in the 
quantum Hamiltonian we replace the field h by sh and let s be large. Then from (2.20) 
we have 

average value of F(@\,,/s’) on S:(R)/s = u ~ / s -  1 
=average value of F(@“\.s/s2) on a * ( R ) a ( R ) / s =  u R / s  

R E 
(2.21) R E A. 

Next we put 

a ( R )  = (s /2)‘  ’ ( q ( R ) + i p ( R ) )  
a * ( R ) = ( s / 2 ) ’  ’ ( q ( R ) - i p ( R ) )  

and let s + c o .  Then we have 

4 \ . J S Z  + @ \,c @%s2 + @“,,, 
where @:.., is the classical Hamiltonian given by the expression 

@L= E\.c z ( q ( R ) - i p ( R ) )  
R . R  -c \ 

x { [ h/2 + z, J (  R - R”) 8 R R .  - J (  R - R’) ( q(  R’ )  + ip( R’))  1 I 

(2.22) 

(2.23) 

(2.24) 
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where E,.c is the minimum energy of the classical Heisenberg Hamiltonian 

E\,,=- 1 J ( R - R ’ ) - h C l .  
R . R ’ t  \ R 

( 2 . 2 5 )  

The quantum identity ( 2 . 2 1 )  converges now as s + w  to the classical identity 

average value of IT@ \,,) on S,( R ) = uR - 1 R E -2 
( 2 . 2 6 )  

= average value of 

where uR is restricted to the interval 0 s  uR 

the circles S, (R)  = uR - 1 and q 2 ( R )  + p ’ ( R )  = 2uR, then we may write (2 .26)  as 

on q 2 ( R )  + p 2 ( R )  = 2uR R E ‘2 

2. 
If for each R we introduce angular variables e(  R ) ,  0 s e(  R )  s 27r, which parametrise 

(2 .27)  

If we integrate (2 .27)  with respect to uR over 0 s uR 2,  R E -2, and recall that 

dB(R)  dUR = d B ( R )  dS:(R) = d S ( R )  
dB(R)  duR = d q ( R )  d p ( R )  

( 2 . 2 8 )  

where d S ( R )  is the standard measure on the unit sphere, we obtain the equation 

[ F(@\,A n d S ( R )  = [ wKc) d d R )  d p ( R )  ( 2 . 2 9 )  

where the d q ( R )  d p ( R )  integration is over the inside of the circle q 2 ( R ) + p 2 ( R ) s 4 .  
If we take now F ( € )  = exp[-P(] we have 

R 

( 2 . 3 0 )  

Equation (2 .30)  is the classical analogue of Dyson’s formula. 
Equation ( 2 . 3 0 )  can be derived without reference to the quantum problem. To 

accomplish this we write the classical Heisenberg Hamiltonian ( 1 . 6 )  in the u R ,  B(R)  
variables, R E A, by substituting 

S , ( R ) + i S , ( R ) =  (2uR - - u ; ) ” ~  exp[ie(R)] S Z ( R ) = u R - l  ( 2 . 3 1 )  

where 0 uR s 2 .  Then we have 

+eXp[i( e ( R ’ )  - ~ ( R ) ) ] } + ( U R  - 1 ) ( U R ’ -  1)1+ h ( U R  - 1 ) .  (2 .32)  
R 

We can in a similar fashion write ay,., if we make the substitution 

q ( R ) + i p ( R )  = ( 2 u R ) 1 ’ 2  e x p [ i e ( ~ ) ] .  ( 2 . 3 3 )  

We obtain the expression 

x exp[i(e(R) - e (R’ ) ) ]  - 

xexp[ i ( e (R) -  O(R’))]}.  (2 .34)  

J (R  - R’){uRuR,- ~ R ( u R ~ R , ) ” ’  
R,R’E \ 
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We can put the expressions (2.32), (2.34) in a more convenient form: 

@\,c=E\,c+ J ( R - R ' ) ( ~ U R - U R U R  ) + h  1 U R  
R.R c \ R 

xexp[ i (O(R)-  O(R'))] (2.35) 

- 1 J(R-R')(uRuR 1' ?(2-UR) exp[i(O(R)-O(R'))] .  (2.36) 

It is clear from the expressions (2.35), (2.36) that the identity (2.27) holds if F ( ( )  is 
any polynomial in ( and therefore if F (  5) = exp[ -p€].  

R , R  i \ 

3. Classical Heisenberg model as a limit of the quantum Heisenberg model 

Here we prove, in a simple straightforward manner, the results of Millard and Leff 
[8] and  also of Lieb [6] that the free energy of the quantum Heisenberg model, when 
appropriately scaled, converges to the free energy of the classical Heisenberg model 
in the large-spin limit. The Lieb method has the advantage over the Millard-Leff 
approach in that it proves that the thermodynamic free energy converges. The method 
uses the notion of coherent states and it has been generalised in  several directions in 
the works of Simon [ l l ] ,  Fuller and Lenard [4] and  Cesi [2]. The proof presented 
here is very elementary and  does not use the notion of coherent states. Our first result 
proves convergence for the free energy on a finite box. Let X , \ ( p ,  h )  be the quantum 
free energy defined as 

(3.1) fs , \ (P,  h )  = I.4V 1% Z@, h, '2) - log(2s + 1)  
and f c , , ( p ,  h )  be the classical free energy 

A, \@,  h)=1.21-'logZc(p, h ,A) - log4x .  

Thus we have fs, \ ( O ,  0) = f c , , ( O ,  0 )  = 0. 

Theorem 3.1. The following limit holds: 

limfs,\(P/S', h s )  =fC, \ (P*  h ) .  
i-s 

(3.2) 

(3.3) 

Proof: Let /U) be the normalised state defined by (2.11). Then we show that if in 6, ~ 

we replace h by hs we have 

(t)  (3.4) 
1 ( ~ 1  exp[-P@\. , / s ' l~u)=  e x ~ [ - p @ \ , ~ l n - d O ( R ) + O  - 

R 2T  
with O ( R )  defined as in (2.31) and S , ( R ) =  u R / s - l .  To see this let us suppose we 
expand out the exponential on the LHS of (3.4) and  consider a particular monomial 
in the S + ( R ) ,  S - (R) ,  S , (R) ,  R E .I. This will make a non-zero contribution only if for 
each R E .i the number of S,(R) in the monomial equals the number of S- (R) .  
Furthermore, when we d o  any commutation we obtain a O ( l / s )  correction; recall that 
the operator norms /IS, 11, /IS, 1 1 ,  I/ S,I/ S s. Hence we may assume that each monomial is 
a product of S Z ( R )  and $ [ S + ( R ) S _ ( R ) + S - ( R ) S + ( R ) ] = s ( s + l ) - S Z ( R ) ' ,  RE. \ .  The 
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sum of all such monomials is from (2.32) precisely the first term on the RHS in (3.4) 
up to a O( 1/ s )  correction. 

Next we sum (3.4) over all U with 0 s  uR s 2s, R E ‘1, and multiply by (2s+  I ) -” ’ .  
The summation on the uR variable is now 

It is evident that this is a Riemann sum for the integration 

dS.( R )  d e (  R )  
4 7  

which converges as s+m. Thus from (3.4), (3.5), (3.6) we obtain (3.3). 

Next we turn to proving the convergence of the thermodynamic free energies. Let 
L(P, h )  and . U P ,  h )  be given by 

f J P ,  h )  = lim . f c . \ ( P ,  h ) .  (3.7) 
1-x 

. U P ,  h )  = lim f S , \ ( P ,  h )  
\+r 

It is known [ 101 that for short-range interactions J ( R  - R ’ )  the thermodynamic 
limits (3.7) exist. The theorem we wish to prove in analogy to theorem 3.1 is the 
following. 

Theorem 3.2. The following limit holds: 

limfc(Pls’, h s )  =f , (P ,  h )  
5 - x  

(3.8) 

To accomplish this we shall show that the thermodynamic limit (3.7) forthe quantum 
system occurs uniformly in s as s + E .  This result taken in conjunction with theorem 
3.1 will prove theorem 3.2. For the sake of simplicity we shall assume J( R - R ’ )  is a 
finite-range interaction but one can extend the method to systems with infinite-range 
interaction. Thus we shall assume that 

IJ(  R - R’)l S J,, J (  R - R’)  = O  if lR - R’I 1. (3.9) 

Theorem 3.3. Let E > 0. Then there exists K ,  ( P ,  h )  depending only on E ,  P ,  h such that 
for Id+ & ( P ,  h )  

(3.10) 

ProoJ Let ,I,, be a cube with side of length 2”. Then A , , ,  can be divided into eight 
subcubes each identical to A,.  Hence we may write the Heisenberg Hamiltonian on 
A,,+, as a sum of Heisenberg Hamiltonians on the eight subcubes plus an  interaction 
Hamiltonian Z,,\. Thus 

Y 

- @ \ , + , . \ I s 2 = -  c $ , : , \ / s 2 + I  ,,.,. (3.11) 

The interaction I,,\ consists of the interactions between different subcubes and hence 
from (3.9) we have again using llS,ll, IIS, 11, l~Szl l  s s that 

(3.12) 

, = I  

- B J J ’ “ I ‘ ~  I,,,, 4 BJ1,2’”1‘ 
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where B is a universal positive constant which, in particular, is independent of the 
spin s. It follows from a well known trace inequality [IO] that 

exp[ -pBJo22"13]{Tr exp[ - p @  \,, , / s ' ] > ~  

s Tr exp[-P@ \,,*, ,/s'I 
s exp[PBJo2"l3I{Tr exp[-P@ \ , , , J S ~ ] } ~ .  (3.13) 

Taking the log of inequality (3.13) and dividing by I . l n + l l  = 23'"'') we have 

I L , \ , ,+ , (P /~~ ,  h s )  -L,\,,(PW, hs)i s P B J , ~ - " - ~ ~ ~ .  
Since the RHS is summable in n (3.14) clearly implies (3.10). 

Proof of theorem 3.2. Choose E > 0 and 1111 large enough so that (3.10) holds and also 
such that Ifc - f c ,  \ I  < E. For this fixed .I choose s large enough according to theorem 
3.1 so that i f s ,  \ -fc, \I < E. Thus we obtain I f >  - f c l  < 3.5. 

(3.14) 

4. Free gas limit of the Heisenberg model 

Our goal here is to obtain the free Bose gas limit of the quantum Heisenberg model 
and the Gaussian limit of the classical model. The Bose gas limit for the quantum 
model corresponds to the magnon approximation. All our results here are proved for 
positive field h. The methods do not apply for h + 0. Results for h + 0 have been 
obtained in [ l ]  for the classical x - y  model. 

In  order to obtain a finite limit we need to normalise the Heisenberg Hamiltonian 
so that its ground-state energy is zero. Hence for the purposes of this section we define 
the quantum free energy as 

f s , \ ( P ,  I - \ \ - '  log & ( P ,  h, . ~ ) + P I I I I - ' E \ . ~  (4.1) 

fc. \ (P,  h )  = I L I - '  log ZdP, h, N+Pl'I l- lE\,c 
where E\,5 is the ground-state energy (2.9). The corresponding classical free energy is 

(4.2) 
with E\,c given by ( 2 . 2 5 ) .  We shall again denote the thermodynamic limits off , , ,  and 

We first consider the quantum case. To obtain the magnon approximation we drop 
the quartic terms from Dyson's representation (2.6). This yields a Hamiltonian quadratic 
in creation and annihilation operators. Finally to evaluate the partition function we 
replace the restricted trace in (2.17) by the complete trace. The partition function can 
now be explicitly evaluated. The standard way of doing this is to go into Fourier space. 
We assume periodic boundary conditions on .1 and let z ( R ) ,  R E  A, be an arbitrary 
function on h. Then the Fourier transform $ ( k )  is given by 

f c ,  \ by L 1 f c  respectively. 

(4.3) 

where 
~ ( k )  = C J( R ) (  1 -e- 'hR 1. 

R 
(4.5) 
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Thus if AR,R is given by (2.13) then 

C U*(R)ARR U ( R ' )  =c ( 2 S & ( k ) +  h ) U * ( k ) U ( k )  (4.6) 
R.R z \ h 

where the a(  k )  satisfy canonical commutation relations. Thus the magnon approxima- 
tion yields 

f s . \ (P ,  h )  = -l-ll-' C log{l - e x p [ - p ( 2 s ~ ( k ) +  h)]}. 
h 

We wish to prove a rigorous version of (4.7) in the following. 

(4.7) 

Theorem 4.1. The following limit holds for h > 0: 

limfS,,(p/2s, h s )  = -1111-' C logil -exp[-p(e(k)+h/2)]}.  (4.8) 
C - r X  h 

Boo$ Let and be the operators 

. I ^ l = C S , ( R ) + s  ut'2=Z a * ( R ) a ( R )  
R R 

(4.9) 

and @\.B be the Hamiltonian 

!l 
@ \ ,p = $  ( U * (  R )  - a * ( R ' ) ) J (  R - R ' ) (  a(  R )  - U (  R ' ) )  +- 1 U * (  R ) u (  R ) .  (4.10) 

R , R  t \ 2R 

We put d,, d2 as 

dl = exp - (8 \ , a  - E\,,)  ] = eXP{-P@ \ . B ) .  (4.1 1) 

commutes with 

[d 
Note that the RHS of (4.8) is 1.21-' l ogTr (d2) .  Using the fact that 
d l  and ~ 1 . ' ~  commutes with d z  we have 

(4.12) 
r 1 

It is easy to see now that since J 2 0 

1 -exp[-ph(2s+ 11/41 
1 - exp[ -ph/4] 

The R H S  of (4.13) is uniformly small in s when K is large. Similarly we have 

(4.13) 

(4.14) 
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Next we want to compare i?p, and SP, when A', , S K .  Let 1 m ) R  and lm)R be the 
states defined after (2.6) where 0 S m s 2s. Then 

(4.16) 

1 
2s - (6 \,s - E\,J 

+I h / 2 + I  J ( R - R " )  
S_(  R ' )  

J ( R  - R ' )  - [ R'  R ,R  & R  

S + ( R )  
= -  1 - 

1 - - ( S, ( R ) + S) J ( R - R ') ( S, ( R ' )  + S) (4.17) 
2s R . R '  

then in view of (4.151, (4.16) we have 

\ , < K  Tr ( s 2 ) -  - \?=.-K Tr ( d , ) + O  (1) - for s >> K. (4.18) 

Combining then (4.13), (4.14) with (4.18) the result follows. 

Next we wish to prove the thermodynamic results corresponding to (4.8). We shall 
restrict ourselves to interactions J (  R - R ' )  which are nearest neighbours. Thus 

if lR - R'l = 1 
otherwise. 

J (  R - R' )  = 

From (4.5) we see that in this case E (  k )  is given by the formula 

where k = ( k ,  , k , ,  k 3 ) .  
As 1A1+00 the sum on the right in (4.8) converges to an  integral 

Theorem 4.2. The following limit holds for h > 0: 

lim fc(P/2s, hs )  = d k  log{l - exp[-p(&(  k )  + h/2)]}. 
C - t X  

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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Proof. We shall follow the same strategy as we did in section 3. Let *2 be a large cube. 
Then we have 

A. \ ( P / 2 S ,  h s )  

( 4 . 2 3 )  

where we sum R, R’ over each distinct nearest-neighbour pair. It is a well known fact 
that the thermodynamic limit for is independent of boundary condition. Thus we 
are free to impose periodic, Neumann or Dirichlet conditions on the boundary of 2. 
Let us suppose we divide 2 into r subcubes .\/,J = 1 , 2 , .  . . , r each with equal volume. 
I f  we impose Neumann (free) boundary conditions on 2 and the .I, then it is evident 
that 

( 4 . 2 4 )  

Thus to obtain the inequality ( 4 . 2 2 )  we have eliminated the bonds across the boundaries 
a.2, of the ,if, 1 s I S  r. Now as in theorem 4.1 we can approximate f ,  \ ,  by the free 
energy of the free Bose gas. One should note here that, for periodic boundary conditions 
and Neumann boundary conditions, E ( k )  is given by ( 4 . 2 0 ) .  However, k = ( k , ,  k ? ,  k , )  
takes different values. In the periodic case k, = 2nn/ l l l l ’  ’, n = 0, 1 , 2 , .  . . , IhI’ ’ - 1 .  For 
the Neumann case k,  = m / l a 2 1 ’  ’, n = 0, .  . . , 121’ ‘ - 1 .  In either case the sum on the 
right in ( 4 . 8 )  converges to the integral on the right in ( 4 . 2 2 )  as 2 -+ CC. Hence we have 
obtained an  upper bound on .f; which is of the correct form. 

Next we turn to the lower bound. We obtain this by imposing Dirichlet-type 
boundary conditions on a I,, 1 i 6 r. For a bond ( R ,  R’ )  crossing a 1, we use the 
inequality 

( S , ( R )  - S + ( R ‘ ) ) ( S - ( R )  - S . ( R ’ ) )  

r I 2  I 
121 

L \ ( P / ~ s ,  h s ) c L L  \ , ( P / ~ s ,  h s ) = f ,  \ , ( P / ~ s ,  h s ) .  

2 ( S + ( R ) S - ( R ) +  S+( R’ )S - (R’ ) )  
( 4 . 2 5 )  

( S,(  R ) - S,( R’ ) )?  S 2( S,  ( R ) + s ) 2  + 2( S2 ( R ’ )  + s)?.  

Using this inequality to decouple the regions I, we have an  inequality 

f, \ ( P / 2 %  h s )  2 L  \ , ( P / 2 S ,  h s )  ( 4 . 2 6 )  

where fi.\ has the boundary conditions which agree with ( 4 . 2 5 ) .  
Again as in theorem 4.1 we can approximate A, ,, by the free energy of a free Bose 

gas with the same boundary conditions. The free Bose gas Hamiltonian is given by 
the formula 

( 4 . 2 7 )  

where the sum on R, R‘ is again over all nearest-neighbour pairs. Because of the 
complicated boundary condition (which is of Dirichlet type but is not exactly a Dirichlet 
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condition) it is difficult to diagonalise this Hamiltonian. We therefore compare it to 
the corresponding periodic Hamiltonian which is easy to diagonalise. Thus 

t ~ p \ , . B =  R , R  1 E \ ,  i a * i ~ , - a * i ~ ’ ) ) ( a ( ~ ) - a ( R ~ ) ~ + ~ 1  a * ( R ) a ( R )  (4.28) 

where we now think of .Il with boundaries identified. Thus we have 

(4.29) 

Consequently we have 

/.Il/-’ log Tr exp[-P@ \ l . E l  

= l . i l ~ - l  log Tr exp[-P@“,,,I 

-- I Tr{ a * ( R ) a  ( R exp[ - p 6: I ,  E I} {Tr e x ~ [  - P @ ? , ,E  1 > - I .  (4.30) 

In the inequalities (4.30) we have used the Peierls-Bogoliubov inequality [ 101 and the 
translation invariance of the periodic Hamiltonian @ “ \ , . H .  Since we clearly have 

Tr{a*(R)a (R)  exp[ -~@p\ , ,E l } {Trexp[ -P6P, l ,H]} - ’~{1  -exp[-Ph/2]}-’- 1 (4.31) 

it follows that by taking ‘Il sufficiently large that we can approximate as closely as we 
please the R H S  of (4.22). This completes the proof. 

The classical version of theorem 4.2 follows in an exactly analogous way to the 
quantum version. In this case the free energy of the classical Heisenberg model 
converges to the free energy of a Gaussian model. The Gaussian model is obtained 
by ignoring the quartic terms in q ( R ) ,  p ( R )  in the Dyson Hamiltonian (2.24). For the 
partition function we integrate q ( R ) ,  p ( R )  over all space instead of over the circle of 
radius 2 as in (2.30). With the same assumptions then as in theorem 4.2 we have the 
following theorem. 

L i l t  

Theorem 4.3. The following limit holds for h > 0: 

lim [ f , (A’p ,  h / A )  T 2 log A ]  = log( ~ / p )  -7 
A -= ( 2 ~ ) -  [ - T i .  n 1 3  

log( E (  k)  + h/2) dk. (4.32) 

The scaling A on (4.32) is equivalent to replacing integration on the unit sphere in the 
evaluation of the partition function (1.8) by integration on the sphere of radius A. 

5. Free gas upper bounds on the magnetisation 

Here we obtain upper bounds on the magnetisation of the classical and quantum 
Heisenberg models which correspond respectively to the Gaussian approximation to 
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the classical model first discovered by Heller and  Kramers [5] and  the free Bose gas 
approximation to the quantum model. The bound for the classical model is an  easy 
consequence of Mermin’s theorem [7] although we cannot find it anywhere in the 
literature. The bound for the quantum model has been proved by Roepstorff [9] in 
the spin-f case. We extend his method to cover all spins. 

We consider first the classical case. The magnetisation per unit volume m on the 
finite cube A is, from (4.2), given by 

m,,,(P, h ) =  I,2(-‘aE,, /ah-p-’afc ,/ah. (5.1) 

If we compute (5.1) from the Gaussian approximation (4.32) for the free energy we 
see that the Gaussian approximation to the magnetisation is given by 

(5.2) 

We intend to derive a rigorous upper bound on the magnetisation which is given by 

(5.3) 

- m,, , (P ,  h )  = 1 - 1111-‘ 1 1 / 2 P ( e ( k ) +  h /2) .  
k 

1172, , ( P , h ) l s  [ 1+li41-’1 k l / P ( e ( k ) + h / Z ) ] - ’  ’. 

Evidently when P is large the RHS of (5.3) is well approximated by the RHS of (5.2). 
To prove (5.3) we use Mermin’s theorem [7]. Thus for each k we have the inequality 

m‘ /P(e(k)+  h / 2 ) ~ ( l ~ + ( k ) 1 2 )  (5.4) 

where ( ) denotes the expectation with respect to the classical Heisenberg ensemble. 
Summing (5.4) over k and using Parseval’s theorem we conclude 

m21A21-’ 1 l / P ( e ( k ) + h / 2 ) s  1.21-’ C(lS*+(k)I2)  
h A 

Now if we apply Jensen’s inequality to see that 
\ ’  

then (5.3) follows from (5.5) and (5.6). 

from (4.1) 
Next we turn to the quantum model. Let m,,,(P, h )  be the magnetisation, where 

(5.7) 
Using the RHS of (4.8) as an  approximation to the free energy we have from (5.7) the 
approximation 

-ms , i (P ,  h ) -  l - ( s l A l ) - ’ ~  {exp[p(2se(k)+h)] - l} - ’ .  ( 5 . 8 )  

m,, , (P,  h )  = ( s I - ~ I ) - ’ ~ E i , J a h  -(sP)-’afS,,/ah. 

k 

We prove a rigorous upper bound on the magnetisation which is given by 
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Note here that m appears on the R H S  of (5.9) also. For p large it is clear that the RHS 

of (5.9) is approximately the same as the RHS of (5.8). Inequality (5.9) was obtained 
by Roepstorff [9] for the case s = $ .  Here we extend Roepstorff's method to obtain the 
inequality for all values of the spin. 

The starting point is a quantum version [9] of inequality (5.4). It is given by 

S I  m 1 coth{p ( 2 s ~  ( k )  + h 1/21 m I }  s $( S,( k )  S-( k )  + S-( k ) S + (  k ) ) .  (5.10) 

One should observe here that if we combine the elementary inequality 

x coth x 3 1 (5.11) 

with (5.10) we obtain the Mermin-Wagner inequality [lo]. We proceed as previously 
by summing (5.10) over k. Let Z be the sum 

I = (s~.A/)-' x ( e x p [ ~ ( ~ s e ( k ) +  h) / iml]  - I}-'. (5.12) 
k 

Using the fact that 

c o t h x =  1+2(e"- l ) - '  (5.13) 

we have 

1 
s / m / ( l + 2 s Z )  s-  C (S+( k ) S - ( k )  + S-(k)S,(k)) 

2/21/ h 

Hence we have the inequality 

(5.14) 

I MI( 1 + 2sI )  + ( S l i l l )  -' 1 ( SZ( R )?) s + 1. (5.15) 
R 

Next we use the translation invariance of the system so we may assume that for any 
w E 'I, 

m = s- ' (Sz(  W ) )  (sIlzl)-' C ( S Z ( R ) ' )  = s-'(s,( W)?).  (5.16) 
R 

Now there are positive numbers A,, > 0, n = -s, -s + 1, .  . . , s, such that 

From (5.15) we then have 

( 5 . 1 7 )  

1 '  
s n = - s  
- 1 A n [ ( 1 + 2 s Z ) & n + n ' ] ~ s + i  (5.18) 
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where E = * l .  Next we choose a to be arbitrary and write 

n? = [ a  + ( n  - a ) ] ' =  (Y . '+2a(n  - a ) + ( n  - a y .  

Thus ( 5 . 1 8 )  yields 

( 5 . 1 9 )  

which is the same as 

a z  1 
( 5 . 2 1 )  

1 '  
s n = - <  s S n = - $  

( 2 ( ~ & + 1 + 2 s 1 ) -  A , & n S s + l + - - -  A , ( n - a ) * .  

Next we take ( Y E  = s --: which yields 
c 1 1 '  

n = - - \  4 s  S n = - r  
2 ( 1 + 1 )  1 A , ~ n 6 2 ~ + - - -  A , , ( ~ - Q ) ~ .  

Since ( n  - a 1 3 we obtain the inequality 

1 '  
- 1 A , , & n < ( I + Z ) - '  
s r , = - <  

and this is just the inequality ( 5 . 9 )  on taking E = *I.  

( 5 . 2 2 )  

( 5 . 2 3 )  
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