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Abstract. The new rotor coherent-state construction of the SU(3) algebra is used to derive 
simple expressions for SU(3) 3 SO(3) Wigner coefficients. 

1. Introduction 

In the past few years a vector coherent-state (vcs) theory (Rowe 1984, Rowe et a1 
1988, Hecht 1987, Deenen and Quesne 1984) has been used to great advantage to 
evaluate very explicit expressions for the matrix representations of many higher-rank 
symmetry algebras of interest in physical applications. The early detailed applications 
have focused on the matrix elements of the generators of the algebras. Very recently 
(Hecht 1989) vcs theory has been generalised to include Bargmann space realisations 
of more general operators lying outside the algebra, such as the operators which can 
generate the fundamental and other simple Wigner coefficients for these higher-rank 
algebras. All these applications have made use of a vcs theory based on an n- 
dimensional Bargmann variable z, with a scalar product defined in terms of the standard 
Bargmann measure. This version of the vcs theory is particularly well suited for the 
matrix representations of the canonical SU( n )  3 SU( n - 1) algebras and has led to 
spectacularly simple expressions for certain types of Wigner coefficients (LeBlanc and 
Biedenharn 1989). Some classes of SU(3) 3 SU(2) reduced Wigner coefficients, e.g., 
are simple products of SU(2) 9-j coefficients and extremely simple normalisation factor 
ratios, the K-matrix ratios of vcs theory. These results indicate that vcs theory may 
be an important tool in simplifying the Wigner-Racah calculus for the SU(3) 3 SU(2) x 
U( 1) or the more general SU( n )  3 SU( n - 1) x U( 1) algebras. 

In another recent development in vcs theory, a new type of vector coherent state 
has been constructed for the SU(3) Lie algebra (Rowe er al 1989) to give a rotor 
expansion of this algebra. The new vcs state makes use of the conventional angular 
measure of angular momentum coherent-state theory and is well suited to calculate 
SU(3) matrix elements in an S0(3)-coupled basis. The new coherent state has again 
been used to calculate the matrix elements of the group generators, in particular the 
matrix elements of the SU(3) quadrupole operators, Q 2 p ,  in an SU(3) 2 SO(3) basis 
of good orbital angular momentum, L. The new coherent state can, however, again 

t Work initiated at the 7th Summer Institute in Theoretical Physics, Queen’s University, Kingston, Canada, 
1989. 
t Supported in part by the US National Science Foundation. 

0305-4470/90/040407 + 19S03.50 @ 1990 IOP Publishing Ltd 407 



408 K T Hecht 

be used to construct the rotor realisations of other operators lying outside the SU(3) 
algebra. The new angular coherent-state realisation of such operators is now very 
parallel to that of the SU(3) generators and does not require some of the special 
techniques used for the Bargmann space realisations of the earlier vcs constructions. 

It is the purpose of the present contribution to give the new rotor realisations of 
operators which can generate the fundamental and other simple Wigner coefficients 
in an S U ( 3 ) 2 S 0 ( 3 )  coupled basis. These lead to S U ( 3 ) 3 S 0 ( 3 )  reduced Wigner 
coefficients in essentially analytic form. Such coefficients have been given previously 
(Vergados 1968) in a special orthonormalised basis, but analytic expressions were 
limited to SU(3) representations, (Ap) ,  with p S 3. A computer code (Draayer and 
Akiyama 1973a, b) is also available. Our main aim therefore is to demonstrate how 
vcs theory can be used to expedite the calculation of Wigner coefficients of higher-rank 
algebras. The simplicity of the final result may, however, also lead to practical 
computational applications in realistic nuclear physics calculations where large num- 
bers of SU(3) 3 SO(3) Wigner coefficients may be required, especially when large 
values of the SU(3) quantum numbers ( A p )  come into play. 

2. The new vcs construction of the fundamental tensors 

In the new rotor coherent-state realisation of SU(3) (Rowe et a1 1989) state vectors 
IY) are mapped into their coherent-state wavefunctions V(n) via 

lq)+*(n) = ( + A w I R ( f i ) l Y )  (1) 

where R ( n )  is a general rotation operator, fi E S0(3),  which transforms an angular 
momentum eigenvector I a L M )  into 

K 

The state 14Afi) is the highest-weight or intrinsic SU(3) state (Elliott 1958) with Elliott 
U( 1) x SU(2) quantum numbers E = 2A + p, A = M A  = tp. An explicit construction of 
this state is well known in an SU(3)xSU(2) basis generated by oscillator creation 
operators, aip, with ‘particle’ index p = 1, 2 and i = 1, 2, 3 or z, x, y :  t 

1 4 A p ) =  N A w a : : ( a : , a r ; 2 - a : I a : Z ) w  10) (3) 

with 

Note that this is a highest-weight state in both SU(3) and SU(2), which is annihilated 
by both the SU(3) ‘raising’ generators C,, with i < j ,  and the SU(2) raising generator 
EI2, where 

2 c,= .;ajp 
p = 1  

i, j = z, x, y or 1 ,2 ,3  
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Finally, note that it is often convenient to convert the a:p to standard spherical 
tensor form 

Under the map lq)+q(fl) operators X acting on 19) are mapped into T(X) 

The T(X) give a non-unitary realisation of the operators X (with respect to the 
standard rotational measure dn ) .  As in the earlier vcs constructions this is transformed 
to a unitary realisation y ( X )  via the similarity transformation 

r(x)q(n) =(4Ap/R(n)xlq>. (8) 

y ( x )  = Pr(x)x (9) 
where the matrix elements of the X operator (Rowe et a1 1988) can be evaluated (Rowe 
et al 1989) by the usual techniques (see also the appendix). 

In Rowe et al (1989) the operators X were restricted to belong to the set of SU(3) 
generators, which cannot change the quantum numbers ( h p ) .  If the X are classified 
as SU(3) 3 SO(3) irreducible tensors 

x = T(X)$kfiO’ 
the technique of Rowe et al (1989) can easily be generalised. The operator map now 
gives 

r(x)jkpJq(a) = ( + A p l ~ ( n )  ~jkfio’lq) 
= ( 4Ap IR(a)  Tjkpo’R-’(fi)R (n)lq) 

The operators T$”o’ will be constructed to be shift operators which lead to specific 
(A’p’ )  values through their (left) actions on (4hpI. For simple SU(3) tensors (Aopo) 
this can be achieved by coupling these operators in their p ,  q = 1 ,  2-particle space to 
a resultant SU(2) highest-weight state of appropriate A ’ (using the technique of LeBlanc 
and Rowe (1986), see also Hecht (1987, ch 5)) .  For the fundamental tensors, e.g., with 
(AopO) = ( lo) ,  the tensors 

TiCpL = ak2 ( 1 1 )  

convert the highest-weight state through their left action to states with (A’p’) = 
( A  + 1, p - 1) and ( A  - 1 ,  p ) ,  respectively. This can be seen at once from the operator 
actions on the highest-weight state of (3), which gives 

1 
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Note that it is easier to carry out the actual calculations in terms of right actions 
involving Hermitian conjugate operators. Note also that the operators of (12) or (14) 
are constructed via the p = 1, 2-particle space SU(2) coupling. For example, 

The operators T’ and T” of (11) and (12) are the SU(3) fundamental (10)-tensors 
which add one square to rows 2 and 1, respectively, of the Young tableau for the 
SU(3) representation ( A l p ’ ) .  Since our explicit state construction in terms of the 
[SU(3) x SU(2)] operators, a’, withp = 1,2  only, does not permit three-rowed tableaux, 
the third fundamental (10)-tensor will be constructed in terms of operators which 
annihilate one antisymmetrically coupled pair, subtracting one square each from rows 
1 and 2 (in place of an operator which would have added one square to row 3). Thus 

(18) 
1 Tm(lO) /=1m - \ / 2 ( a m , l a m ; , - a m , , a m ~ Z )  - - 

with (mmlm2)  cyclic permutations of (+ l ,  0, -1). Note that these T”’ convert the state 
(4A,l through their left action to states with (A’p’)  = (A,  p + 1). This can be seen at 
once from 

(19a) 
t t  

( a ~ 1 a x 2 - a ~ 1 a ~ 2 ) 1 ~ A p ) =  [ ( A  + p  +2)(p + 1)11’214A,p+l) 
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and standard D-function integrals, we obtain 

( (Ap)KLMIT( TyL(iz)l(A’p’) = ( A ,  p + 1)K‘L’M’) 

= (L’M’1 m I LM)(  ( Ap ) KLl( r( TyL’;’’) )I ( A  ’p‘) K’L’) 

1 
(L‘M’lmILM) 

1 ( 2 L ’ + l )  
=? ( ( 2 L +  1 ) )  [ ( A  + p  + 2 ) ( p  -t I)]”* 

x ( A  +p,+2)[(p+1-K’)(L’K’11ILK)+(p+1+KK’)(L’K’1-1ILK)] I 
1 -- ( p  + 1 + K ’ ) [ (  L’+ K ’ ) (  L’ - K’+ l ) y ( L ’ (  K ’  - 1)lOJLK) Jz 

} (27) 
1 --(p+1-K’)[(L’-K’)(L’+K’+1)]1’2(L’(K’+1)101LK) a 

for the special case (A’p ’ )  = (A ,  p + l ) ,  with similar expressions for the other (Alp’ ) .  
These matrix elements of the non-unitary operator realisation r( T )  are now converted 
to those of the unitary realisation y ( T )  of (9) via the matrix elements ( X ) K i  (see the 
appendix). 

Finally, the matrix elements of the unitary y (  T )  between orthonormal states 
I(Ap)iLM) can be converted to standard Hilbert space and lead to 

(( Ap ) iLM I y ( TI io!,,,) I ( A  ’p ’) i’L’M’) 

= (L’M’1 m I LM)( (  A ’p’ ) i ’L’;  (10) 1 I( (Ap) iL)(( (Ap)  1 1  T”o’ll ( A  ‘p’)))  

x ( L’M’ 1 m I LM)( (  ~p ) K L  11 r ( TI Lo!) 11 ( A  ’p ‘) K L’). (28) 

Here, the left-hand side has been expressed in terms of an SU(3)-reduced matrix 
element of the operator T‘”), denoted by double verticals and double angle brackets, 
and otherwise yields the SU(3) 3 SO(3) reduced Wigner coefficient which is sought. 
The quantum numbers, i, of the orthonormal basis are associated with the ith non-zero 
eigenvalue of the Hermitian matrix ( X 3 Z t ) K , K 2  and are most simply labelled by i = 1,  
2 , .  . . . The double angle bracket reduced matrix element is dependent on the parities 
of A, p, A ‘  and p‘  since the coherent-state constructions are based on the unique 
starting states with L =  0 for A and p both even or with L =  1 for all other A, p 
combinations. For these starting states the 1 x 1 X matrices are set equal to unity (see 
Rowe et a1 1989). It is therefore most efficient to combine the double angle bracket 
reduced matrix elements with the simple A, p-dependent factors of equations such as 
(27), where we set 

(29) 1 1 - N ( A ’ P ’ ) = ( A + + I )  

2[(A +p+2) (p ,+1) I1”  (((A, ~ + 1 ) l I ~ ( ~ ’ ) / l ( A p ) ) ) -  ( A P  1 

and determine the normalisation factors N from the orthonormality of the Wigner 
coefficients with the simplest starting values such as L = 0 for A and p both even, or 
L = 1 otherwise. Finally, it should be noted that the K values in (27) can be both 
positive and negative, whereas the K values which label the (?CYt) matrices are 
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restricted to be positive, with K = p, p - 2 , .  . . , O( 1 )  for p =even (odd). The SU(3) 
rotor states for the representation (Ap)  are given by the combination 

with K carrying positive values only, and ( - l ) K  = ( - l )@.  (Note that A + L must be 
even for K = 0.) In terms of these positive K values the SU(3) 3 SO(3) reduced Wigner 
coefficients can then be expressed by 

((A’p’)?L’; (10)1= lIl(Ap)iL) 

x ( ( A  ’p ’) K ’ L’ ; ( 10) 1 ( 1  ( Ap ) KL). (31) 

For ( A ’ p r )  = ( A ,  p + 1 )  and ( A  + 1 ,  p - 1 )  the K-dependent factors have the simple 
values 

((A‘p’)K’L’; (lO)lll(Ap)K = K’* 1, L)  

=(L’K’ l* l lLK= K ‘ * l )  
(- l)*’- FLL’(  -K’)[  (1 + 8K0)]1’2 

where, for (A’p’ )  = ( A ,  p + l ) ,  

FLL8(K’ )  = ( p  + 1 - K‘) (A  + p  + 2 -  L’+ K‘)  for L =  L‘+l 

for L = L’ = ( p  + 1 - K ’ ) ( A  + p  + 3 + K r )  

= ( p  + 1 - K’)(A +/A +3 + L’+ K ’ )  for L = L‘- 1 (32b) 

and for (A’p’)  = ( A  + 1,  p - 1): 

FLL,(K’) = - ( A  + 1 - L’+ K ’ )  for L =  L‘+l 

for L = L’ = - ( A  +K’+2)  

fo rL=L’ -1 .  ( 3 2 c )  = - ( A  + 2 + L‘ + K ’ )  

Finally, for (Alp’) = ( A  - 1 ,  p ) ,  

( ( A  - 1 ,  p ) K ’ L ’ ;  (lO)lII(Ap.)KL)=(L’K‘101LK’= K). ( 3 3 )  

The fundamental SU(3) 2 SO(3) Wigner coefficients have thus been expressed in 
terms of ordinary SU(2) Wigner coefficients and a few simple factors. The X-matrix 
elements follow from the gMCt matrices. Analytical expressions for some of the simpler 
cases are given in the appendix. The normalisation factors, N, needed for the coupling 
(A‘p ’ )x ( lO)+(Ap)  are given in table 1. We note that the S U ( 3 ) 3 S 0 ( 3 )  Wigner 
coefficients of ( 3 1 ) - ( 3 3 )  are in a form very different from those given earlier by Le 
Blanc and Rowe ( 1 9 8 5 ) .  The earlier expressions involve products of SU(2) Racah 
coefficients and require a sum over angular momentum quantum numbers. 
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Table 1. The normalisation factors N { i $ )  for (A’p‘) x ( lo)+ (Ap).  

( ( A  + 1 ) ( A  + p + 2 )  ‘ I 2  1 1 

) ( p  + 2 )  [2(A + + + 2 ) ( A  + p +3)]’j2 
oe 

~ ( h + p + l )  

1 

( A  + 2 ) a  

1 

3. SU(3) 3 SO(3) Wigner coefficients for the coupling (A’p’) x (20)+ (Ap) 

The techniques used for the fundamental (10)-tensors in section 2 can be generalised 
to yield SU(3) 2 SO(3) Wigner coefficients for other simple couplings. This will be 
illustrated in this section for the SU(3) coupling (A’p’) x (20) + ( A p ) .  The six SU(3) 
(20)-tensors which induce specific shifts are constructed by the techniques of section 
2 in terms of the oscillator creation and annihilation operators akp(amp) with p = 1 
and 2. With the definition 

the six (20) shift tensors are given by (with I = 0,2)  

for (A’p’)  = ( A  +2, p -2): tji0’(2,2) 
for ( A ’ p ’ )  = (A, p - 1): 

for (Alp’)  = ( A  -2, p ) :  

for ( ~ ‘ p )  = ( A  + 1, p ) :  

for (A’p‘ )  = ( A  - 1, p + 1): 

for (A’p’ )  = (A ,  p +2): 
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where the T y z o )  are defined by ( 1 8 ) .  The action of the six shift tensors on the 
representations (A’p’)  indicated converts these to the representation (A, p )  by the shifts 
which correspond respectively to the additions of two squares to row 2, one square 
each to rows 1 and 2, two squares to row 1, one square each to rows 2 and 3, one 
square each to rows 1 and 3, and two squares to row 3 of the Young tableau which 
characterises the representation (A’p’).  The six shift tensors thus convert the state 
(t$Apl through their left action to states with the indicated (A’p’). This can again be 
seen at once from relations such as 
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The techniques of section 2 then lead to the SU(3)3S0(3)  reduced Wigner 
coefficients which again have the general form: 

(( A‘p’)i’L’ ; (20)lIl ( A p )  iL) 

x (( A’p’)K’L‘ ; (20)111 ( A p ) K L ) .  (40) 
The normalisation factors, N, are given in table 2. The K‘, K-dependent factors are 
given below. 

3.1. For (A;U’)=(A-2,p) 

( ( A  -2, p ) K ‘ L ‘ ;  (20)211(Ap)KL)=(L’K‘201LK) 

1 
( ( A  -2, p ) K ’ L ‘ ;  (20)0(l(Ap)KL)=- S S d2 K K ’  LL’ 

3.2. For the three cases (Ab‘) = (A +2, p -2), (A + 1 ,  p), (A, p +2)  

((A ‘ p ‘ ) K  ‘L’ ; (20)2 II (AP 

= FLCL( K ’)( L‘K’221 L K ) S , K  ‘+2[ ( 1 + S K  .0)]1/2 + (- 1 )’ ’-’ FLsL( - K ‘) 

x (L’K’2 - 21 L K ) S K , K , - 2 [  (1 + 8K0)]1/2 + G L , L (  K’)(~)1’2(L’K’201LK)6KK. 

+ S K K , S K i F L f L ( - l ) ( - l )  (L‘- 1 221L1) (42) A’+L’+I 

where the factors F L ’ L (  K‘) ,  G L L (  K ’ )  are given in tables 3-5. The remaining coefficients 
are given by 

( ( A  +2, p -2)K’L; (20)/=OII(Ap)KL) 
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Table 3. The F L . L ( K ’ ) ,  GL’L(K‘ )  for (Alp‘ )  = ( A  +2, p -2). 

L FL.L( K ‘1 GL.L( K ’ )  

L’+2 ( A  + 1 - L‘+ K’)(A + 2 -  L‘+K’) -[(A-l-L‘)(A+2-L’)-K’2] 
L‘ + 1 
L’ ( A  +3+K‘)2-$L‘(L’+1) 
L’ - 1 
L’ - 2 

( A  + 2 - L’ + K ‘ ) (A + 3 + K ’) - [ A ( A  + 3  - L‘) + L’2 - Kf2]  
-[A2+4A + 1 + L‘( L’+ 1) - K‘2] 
- [A2 + 4A + 1 +(A + 2) L’ + 1'2 - K’2] 
-[(A + L’)(A + 3 +  L’)- K ” ]  

( A  + 3 + L‘+ K’) (A  + 3 + K’)  
( A  + 2 + L‘ + K ’)( A + 3 + L’ + K ’) 

Table 4. The F L , L ( K ’ ) ,  GL.L(K‘ )  for (Alp‘) = ( A  + 1, p). 

L + 2  
L’+ 1 

L’ 
L’- 1 

L‘-2 ( L ’ + K ‘ + l ) ( L ’ + K ‘ + 4 + 2 h  + p )  

(L’ - K ’ ) (  L’ - K ’ - 3 - 2 A  - p ) 
-(K’+2)( L‘- K’- 1) -$(2A + p +2)(L‘- 2K’-2) 

( K ‘ +  2)2 - fL’( L’+ 1) + $( 2A + p + 2)(2K’ + 3) 
( K ’ + 2 ) (  L‘+ K ’ + 2 )  +;(2A + p  +2)(L‘+2K’+3)  

G L , L (  K ‘ )  = K’{ - (A  + 1)(A + p )  + ( p  +2) - L’(L‘+ 1) + K ” +  gL,L( K ’ ) )  

L’+2 {L‘(2A + cc + 2) - + 2)) 
1 

2 K ”  
L’+ 1 - {K’2(2A + p + 2 ) ( L ‘ -  2) + p ( p  + 2)[ L’( L‘+2) - 2K’2]) 

L’ 
3 1 
2 [3K’2-L’(L’+1)] 

{ (2A + p + 2)[ L’( L’+ 1) - 3 K ” ]  + p ( p  + 2)[2 L’( L‘+ 1)1- 2K’2]} 

L‘- 1 

L’-2 

-- { Kf2(2A + p + 2)( L’+ 3) - p(p + 2)[( L’ - 1)( L’+ 1) - 2Kf2]} 
2KI2 

- {(2A + p + 2)(L’+ 1) + p ( p  + 2)} 
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Tables. The FL,L(K’), G L L ( K ’ )  for ( A ’ p ’ ) = ( A , p + 2 ) .  

L‘+2 ( A + p + 3 - 2 L ’ + 2 K ‘ )  (L’-  K ’ ) (  L’ - - 1 )  K’ 
L’+ 1 ( A  + p + 5 - L ’ + 2 K f )  - ( K ’ +  2)(  L‘ - K‘ - 1) 

L‘ ( A  + p  +6+2K’)  { ( K ’  + 2)’ - f L ’ (  L’+ l)} 
L‘-  1 
L‘-2 

( A  + p + 6 + L’ + 2 K ’ )  
( A  + p + 5 + 2 L‘ + 2 K ’ )  

( K ’ + 2 ) (  L’ + K ’ + 2 )  
(L’+ K ’ +  I ) (  L’+ K‘+ 2)  

L gLsL( K 7 

L‘+2 
L +  1 

L’ 
L‘- 1 

L E - 2  

{L’(L’+ 1) - K”-2L’(A + p  + 2 ) }  
{U(  L’+ 1) - K ’ 2 - ( L ’ - 2 ) ( A  + p + 2 ) }  
{L‘( L‘+ 1) - K ” +  3 ( A  + p  + 2 ) }  
{L’( L’+ 1) - KI2+ (L’+3)(A + p + 2 ) )  
{ L’( L‘+ 1) - K ”  + 2( L’+ l ) ( A  + p + 2 ) )  

(44) 

with 

h ( K ’ )  = 1 for (A’p‘) = (A ,  p - 1) 

and 

h ( K ‘ )  = ( p + 1 - K’) for (A’p’)  = ( A  - 1, p + 1) 

and 

( (A ’p ’ )K’L;  (20)211 (Ap )KL) 
= F L , L (  K’)(L’K’21 ( L K ) ~ K K ’ + ~ [  (1  + S K ~ O ) ] ” ~  

+ (- 1 ) A ’ -  - K ‘)( L’K’2 - 1 I L K ) G K K  fL][  (1 + i3K0)]1’2 (45) 

where the factors FL, , (K’ )  are given in tables 6 and 7. 

Table 6. The FL,L(K’) for ( A ‘ p ’ )  = ( A ,  p - 1). 

L FcL(K’)  

L’+ 2 ( A  - L’+ K ’ )  

L +  1 

L’ 

1 

( L’ - 2 K ’ )  
{ L’( A + 2 )  - 2K’(A + 1 - L’)  - 2K”} 

1 

( 2 K ’ +  1) 
{ A ( 2 K ‘ + 1 ) + 2 ( K ’ + 1 ) ’ - 3 L ‘ ( L ’ +  1)} 

1 
(L’+2K’+ 1) 

L‘- 1 

L’-2  ( A + L ’ + K ’ + l )  

{ (L’ + 1 )(A + 2)  + 2K’( A + 2 + L‘) + 2K ’ 2 }  
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Table 7. The F,,,(K') for ( A l p ' )  = ( A  - 1,  p + 1). 

L f L , L ( K ' )  

L ' + 2  ( A  +g + 1 -L'+ K ' )  

L'+ 1 

L' 

{(A + p +  l ) ( L ' - 2 K ' ) + 2 ( L ' - K ' ) ( K ' + l ) }  
(L'  - 2K' )  

1 
( 2 K ' +  1 )  

{ ( A  + p +  1) (2K'+  1 ) + 2 ( K ' +  l )2 - fL ' (L '+  1)} 

1 
( L ' + 2 K ' + l )  
( A  + g + 2 + L'+ K ' )  

L'- 1 

L ' - 2  

{ ( A  + p +  1 ) ( L ' + 2 K ' + l ) + 2 ( L ' + K f +  l ) ( K ' + l ) )  

The normalisation factors N now present a somewhat more challenging problem. 
They can be calculated via the technique of section 2. An alternative method involves 
the direct calculation of specific SU(3) 3 SO(3) Wigner coefficients for which L', L 
and I are the unique states, such as L = 0 or L'= 1. For these the specific state 
constructions of Hecht and Suzuki (1983) can be used together with simple Bargmann 
space integrations to evaluate some simple starting coefficients. As a specific example, 
with A = 2n = even, p = 2m = even (in the notation of Hecht and Suzuki (1983)): 

[ p ( Z n o ) ( ~ , )  p ( 2 m o )  (K2)]':1,"J"'(K, * K , )  

=&! ( ( 2 n  -2m,  2 m ) L =  0; (20)1= Oll(Ap)L= 0) 
( A P )  

x U ( ( 2 0 ) ( 2 n ,  O)(Ap)(2m,  0); (2n + 2 , 0 ) ( 2 n  -2m,  2 m ) )  

Using (26 )  of Hecht and Suzuki (1983) for the SU(3)-coupled K-space polynomials 
and the well known Racah coefficient we get 

( (Ap)L'=O; (20)1=011(A + 2 ,  p)L=O)  

= ( ( 2 n - 2 m Y 2 m ) 0 ;  (20)011(2n+2-2m,2m)O) 

(2n + 3 ) ( 2 n  + 2 - 2 m )  ) , I 2 =  ( ( A + p + 3 ) ( A + 2 )  
= ( 3 ( 2 n  + 1 - 2m)(2n  + 2 )  3(A + l ) ( A  + p + 2 )  (47) 

Appendix 

The evaluation of the SU(3) 2 SO(3) Wigner coefficients is now straightforward, but 
it does depend on a knowledge of the matrix elements of X-' and X. The matrix (EXt) 
is evaluated easily by the techniques of vcs theory (see in particular (17) and (18) of 
Rowe et a1 (1989)). The process of finding the matrix elements of X and X-' involves 
the diagonalisation of the real Hermitian matrix (YL'Xt) via a unitary matrix U :  

(XXt) = UtAU (Al l  
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where A = Aisij is a real positive semidefinite matrix. Note that zero eigenvalues of A 
immediately signal the occurrence of forbidden states. Since (.YXt) is diagonal in 
( A p )  and L, the full (m’) matrix factors into submatrices whose dimension is given 
by the number of possible K values for a particular ( A p ) L  (K  = p, p -2 , .  . .0(1) for 
p = even (or odd)). If A i  denotes a non-zero eigenvalue, ( A l )  can be solved for X and 
inverted to yield 

(‘w 
Although the (XX’) matrix can be evaluated numerically for any ( A p ) L  value, it 

will be very useful to have analytical expressions for some of the simpler cases, which 
lead to one- and two-dimensional (YLX’) submatrices. These have been evaluated with 
the use of (17) and (18) of Rowe et a1 (1989) and will be enumerated here. Due to 
the central role played by the (mt) matrices a sketch of the method of calculation 
will also be given. In the vcs method the unitary character of the realisation y ( X ) ,  
see (9), is used to gain a simple recursion formula for the (XX’) matrix. With X = QY, 
the vth spherical component of the quadrupole generator, the unitary requirement 
yt(QY) = (-l)’y(Q-”) leads to the relation 

(mt)(-l)Y“-y) = IYQu)(mt) (‘43) 

as shown by Rowe et a1 (1989). 
Note that the matrix ( m t ( ( A p ) L ) ) K , K ,  is abbreviated by sf;,,, in Rowe et a1 

(1989), and this notation is adopted briefly here. Equation (A3) then leads to the 
matrix form of (17) of Rowe et a1 (1989): 

c S~iK;(K,LIIr(Q)IIK;L’)(-l)L’-L= c (K:L’llr(Q)IIKIL)S~1K2 (A4) 
Ki Ki 

where the reduced matrix elements of r(Q) are given in very explicit form through 
(10) of Rowe et a1 (1989). For fixed choices of K :  and K 2  this leads to a set of 
recursion relations for the matrix elements of sL’ in terms of known matrix elements 
of sL. A second recursion relation, which is needed only occasionally, follows from 
the matrix form of (18) of Rowe et a1 (1989): 

C s${K$(K”L’l~r(Q) jIK;L’)(K,Lllr( Q) pw)( -1) L ’ - L  
KjK” 

The representations (AO), ( A  1) lead to one-dimensional sL matrices, since K = 0 for 
( A O )  and K = 1 for ( A  1) are unique. Equation (A4) leads to the simple recursion 
relation for ( A p )  = (AO):  

For A = even, the minimum L value is Lmin = 0, whereas for A = odd, Lmin = 1. The 
states with Lmin are the starting states for the vcs construction for which skin = 1. 
With these starting values, iteration of (A6) leads to the final results, enumerated in 
(A8) and (A9) below. 
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A somewhat more challenging example is illustrated by the representation (A2) 
with A = even, and possible L values: 

0 2  4 6 . . .  (A-2)  A 

2 3 4 5 6 7 . . .  (A-2) ( A - 1 )  A ( A + l )  (A+2) .  

Note that the odd-L states lead to one-dimensional sL with a unique K value, K = 2, 
whereas the even-L states lead to two-dimensional S L  with K = 0 and 2. Equation 
(A4) with the choices K i  = 0 and 2 and (A5) with K i = 0 lead, together with s& = 1, 
to the relations 

3&(2A + 8) + s g 2 4 a  = (2A + 2) 

S;,(2A + 8)  + s;24a = 2 a  (-47) 

S&(4A2+26A +16)-S;24&(4A +13)=(4A2+14A -14). 

These determine the three independent matrix elements s&, s:, , sg2 = s:, . With these 
known matrix elements, (A4) can then be used to determine s:, and, with L' = L + 2, 
leads to a recursive determination of for odd L values. Using these and the known 
matrix elements of s2, (A4) can then be used recursively to determine s&, si;, SO2 - SzO 
with L' = even from known matrix elements of sL'-' and sL'-,, the latter with K values 
of 0 and 2. This recursive process leads to the results enumerated in (A14) and (A15). 

-L,- -L' 

For ( A O )  A = even: 

For (AO) A = odd: 

( A  +2)!!(A - l ) ! !  
( A  + L + 1)  ! ! ( A  - L) ! ! 

where a ! !  = a ( a  -2) (a -4). . . . Note that these X are normalised such that X(AO)L= 
0) = 1 for even A and X ( A 0 ) L  = 1 )  = 1 for odd A. 

For (Al) A =even, L=even: 

A!!(A + 3 ) ! !  
(X(A1)L)=((A+2)(A - L ) ! ! ( A + L + l ) ! !  

For ( A  1 )  A = even, L = odd: 

) 'I2. A ! ! ( A + 3 ) ! !  
( X ( A 1 ) L ) = (  ( A  + 1  - L ) ! ! ( A  + L + 2 ) ! !  

For ( A  1 )  A = odd, L = even: 

( A  +2)(A - l)!!(A +2)!!  
( A  -I- 1 - L)!! ( A  + L+ 2)!! 

For ( A  1 ) A  =odd,  L = odd: 

( A  - l)!!(A +2)!! 
!!(A + L+ l ) ! !  
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For (A2) with A = even, L = even defining a common factor (cF): 

A ( A  -2)!!(A + 5 ) ! !  
2(A+2) (A+5) (A+2-L) ! ! (A+L+3) ! !  

(CF) = (A14a) 

(31Xt((A2)L))22 = (CF)i[2(h 4- 3)2 - L( L +  I ) ]  (A14b) 

(XXt((A2)L))oo=(CF)[2(A +2)2-L(L+ I)]  (A14c) 

(%Xt((A2)L)),,= (cF)[~(L- 1 )~5(L+l ) (L+2) ]”~ .  (A14d) 

Note that with L = A + 2 this 2 x 2 matrix ( X X t )  has the form 

;(A + 3 ) ( A  +4) [;(A + l)(A +2)(A +3)(A +4)]’” 
( A  + l ) ( A  +2) (CF)2( [&(A + l ) ( A  +2)(A +3)(A +4)]’/’ 

It can be seen at once that this matrix has one zero eigenvalue, signalling the fact 
that there is only one allowed state with L = A + 2, corresponding to the non-zero 
eigenvalue. 

For ( A  2) with A = even, L = odd 

A ( A  + 3 ) ( A  -2)!!(A + 5 ) ! !  
(A151 (XXt((A2)L))22 = 2(A +2)(A + 5 ) ( A  + 1 - L)!! ( A  + 2 +  L)!! ’ 

For (A2) with A = odd L = odd, using the common factor 

( A  - l)!!(A +4)!! 
(A16a) 

(A16b) 

(A16c) 

(?lXt((A2)L))02 = (cF)[~(L - 1)L( L +  1)( L +  2)]1’2. (A16d) 

Note again that with L = A + 2 there is one zero eigenvalue. 
For (A2) with A = odd, L = even: 

Finally for states with (Ap)  = (A3) the (XX’) matrices are as follows. 
For A = even, with L = even: 

A ! ! ( A + 5 ) ! !  
4( A + 2)( A + 4)( A + 3 + L) !! ( A  + 2 - L) !! (CF)=  

while for A =odd,  with L = odd: 

( A  - l)!!(A +4)!!  
4(A +3)(A+3+L)!!(A +2-L)!! 

(CF) = 

and for these two cases 

(A18a) 

(A18b) 

(mt( (A3)L)) , ,  = (CF)$[4A2 + 32A + 66 - L(L+ l)] (A18c) 

(mt( (h3)L))11  =(CF)[4h2+ 16A +18-3L(L+l)]  (A18d) 

(mt((A3)L))13 = (CF)[(L-2)(L- l)(L+2)(L+3)]”’. (A18e) 
Note that there is one zero eigenvalue for L = A +2. 
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For ( A p )  = (A3), but with A =even, L = odd: 

A ! ! ( A + 5 ) ! !  
4 (A+2) (A+L+4) ! ! (A+3-L) ! !  

( C F ) =  

while for A = odd, L = even: 

( A  +4)(A +4)!!(A - l ) ! !  
4(A +3)(A + L + 4 ) ! !  ( A  + 3  - L ) ! !  

(CF) = 

(A19a) 

(A19b) 

and for these two cases: 

(XXU'( (A3)L))33 = (CF)i[4h2 + 32A + 66 - 3L( L +  I ) ]  

(Xxt( (A3)L)) l l  = (CF)[4A2+ 16A + 18-  L ( L +  I ) ]  

( mt( ( A  3) L))13 = (CF)[ ( L  - 2)( L - 1 ) (  L + 2)(  L + 3)]'/'. 

(A19c) 

(A19d) 

(A19e) 

Note that there is one zero eigenvalue for L = A + 3. 
For representations ( A p )  with p 3 4, the (smtt) submatrices have dimensions 2 3  

and it may be best to evaluate matrix elements numerically. However, analytic 
expressions can also be obtained. All the ingredients needed to evaluate the SU(3) 2 
SO(3) Wigner coefficients can therefore be made available in relatively simple analytic 
form. Only the diagonalisation of the ( X X t )  matrices and the evaluation of the Vi, 
are left to be done numerically in specific cases. 

Finally, some of the X X t  submatrices for L = 2, arbitrary ( A p ) ,  are 1 x 1 matrices, 
with uniquely determined values of K .  These are often needed as stepping stones in 
other calculations. They have simple values. 

For A = even, p = odd: 

For A =odd, p =odd: 

For A = odd, p = even: 

References 

Deenen J and Quesne C 1984 J. Math. Phys. 25 1638, 2354 
Draayer J P and Akiyama Y 1973a J. Marh. Phys. 14 1904 
- 1973b Compur. Phys. Commun. 5 405 
Elliott J P 1958 Proc. R. Soc. A 245 128, 562 
Hecht K T 1987 The Vecror Coherent State Method and its Application to Problems of Higher Symmetries 

- 1989 Nucl. Phys. A 493 29 
Hecht K T and Suzuki Y 1983 J. Math. Phys. 24 785 
LeBIanc R and Biedenharn L C 1989 J. Phys. A:  Marh. Gen. 22 31 

(Lecture Nores in Phys. 290) (Berlin: Springer) 



A new vector coherent-state construction 

LeBlanc R and Rowe D J 1985 J. Phys. A: Math. Gen. 18 1891, 1905 
- 1986 1. Phys. A: Math. Gen. 19 1083 
Rowe D J 1984 J. Math. Phys. 25 2662 
Rowe D J,  LeBlanc R and Hecht K T 1988 1. Math. Phys. 29 287 
Rowe D J,  LeBlanc R and Repka J 1989 J. Phys. A: Marh. Gen. 22 L309 
Vergados J D 1968 Nucl. Phys. A 111 681 

425 


