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Abstract. A new general class of exact, expheit scaling solutions to the fragmentaton
equation is given This class 15 described by a breakage rate a(x)=x* and the daughter
distribution function yb(x|y}=ay{x/¥)*2+(1-a){x/y)*"%, and includes as special
cases all previously-known scaling solutions to the fragmentation equation. For a subset
of this class, with ¥y =2A and & = 8/(5—A), the complete time-dependent solution for a
menodisperse mitial condition is also given

The process of fragmentation occurs in a large variety of situations, including rock
crushing and grinding (‘comminution’), polymer degradation (mechanical, thermal,
and radiation-induced), droplet breakage, and aggregate breakage. The fragmentation
process results in the evolution of the size distribution ¢(x, ¢}, where x is the size of
the particles and ¢ is the time. Much effort has been expended in finding solutions
¢(x, t) to the discrete and continuous fragmentation equations, both to study specific
practical problems and to provide a general understanding of the behaviour of these
systems (see, for example, [ 1-273), While the basic equations are linear and in principle
soluble, the number of explicit solutions that have been found has been rather limited.
Additional solutions would be very useful Tor both theoretical and practical applica-
tions

Of special interest are the scaling or self-similar solutions. These are essentially the
solutions in the long-time, small-size limit where the distribution evolves to a simpler
form, and universal in the sense that it becomes independent of the initial conditions.
Most experimental systems evolve to the point where this behaviour is reached.

Recently, Peterson [20] has given the scaling solution where the breakage rate a(x)
and the daughter-size distribution b(x{y) are both power laws, a{x) = x* and yb(x|y) =
¥{x/y)*% (In fact, for this class of models, the complete time-dependent solution is
also known [9, 21].) This is a very general and useful class, and most physical systems
will have a(x) given by a simple power-law. However, the simple power-law form puts
a strong restriction on the daughter distribution, and implies for example the average
number of daughters is fixed by y and is given by »/(y—1).

A few other specific solutions have been found, such as those by Goren [12] and
by Ziff and McGrady [19]. While these models go beyond the general power-law form
of yb(x|y) in the above class, they represent specific breakage functions and daughter
distributions and have no adjustable parameters.
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In this paper, we give a scaling solution for a new general class of models,
characterized by a(x} = x" and yb(x|y) = ay(x/¥)" ">+ (1 —a)8(x/y)* . This class of
multiple fragmentation models as special cases includes all of the models that have
been solved previously. It has the three adjustable parameters a, ¥ and § in B(x[y),
as well as the adjustable A, to allow a guite breakup bebaviour to be fit. One can fit
the parameters, for example, to a specific value for the average number of daughter
particles per breakup event, which is given by Ne=f{v6—ay-—-(1—-a)sl/l(v—1)(6-1)]

These solutions are examined for the case A= 0@ only. For A <0 it is known that
mass conservation breaks down as a cascading of fragmentation of smaller particles
leads to loss of mass at x = 0. This process is termed ‘disintegration’ [9] or ‘shattering’
[21]. Then rormal scaling arguments will not apply—and indeed, the system will also
show very large fuctuations in the distribution about the mean [9]. We will not discuss
these cases further.

Besides giving the new solution, we also surmarize some of the formal relations
concerning the fragmeniation equation, in section 2, We utilize the method of moments
as developed by Ramkrishna [15) and by Cheng and Redper {23, 247 In section 3, the
solution to the new class is presented, and mn section 4, a subset of this class is solved
for the complete time dependence for a monodisperse (and therefore arbitrary) initial
condition.

Z. The fragmentation equation

The genera! form of the multiple fragmentation equation can be written

delx, 1)

()

=~a{x}elx, 1)+ I a(y)b(xip)e(y, 1) dy n
where a(x) gives the rate of fragmentation of particles of size x, and b{x|y) is the
average number of particles of size x produced when a particle of size y breaks up.
Conservation of mass requires

¥y
J xb(x|y) dx=y. (2)
0

Furthermore, the average number of particles produced in a fragmentation event is
given by

I " Bixly) dx = N(») (3)
0

which may be infinite. Physical restrictions require that N =2, and also put additional
constraints on b{x|y) as discussed below.
Often, the fragmentation is a binary process in which only two fragments are

nroduced in each avent, Then tha kinatic aanatinn can ha weittan 7 2 71
PrOCUCEC 1 cagq cvenl., 1hen, o nelic equaiion ¢an de wiitien 12, 5, /)

o

(x, r)J-tF(z,x—z) dz+2j ey, )F(x, y~x}dy (4)

x

de(x, 1)
Ll 3.2 S
ax

where F(x, y)= F(y, x) is the rate that particles of length x+y break up into particles
of length x and y. The corresponding expressions for a(x) and &(x|y) are found from

a(x}=J0 Fiy,x~yjdy (3)
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and

b(x|y)=2F(x,y—x)/a(y). (6)

Note that these imply N =2. A slightly different form of a binary fragmentation
equation has been given by Melzak [6].
The scaling transformation is found by substituting

e{x, 1) =s(1)Plx/s(1)) 9

mto (1). Assuming that a{x)=x" and yb(x|y}=b(x/y)
that ¢{¢) satisfies [9, 11-13, 20, 24]

one finds s{rv=1"Y* and
, one hnds sit)=1¢ , and

20(E)+ () =—AE"D(£)+ A L (n)n*"'b(&/ 7} dn (8)

where we have set the (arbitrary) separation constant equal to 1/A, so that s(¢) has a
coefficient of unity. We define the moments of the scaling function ¢(¢£) and of the
daughter-size distnbution b(r) by

%EJ RAGE 9)

o

1

b,,sj. r"b(r) dr {10)
Q

with by = N and b, = 1. Normalization of the mass imphes ¢, = 1. Equation (8) implies

that these moments are related to each other by [24]

Dova _ n—1

¢, All-b,)

Thus, a scaling solution of (1) can be verified simply by showing that its momenis
satisfy (11).

A somewhat different approach to fragmentation is through the introduction of the
cumulative size distribution [9, 13, 15]. This approach leads to a scaling assumption
of the form

(11}

o{x, £) = Ax"2P{1x). (12}
Thus ® is related to ¢ by ¢{&) = A& >B(£Y). It follows that the scaling function &(z)

an#iafiae 181
SISy | 1J]

@(z)=jm¢(w}3[(z/w)"*] dw (13)

z

where

B(u)Eju rh(r) dr (14)

0

is the cumulative mass distribution of the producis, with B(1)=1. in terms of ¢, (13)
is equivalent to

@5(6)3/\6‘2‘[ o(n) "' B{&/n) dy (15)
£
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which also follows directly from (8) by integration Agam, we introduce the moments
of ®(z) and B{u)

q’nEJ z"(p(:) dZ:d’e\tnﬂ)-{-l (16)

0

B, = 7 u"B(uydu=(1—-5,..)/(n+1) {an

o

and find from (13) that [15]}

D,y
—Z—=AB,,_ (18}
q)n A 1
which 1s equivalent to, but of a somewhat more convenient form than, (11). Note that
J‘Vr‘—'-l“i'B_z, and ¢ﬁ1 =1.
The moments of the distribution

M,,(:)=J x"clx, t)dx (19}
[i]
satisfy

S (b, — 1My = ~(n = 1)B, M. (20)

whuch 15 valid even in the absence of scaling, assuming only homogeneity in a{x) and
yb(x|y). When scaling holds, the moments are given by

M () =@, gyyag 872 TR, (21)

As an example of the application of these relations, first we consider the model
studied by Filippov [9], Peterson [20], McGrady and Ziff [21], and Williams [27]
defined by a(x)=x" and b{r)=yr* % It follows that B(u)=u", B,=1/(n+y+1)},
and N =y/(y—1). The known scaling solution ®(z)=z"* e */T(y/A} yields @, =
T'{n+y/A+1)/T(y/A), which implies that

D, A
®, Anty

=)B‘ —

RETAD -1

{22)
Ny

thus verifying that the scaling equation is satisfied. For the monodisperse initial
condition c(x, 0) =8{x—1)/], the movements of the solution are given by [21] M, =
1" 'M(m, m+y/A, —iI"), where m={n—1)/A and M(a, b, z} is the confluent hyper-
geometric function. It can easily be verified these moments satisfy (20) by making use
of the relation [28] (d/dz)M{a, b, z)=(a/b)M(a+1,b+1, z).

3. A new class of solutions

We consider the class defined by
alx}=x*

Bry=ay* 2 +(1-a)ér®?
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where A>0, y>0, >0, and a are constants. {Note that this constant a should not
be confused with the function a(x)). It follows that B(u)=au’ +(1—a)u’,

_nt(l-a)y+ad+1
" {na+y+1l)(n+s+1)

{24)

and

y6—ay—{1—a)d
(y—1{8-1)

Note that this model is symmetrical under the interchange of a<»1—a and y< 8. For

convenience, we let g= y/A, d = 8/A, a'=1—a. Substituting (24) into (18) and solving

iteratively for n=1,2,3,..., we deduce that @, is given by

Tin+g+1)I'{(n+d+1)
{n+a'g+ad+1)

N= (25)

b, =C {26)

where the constant C is determined by the requirement that ®&_, =
_a'g+ad)
" T{(g)(d) -
One can readily verify that (24)-(26) satisfies (18)
©,, ntagiad
®, (n+g)n+d)

The function ©(z) whose moments are given by (26) can be written in two forms: the
first form, where h =g —d, is given by

Cz*f
I'(a’'h)

=Cz8 e *U(a'h, h+1, z) (29)

and the second form, where h'=d —g = —h, is given by

(27)

= ABAI‘!—! . (28)

®{(z)=

J. (u_l)a'h—luah e—u: du
1

— Czd * ah’'—1, da’h’ | —uz
@(Z)_F(ah’) j.l (u—1}) u’ e du

=Cz% e U ah’, ' +1, 2) (30)

where U(a, b, z} is the confluent hypergeometric function. The second form above
follows from the first by means of Kummer's transformation [28], or by the symmetry
transformation a <> a’, d <> g and he k'. One can verify directly that the moments of
(29) or (30) are given by (26}, this verifying that these are scaling solutions to this model.

By taking special values of the parameters A, a, ¥ and &, one can find all the
previously-known scaling solutions to {1}, as shown in tabie 1. These solutions can
also be written as incomplete I'-functions or exponential-integral functions. In fact,
{29)-(30) reduce to a variety of simpler functions under many other choices of the
parameters, corresponding to the special cases of the function U(a, b, z) [28]. Of
course, in some cases only one of the integrals (29) or (30) will converge. The small-z
behaviour of ®(z) follows directly from (29) and {30):
z8 h<0,a'<0

(D(z)-[ 2

31
lz* h>0,a<0 31
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Table 1. Special cases of (293-(30), winch vield previously-known scahing solutions to the
fragmeniation equation

Model A b(r) a ¥ 5 N diz)

Fihppov® A yrr? 1 ¥ —  yy=1 e TiyiA)

Goren® r t2r(l-rp 4 3 42 107 (1-1/u)f e ™ du
£ =6xy° 3 12r1-r) 4 3 4 2 423 T ¥ e du
Ternary 2 6(l~r) 3 2 3 3 32/2[7 w"Me " du
*[9,20,211

*[12]

“[19]

which implies that

S(£)~ {f"—“ h<0,a’ <0 (32)

77 h>0,a<0

for £->0

An interesting special case of this model involving a logarithmic term in b{r} is
obtained by taking a=8/(6—v) and letting 614 Then b{r)=—+%""Inr, N=
[y/(y—1)F. and ®(z) =[T(2g)/T(g)*}zf ¢ *U(g, 1, 2).

Thus, we have found the scaling solution for a quite general class of models {23).
The values of the parameters g, y and § are restricted so that (i) b(r) =0, (ii}) N =2,
and (iii} the constraint [21]

w ]
J rb(r) dr?—J’ (Y —~r)b{r)dr (33)
D) 1—u

for 0<<u=1/2 are satisfied. These constraints put rather complicated restrictions on
the parameters in this model. Note that (33) is a necessary, but most likely not sufficient,
physical restriction on b(r).

4. A class of models allowing compleie time-dependert solutions

Finally we consider the question of whether general time-dependent solutions, for a
monodisperse initial condition, can be found for these models. (Once the solution is
known for a monodisperse initial condition, the solution for any initial condition
follows simply because of the linearity of the problem.) For the binary model Fix, y)=
6xy and the ternary breakup model, it is known that the general solution is very closely
related to the sealing integral—essentially, one has to change the limits of integration,
and add a -function term [19] We have found that a subset of the above class of
models can also be generalized in a similar way to find the complete solutions.

We consider the case y=2A and a=48/(8—A). That is, we consider the class of
models with

a(x)y=x*

BA

(34)
b(r)=

(rA—Z _ r&—I)-

a-2
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For this case, ah’'=1 and (29) reduces to

d)(z)=dz-‘. u e du=dz"T{1-d, z) {35)
i

where again d = 8/ A, and F(a, x) is the incomplete I'-function [28], This scaling solution
implies that ¢(x, t) is given by

c(x, 1) = Ax 7 d(xt) = Adix®? J yr e gy (36}

X

where we have carried out the change of variables y=xu"* in the integral. Now,

following the examples of the F =6xy and ternary models [19], we hypothesize that
the general time-dependent solution for a monodisperse imitial condition c(x, 0)=
I'6(x — I (where here 8(x) represents the Dirac 8-function, while elsewhere § is a
parameter) is given by
!

e(x, 1) =1" e*"‘a(x—uﬂszx“J. Y8 e dy (37)
That is, we have added the time-dependent 8-function term, and changed the upper
limit of the integral to L First, one can verify the M; =1 for all time. (With the more
general forms of b(r), this normalization generally fails.) Second, one can insert this
solution into (1) and verify that it is satisfied, or alternately take the moments and
verify that (20) is satisfied. Thus, (37) is indeed the general solution to the class of
models specified by (34). Note that for this model, N =83/(8~1)(A—1).

For special cases, A =2, § =3 gives the ternary breakup model, with b(r)=6(1—r)
and N =3 [19];

f

clx, )=1" e"'zé(x—l}+6!xJ. y e ™Mdy (38)
while A =3 and & =4 gives the binary F =6xy model, with b(r)=12r(1—r}and N =2
[19].

{

elx, ) =1"e"Po(x—D+126x" J y e " dy. (39)
Solutions for the class of models with 8 =A+1 (which includes the two examples
above) have also been discussed [26]. Thus, as special cases, the class of solutions
{34) includes all models where explicit general solutions were previousty known, except
for the basic Filippov model, where the time dependent solution involves the confluent
hypergeometric function M(a, b, z) [9, 21].

In conclusion, we have presented both rew scaling and new general solutions to
the fragmentation equation. We note that Williams [27] has recently described a
procedure to find general solutions to the fragmentation equation. An interesting
probiem for future siudy is to show how the solutions given here foliow from Williams’
theory.
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