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Abstract. A double rotor vector coherent state construction of the SU{4) D SU{(2) x SU(Z)
Wigner supermultiplet leads to a simple matrix representation of this scheme. Matrix elements of
the vector coherent state realizations of the group generators are given by very simple expressions
in terms of ordinary spin (S) and isospin (T') Wigner coefficients with intrinsic projection labels
Kyg and K. The X-matrix technique is used to effectively elevate these labels to the status of
good quantum numbers, The KXt matrices are given in analytic form for a number of important
irreducible representations.

1. Introduction

Vector coherent state (vCS) theory [1,2] has now been used to give very explicit expressions
for the matrix representations of many higher-rank symmetry algebras of interest in
applications to physical problems [3]. The vector coherent state construction is an induction
process in which a representation of a simple subalgebra (or subgroup) is augmented to a
representation of a larger full algebra (or group). Two types of VCS expansions have
been used to great advantage in this construction process. The most commonly used vCs
construction involves a boson expansion in terms of a set of n Bargmann variables, z,
leading to a set of orthonormal basis functions with a scalar product defined in terms of
the standard exponential Bargmann measure. In a more recent development [4], vCS theory
has been used to generate rotor expansions in terms of standard angular variables, making
use of the conventional angular measure of angular momentum coherent state theory. In
particular, Rowe, Le Blanc and Repka [4] have used a coherent state rotor expansion to
give a simple yet powerful construction of the matrix representations of the SU(3) 2 50(3)
basis of good orbital angular momentum. In this construction the projection label, K, of
the Elliott angular momentum projection technique [5] has effectively been elevated to the
status of a good quantum number, Despite the power of the rotor coherent state expansion,
the SU(3) > SO(3) group chain is so far the only example for which this technique has
been fully exploited [6,7]1.

It is the purpose of this contribution to show that there is a second example, also with
well known nuclear structure applications, in which a coherent state rotor expansion leads
to a simple but elegant construction of irreducible representations of a higher rank group,
namely the SU(4) O SU(2) x SU(2) Wigner supermultiplet group. A complete labelling
scheme for this group has been achieved by Draayer [8] who used the Elliott angular

t See note added in proof.
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momentum projection technique to augment the spin and isospin quantum numbers (SMg),
(TMr) with the projection labels K5 and Ky. In order to calculate the generator matrix
elements and SU(4) reduced Wigner coefficients in this fully labelled but non-orthonormal
basis, Draayer calculates the transformation coefficients from the Kg (SMs), Kr (TMy)
basis to the canonical, fully specified orthonormal U(4) > U(3) D U(2) > U(1) basis.
Since the resultant calculational algorithm is somewhat laborious, this method has not been
widely used in actual applications. To date, the only analytical expressions known for
SU(4) reduced Wigner coefficients in the supermulitiplet scheme are those for the special
multiplicity-free irreducible representations for which the basis states are fully specified by
SMs, T My alone [9]. A coherent state rotor expansion of the Rowe-Le Blanc—Repka type
can again be used to convert the labels Kg, Kr of the Draayer scheme into good quantum
numbers through the K-matrix theory utilized in all vCS constructions. VCS representations
are in general non-unitary or Dyson representations. The XC-matrix transformation gives a
systematic and simple algorithm for transforming the vCS matrices into unitary form. In
addition, the zeros of the eigenvalues of the KX! matrix define the physical subspace of the
VCS basis. The possible K, K7 values together with the zeros of the KX eigenvalues thus
also give a very simple method of determining the multiplicity of the possible §, T values
in a given SU(4) irreducible representation. Due to the central role of the K matrices,
it will be shown with numerous examples in section 3 that these can be calculated in
general analytical form. Section 2 gives the double rotor coherent state realization of the
SU4) D SU(2) x SU(2) generators. Together with the K matrices of section 3, these give
a simple direct evaluation of the SU(4) generator matrix elements which can lead to a full
determination of the Wigner—Racah calculus for the SU(4) 2 SU(2) x SU(2) supermultiplet
scheme.

2. The double rotor expansion of the SU(4} D SU(2) x SU(2) algebra

The supermuitiplet scheme is based on the four spin-charge states of a single nucleon,
|mgm,}, with

(1)

@ =1+3+h  w=l-i-])
=l+i-H  dd=1-i+i

To gain the most convenient double rotor expansion it will be useful to define the basis
states |i),i=1,...,4, by

1 1

la} = z(ll) +12) |b) = 75(—”) +12) (2)
1 I

le) = E(B) + 14D |d} = %(—13} + 149

and define the 15 supermultiplet generators {9], §, T, and E, in terms of U(4) generators,
Ct'ff

C;'j=ZaLaw- i,j=1,...,4 3
o

where i, j give the spin, isospin quantum numbers and o stands for all additional (orbital)
quantum numbers needed to specify the single-nuclecn creation and annihilation operators,
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In terms of the C;; the generators are

So = 3(Ciz + Ca1 + C34 + Cy3)
St =3(—C13— Ci3 + Cra + Caog — C3; + Csz — Cay + Caz)
S. = 3(~Cs = Cy+ Cat +Caa— C13 + Co3 — Cpy + Ca}
To = 3(Cra+ Co1 — C34 — Caz)
Ty = 3(Ci3+ Co3 + Cia + Coq + Cay — Cyp — Cay + Caz)
T- =3(Cy +Cp+ Cy+ Cap+ Ciz = Cp3 — Cra + Caa)
Eo = H(Ci1 + Cp2 — Ca3 — Cas)
‘Ejp = ﬁ;(C13+C23—C14—C24—C31 + Cs2 — Cy1 + Ca2) (4)
E_p= 2’72-(-{'31 —Cn+Cy+Cp+Cis—Cun+ Cly—Coy)
Eg = ZL\@(—CB —Cn-Cla—Cu+Cy ~Cyp+ Cap ~ Cyy)
By = ﬁ(csl +C+Ca+Clp—Cra+ Coy —~ Coy + Cry)
Ey = 4(—Cp + Cn + Cia — Cy)
E_1o) = 3(=Ci1 + Cn = Cip + Cy))
Ei_1 = $(C33 — Caa — C34 + Ca3)
E_y1 = $(C33 — Cas + C34 — Ca3).

The phases and normalizations of the Eqg are chosen to put these into standard double

spherical tensor form, with E,5 = T;:;;I;::ﬂ. The SU(4) irreducible representations are

labelled by four-rowed Young tableaux partition labels [fu,. /2. /5, f3], by the SU(4) labels
{21, A2, A3}, or by the Wigner supermultiplet (or standard Cartan SO(6) labels (P, P/, P™)
with

AM=fi-fa b=fi—f M=fi—fs

P = 1(h + 202 + As) P' =103+ 13) P’ =100 —a).

These characterize the highest-weight state |é} with

Cilgy =0 for i<}

Culg) = (b1 + Az + A3)|9) Canlg) = (A2 -+ A3)|¢) (6)

Cazlp) = Aslo) Culg) =0,

The double rotor expansion uses the double rotation operator R(§2) = R(Qs)R(Q7),
with Euler angles ag, 85, ys = Qg and oy, Br,yr = Qr in the spin and isospin space,
Draayer [8) has shown that the set of states, {R (82) |@}}, obtained by rotation of the highest-
weight state through all possible angles ag, ..., yr, spans the full SU(4) space. Arbitrary
state vectors [V} in this space are now tranformed into their coherent state realizations with
a coherent state wavefunction

V() = ($|R(DW). N
A state |oSMsT My) with definite spin and isospin quantum numbers is represented by
Wasis7a, () = ($|R(Q)|eSMsT Mr)

= ) (9laSKsTKr)D§ 4y ()DE 4y (). (®)
Ks.Kr

&)
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The convention to be used for the rotation operators R(£2) and the SU(2} D-functions
will be those of Rowe et al [4]. Since these are different from the ‘conventional’ nuclear
physics choices [5, 8, 10] (note in particular the interchange of the role of X and M quantum
numbers relative to the common nuclear conventions [10]), they will be carefully defined
in the appendix. The work of Draayer [8] shows that the SU(4) irreducible representations
L1, f2, f3, fa]l = {:AzAs} are spanned by the double rotor wavefunctions with Kg, Kr
values restricted by

(Ks+ Er)=2h, (0 =2), (0 —4), ..., 00r £1)

(Ks— Kr)=2h3, £(Az3 - 2), £z —4),...,00r £1). ®

The double rotor realizations of the SU(4) generators of this section will show that
the SU(4) double rotor coherent state wavefunctions are spanned by the symmetrized
(normalized) double rotor functions

1 [(2S+1)<zr+1)T

s -S4 Q)=—
KskrisitsTr (§2) = = 20+ dnaiera)

X (D, a5 (R8I Dy pry () + (—1)HH5HT DS (Q9)DT g 40 Q7))
(10)

To specify the double rotor Wy, k. it will thus be sufficient to choose K5 = 0, and
for Ks = 0: K7 > 0. (The phase factor (—1)*¥4+5+7 in the symmetrized functions of
equation {10) will be established below.) The requirement § = |Kg|, T 2 |Kr|, together
with the structure of the K matrices (section 3), will thus determine the multiplicity of
a given S5, T value. For states with low values of S + T, for which the eigenvalues of
Kkt are all non-zero (no redundant states), the number of occurrences of a given §, T will
be determined by the number of possible Kg, K+ combinations. The maximum possible
value of S+ T is S+ 7T = A+ A2+ s = fi — fu, and, for this maximum S+ T
value, Spin or Tmp are given by -;-()q + A3) [8]. States with S+ T = A} + Az + A3, with
S(or T)2 (A + A3), always have an occurrence of 1. For these S, T values the KK!
matrix always has only a single non-zero eigenvalue giving only a single non-redundant or
physically allowed state. In general, the states with S+ 7 2 A2+ 2 will have KK matrices
with some zero eigenvalues and hence some physically forbidden states. Table 1 gives a
specific example—the possible 5, T values for the immeducible representation [8620] with
{*A1A22a} = {242}. In this case there are five possible symmetrized states of the type of
equation (10), with KsKy = 20,11,1 — 1,02 and 00. Note that states with KKy = 00
must have § 4+ T = even since X; -+ Az == even. States with both S and T = 2 can thus
have a 5-fold occurrence for § + T = even and a 4-fold occurrence for § + T = odd.
The maximum S 4 T value is 8 in this case, States with S+ T = 8, S(or T)2 2, are all
single. The KXt matrix for this case has four zero eigenvalues. In addition, it can be shown
(section 3) that the KKt matrices for states with S+ 7 = 7 have two zero eigenvalues, thus
reducing the possible number of physical states by two, while states with S+ T = 6 lead to
KK matrices with one zero eigenvalue, reducing the possible number of physical states by
one. Note also that the ST value 00 can occur only in irreducible representations with A,
and X3 both even (50 that KgKy = 00 is possible; the additional requirement Ay + S+ T =
even further requires Az = even). For irreps with 4|, A3 = odd, odd; or 4;, A3 = even,
even, but A; = odd; the minimum ST values are 10 or 01. For irreps with A(, A3 = even,
odd or odd, even the minimum ST value is always 31. These minimum ST values are
always single (with an occurrence of 1).
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Table 1. The possible ST values for the irrep [8620].

60!
(61)! {50!
(62)! s1)? (40)?
(52 (a1y? (30)!
(53! 42yt (3n? (20
(43)? (32)* (21y?
(44! (33)* (22)° an® oo’
34 (23y* (12)?
35! 24 (13y* (02
(25)* (14)* (03)!
28)! (15)* (04)
16! 1 (0s)!
(06)

In the vCs, rotor expansion operators X are transformed into their vCS realizations,
[{X), through XV — DXV (L), with (cf equation (7))

FX)W () = {@|REDXIW). (11)

We consider the SU(4) generators X = S, T, E. If [V} is a spin, isospin eigenstate

jaSMsT Mz}, the realizations ['(S), I'(T) of the spin and isospin operators act in the
standard way, e.g.

T (S0} WasamsTaer (2) = MsWosarorar, (S2)
T(S+) Wasusrar () = (5 F Ms)(S £ Ms + D)Wasimrernyrar () .

We shall also be interested in the intrinsic spin or isospin operators which follow from the
left realizations of S or T' with S or T" components acting on the highest-weight or intrinsic
states (to the left), to be denoted by a bar, with

(12)

T(S)W(Q) = (pIS R ¥) . (13)
Now if |¥} is a spin, isospin eigenstate
(BISRODISMsT My = > (B|Si SKsT K1) Dy pr, ()P 4y, (Qr) (14)
Ks

from which it can be seen that
80D g 44, (S25) = KsD% 4y (R25)
5:DF p (25 = (S £ Ks)(S F Ks + DD iy, (Ss) (15)

(specific realizations of both the S, and §; in terms of the Buler angles ag, Bs, s and
their derivative operators are given in the appendix. Following [4], the notation ['(S;) is
simplified to 5, when acting on a D-function), To gain the rotor VCS realizations of the
generators E, note that

T(Epmsm; Y (82) = (3| RO Epygmr | W)
= ($I(R(Q) Emgm; R~ (Q))R(Q) W)

=Y {8l Exsir REDIW) DL, () Dy oy (7). (16)
kskr
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Using the properties of the highest-weight state (6) and the specific expressions of the
generators (4) we see that

(@1 Eo = 3(01 + 2Ag + A3)(0]
@lE£10 = —715(¢I5'i- {¢|Eox1 = ——(<I5|T-L (17
(@|Ez121 = 3{O1(—A £ So % Tp) (@I Es1z1 = 3{01(03 F So £ To)).
These relations lead to
P(Emgmr )W) = {3001 + 202 + A3) Dy, (Q5) Dby, Q1)
—:}-[ 1 ()T (Sy) + DLy, (Q25)T(S-)] DL, (2r)
75 Doms (@) [ D, (Qr)T(TL) + DLy, (Qr)F(T-)]
1m,(Qs)D1mr(Qr)(—ll + F(So) + F(To))
+1 D_l,,,, (25)DL,, (Rr)(—21 — T(Sp) — T(To))
1D, (Qs)DL,,, (Qr)(hs — T(Sp) + F(Tp))

+1 3 D‘_,ms (R25) D}, (Q27)(a3 + T (Sp) — T(To)) } (oI R()|W). (18)
Finally, using the identity (see appendix)
(8%, D}, (@9)] = V2D, (Q25)1(55) + DL, (Qs)T(S2)) + 2D, (25) (19)

and the similar relation for the isospin operators, we obtain
T(Emgmr) = {300 + 2R3 + A3) + 2} D, (Q5) Dy, (Q7)
-3 {[8?, D}, (Q5)]Dy,., (Qr) + Dy, (QIT?, Dy, (2r)]}
+2D1m5(95)D11m,-(QT)(-Al + T(So) + (7o)
+4iDL,, (Qs)DL,, (Qr)(-A1 — (o) — T(To))
+5 Dl (R25) DLy, (Qr)(A3 = T'(S0) + T (To))
+3 DL, (Q5) D\, (1) + T(S0) — F(To)). (20)
Using the symmetrized (normalized) vCs wavefunctions of equation (10) as basis states,
a standard S- and T-space rotational measure and a standard definition of a spin, isospin
reduced double-barred matrix elemnent
(KK S MT' MAAT (Epgm, Y Ks Kr; SMsT My}

{KsKy; STHT(E)KsKr; ST)
(28 + DT’ + D)V>
together with the well known triple D-function integrals, we obtain (for the general KsKr

case) the result

(KsKr; ST'[|IT(E)||KsKT; ST)
= [(28 + DT + 1)]V/3(SKs 108" Ks){TKr 10T K7)
X {HA + 20+ A) +2 - 1SS+ D+ 1SS+ 1)
T+ )+ AT 4+ 1)
{(Ks £ D(Krx1); S'T||TE)|KsKr: ST}
= L[@2S + QT + D]2(SKs1 £ 1|S'(Ks & 1))
x(TKrl £ 1|T(Kr £ 1))(—A, £ Kg £+ &7)

= (SMslmS!S’Mi-) (TMrlmTIT’ ";-)

(21)
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{(Ks £ (K7 F1): STUT(E)||KsK7; ST)
= 3125+ QT + DI (SKs1 £ 1S (Ks £ 1)
X(TKr1 F 1T (K7 F1))(23 F Ks £ K1), (22)

Note that states with Kg+ Ky = 0 or 1 require special treatment due to the symmetrized
form of the basis functions of equation {10). Thus off-diagonal matrix elements in KXy
with KsKr or K5K} = 00 require an additional /2, e.g.

(11; S'T'||T(E)|00; ST)
= V2 x 1[(25 + QT + D)A(S011|S'I{TOI LT 1)(—41) (23a)
(00; S'T'|\IT(E)||11; ST)
=+/2 x 1[(28 + QT + DIVASTI-USONT11-1T'0) (-2, —2)  (23b)
with similar factors of +/2 needed for KsKr = 00, ReKp = 1-1; or KsKr = 1-1,
KL{KS = 00.
In addition,

(35 STICENS 3: ST)
= [(25+ DT + DI {[300 + 2+ A3) + 2 - 188 + D+ 1S(5 + 1)
=TT + 1)+ T(T + D){S310]S'IHT £10|7'1)
A= (o ) (S-S I TS T D (24)
{3 = 3: STIT(B)} — 3; ST)
=[25+ DT+ M2 {[L(a + 2k +A) + 2 - 1S (' + 1) + 15(5 + 1)
—3T(T 4+ 1)) + 3T(T + D](S$10|8'3){T-310T"-1)

3 (= 1RO+ IS 1S INT £1-1|T-1) ). (25)
Also,
(01; S'T*||T(E)Y||10; ST) = [(2S + 1}(2T + 1)]'/?

XL (ks + D(ST1-1|SONTOI+T 1) (1 + (= 1lthst54T) (26)
(10; S'T'[IT(E)II01; ST) = [(2S + (2T + 1)]'/?

x L3 + DSOS I{T T 1=1|T'0) (1 4 (— 1)} Has+S+T), @7

All other cases are given by the generic formulae of equations (22).

There remains the task of establishing the symmetrized form of the double rotor basis
functions of equation (10). This will be achieved by constructing the generic SU(4)
irreducible representation [ fi f2 fa fa] = [A1+Az+A3, A2+ A3, A3 0] by a symmetric coupling
of the states of thc irreps [, 000], [A24200], and [A3x3430]; starting with the basic states
[1000) ST = 55, [1110)8T = 5%, and [1100] ST = 10 or 01. The build-up process
requires the D-function build-up formula

D 4 (D4 () = Y DLy (I K1 o Kol T K (I My 1y Mol T M), (28)
J

The starting states [I1000] and [1110], the irreps of the single-particle creation and
annihilation operators, are given by

[1000]
Wi 2ats. /00 (Q)

12
\/—3 2[D+(1/2)Ms(QS)DH[/Z)MT(QT) D o (@)D Gy, (O}
(29)
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whereas
q"[“lo
Qs =02
1 12 t/2 1/2
= e oz | DY 0, QD 2y (O) + DIy QDY g, 1))

(30)

In general, totally symmetric double rotor coherent wavefunctions of the type of
equations (8) and (10) can have ST values (with T = 5) up to arbitrarily high §. The
phase of equation (29) is chosen to ensure that the ST values terminate at ST = §8§, with
§' = in = i, Totally symmetric states with Ay > 1 (A2 = A3 = 0) can be built by
successive action with I'(E). This leads to the (normalized) state

i DE a5y

{21000]
‘I’Sﬂils. -—SMT(Q) [25 + 1112 &= 2

KMS (€25) DKM,. (Qr) (31)
KE==5

(the factor %M in the phase is arbitrary; it is chosen merely for convenience to make the
normalization factor real).

Similarly, the normalized state for the irrep [A3A3450] conjugate to the totally symmetric
irrep, again with T = §, is given by

[A32a230] & 1 25+ 1
Par—sur () = KZS 25+ 1112 gn? Ditty (R5)D gy (21)- (32)

Note the different relative phases. Together with (22) these lead to the reduced matrix
clements

{[y000]S + 1.5 + 1||T(E)}I[y000)SS} = ([yyy0]S + 1§ + 1||T(E)l|[yyy0]SS)

=25+ DS+ "Gy - 9). (33)
Note the termination at a maximum possible § value, Sy, = -12- y. Similarly,
{[y0001SS|IC(EYHIy000}S + 1 S + 1} = {{yyy0lSS|IT(E)||[yyy0}S+ 1§ + 1)

=[(25+ 1)}25 + )] 2Ly + 5+ 2). (34)

Finally, the irreps {A;A;00] have Ks = Kr = Q only (see equation (9)). The ST values are
restricted by the requirement Ay + S+ T = even, starting with ST = 00 for A, = even and
with ST = 10, 01 for A, =odd.

The symmetric coupling of irreps [A1000] and [AA200] to resultant [{A; + A2)A500]
involves products of double rotor functions of the type

{ DR, a5, (DR, (@) + ()™ D2y ()P, (90} D, () DGy, (Qr).
(35a)

The build-up formuia (28) and the symmetry of the Wigner coefficients leads to final double
rotor functions of type

| D%, 1, () Dy (1) + (=1)SFT-57R DI o (Q5)DT 4 40 Q)] (358)

where (52 + I3) in the phase factor can be replaced by *his due to the requirement
A2 + 82 + T» =even. The further symmetric coupling of irreps [(A; + A2)A200] with
[A3A3430] to resultant [(A; + Az + A3)(Az 4 A3)A30] leads to products of the double rotor
functions of type (35p) with functions of type

{DR a5, (@IDLZ 0, Q1) + Dy, (25)DRy,, (@)} (35¢)
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Application of equation (28) and of the symmetry properties of the Wigner coefficients lead
to final double rotor functions of type

(DX, @)Dy () + (~YPFHTI0 DT (Q5)DT (2 (354)
with Kg, Ky = (K| + K3), (K} — K3) or (K} — K3), (K| + K3). Since 283 = even (or
odd) for i3 = even {or odd), the basic phase of the symmetrized double rotor functions of
equation (10) has been established.

3. The K matrices for the double rotor SU(4)} O SU(2) x SU(2) states

The double rotor vCS representations of the SU(4) generators, the I'(X) of section 2, are
not unitary. This can be seen at once by noting that the reduced matrix elements of I'(E)
change by more than the phase factor (—1)5t7~5=T" under bra—ket interchange. (Compare,
for example, equations (33) and (34).) In vCS theory, the T'(X) are converted to unitary
form y(X) via the similarity transformation

»(X) = K~'T (XK. (36)

If X is a double spherical tensor operator of type X ,S,f;,,,r, the adjoint operators in the unitary
representation must satisfy [4]

Y Xmgmr) = (=1 Y (X s, o )- (37)
Substitution into (36) leads to

KICH =)t TN X e ) = T(Xmgmp YKICH (38)
Following Rowe et af {4], we define

T*(Xmgme) = (=1 THX i my) (39
with reduced matrix elements
(K¢K7y STIP¥|KsKr: ST) = (-1 T=5-T(KsKr; STITIIK{Kqs S'T') {40)

As usual, XK' commutes with the subgroup generators § and T' so that KK is block
diagonal in § and T and is one-dimensional for the minimum S, T values of 00, %%, or
10, 01. As always, we choose the starting value of X to be 41 for states with these minimum
S, T values, the starting points for the vCs K-matrix constructions. XK' matrices for
larger values of §, T can then be calculated by the usual recursion relations. For example,
equations (38) and (40} lead to the recursion relation
> (KKNS', T, xp ik, &3, (Ko K3 STIT (BN K Koy S TH=DST 5T
g, K,
= z (K5 K7, STNT(E)||Ks, K STHKKT(S, T))&s, kz,:Ks, Kry - (41
K5 Kny
Different choices of the fixed K5 K7 and Ks, K7y, are usually sufficient to determine
the KXH(S', T) matrices from the known ICKCH(S, T) values, In some (rare) cases a second
recursion formula may be needed. Following Rowe et al [4], we use
Yo D (KKNS T ks iy, (K5 Ky STHITHENIK G K73 ST)
K‘;'?K;'Z K':"‘S K;-S
x{K§ Kp; STNTHENK s, K3 ST
= Y > (KyKp: STITEK K, ST')

KSI KT] K 3'3 K};

x (K4 Kp: STICCENKs Kri; STYKKNS, T g, &ty K, “2)
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This follows from the muatrix element of relation (38):
(Kg Ky STINKKIPHE) K K S'T')
= (Kél K'Tl; S’T’lll"(E)iC}CfllKglK}l; §'T. (42a)

This is then multiplied by (K"s3 K}}; S’T’III‘#(E)[IK&KTZ; ST} and summed over all K§3 K,’.s.
The right-hand side of this relation then leads to

> (KL Kr STHNECKKG Ky STHK K STICHE) K s, Ky ST)
Ks K,
= > (K5 Kp; STINE)IKs, Ke; S'T)
I(_’;I‘iq,3

% (K5, Kp; STNKKTHE)| K5, K7y ST)

= Y (K5 Kp: STIT(E) K Kr: S'T')

Ky K},
}{K5 Kps ST I\T(EYKK! || Ks, Ky ST). (42b)

In the first step of this process, since KK is diagonal in the S, T quantum numbers,
it can be pushed through to the right since the sum over K Kr, effectively yields a sum
over a complete set of intermediate states. (I am indebted to D J Rowe for enlightenment
on this point.) The second step uses equation (38).

Using relations (41) and (42) the KK'(S, T) matrices can be evaluated, starting with
the minimum $, T values for a particular irreducible representation of SU(4). To make the
transformation from the V¢S basis | KgKyr; SM¢T Mr) to the Hermitian basis, it is sufficient
to diagonalize the Hermitian KK matrices via a unitary matrix, U:

KKtut=a= Aidi (43)
with {, j = 1, ..., the dimension of XK¥(S, T), yielding
1
Kird = Dlerr/™ K ik = —=Uikerr- (44)

The map to the unitary realization of the operators, X, via equation (36), can then be mapped
back to ordinary Hilbert space to yield, e.g.

G STIEN STy = 3 3 (K py (R5K s STITEN | KsKr : ST kskr i

Kskr KeR%

(45)

Since the reduced matrix elements of I'{E) are given simply in terms of ordinary
angular momentum Wigner coefficients (equations (22}-(27)}, a very simple form of the
matrix elements of E has been achieved for ireducible representations for which simple
expressions can be given for the K matrices. For this purpose analytic expressions will be
given for the KXK' matrix elements for many of the simpler SU(4) irreducible representations
starting with [ f] = [A;A200] and the irreps which can be built from a coupling of [122,00]
with [2,000], with &, = 1,2,3,...,q, leading to XK' matrices of dimension < ¢ X a.
For the irrep [yy00] with A; = As = 0 and hence K5X7 = 00 only, the KX matrix is
one-dimensional and follows from the starting value of unity for $7 = 00 (y = even), or
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ST = 10 (y = odd). A straightforward application of the recursion relation (41) gives for
[¥y00], with KgKr =00 only and y + S+ T = even only:

Num
t —
KES, Ty = (P—S—-TMy+S+T+UyF+ 14+ S5-Iy +1 -5+ TH!
Num = y!{(y + 2!y + DIy + DI for y = even
= {y — DUy + 3y + )yt for y = odd (46)
where the double factorial is defined by y!! = y(y — 2).-- 2or 1) for y = even(odd).
(The numerators assure that O!! = 1.) The next case (with ¢ = 1) leads to the

irreducible representations [y y—100],{A; = 1,42 = y — 1,3 = 0}, and its conjugate
[yy1),{\ = 0,Ay = y — 1,23 = 1}, again with one-dimensional /CK.' matrices, with
KsK7 = 11 and 1 -1, respectively. In this case we must distinguish between states with
v+ 84T =-even or odd. For [y y—100], with KsKr = %%, or [yy10], with KsKr = %—%:
For y + 54T = even:

Num
G=S-TMy+S+T+PNy+S-THYF-S+ D1’
Fory+ 54T =odd:

KKl(s, 1)y = (47a)

Num
KKi(S,T) =
S (—1-8S—TMy+1+S+THEH+14+S-DMy+1-5+ T
Num = (y — 21y + 23y + DNy + DN for y = even
= (y — DIy + 3)ytiyl for y = odd. (47b)

As a specific example consider the matrix element of E for the case y+ S+ T = even,
ST'=S8+ 1T+ 1. Equations (24) and (47a) give

{[y y-10018 + 1 T + 1]t Eff[y y-1 00]ST)
_ KG,T)  (y=S-T)[(2S+ DES+3)QT + DERT +3)1
TKS+LT+D) 4 (S+1(T+1)
B [(y + S+ T +4y—§— TS + DES + 32T + DT + 3) /2 48)
- 16(5 + (T +1) '
Equations (25) and (47q) give the same result for the reduced matrix element of E for
the irrep [yy10]. Except for a somewhat different phase convention, this and similar
results for all irreducible representations with one-dimensional X! matrices agree with

the analytic expressions of [9]. The spin—isospin reduced matrix element of £ is related
to the SU(4) D SU(2) x SU(2) reduced Wigner coefficient with outer multiplicity label [9]

p=1,via

__ALFNSTUEIFIST)
128 + DET + 1)Csy, ]

where Cgy, is the quadratic Casimir invariant, Csy, = P(P +4)+ P/(P'+2) + P,

The next case (with @ = 2) includes the irreps [y+2, y 00], its conjugate [y+2, y+2, 20]
and [y + 1, y 10].

For [y + 2, y00], with KsKr = 11 or 00, the KX matrices are one-dimensional for
y+ 8§+ T =odd (since KsK7 = 00 does not exist for this case); leading to:

{([F1ST; [21IHHI[F1S'T) p=s (49)
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Forfy+2,y00), y+ S+ T = odd:
(KKHS, T

Num
T RGBS HFDNG IS -y +2+8—TDlIx (y+2— S+ D!
(50a)
with
Num = (y + HNyH(y + HN(» + DN for y=even
=y + 50y — DU + U@+ 21 for y=odd. (506)

For {y+2,y00], y+ S+ T = even, the 2 x 2KK! matrices are gtven by
(CKHS, T = 3+ 3)(y +4) - S(S + D) — T(T + DICF
(KKY(S, Thoooo = [y + 3y +2) — S5+ 1) = T(T + DICF (5la)
(KKI(S, TH11.00 = —[25(S + DT(T + D)*CF
with the common factor given by
CF = Num
O+4+S+DNY+2=5 =Ty +3+5-DNy+3 -85+ TH!

with Num given by (50b). Equations (50) and (51) also give the K matrices for the irrep
[y+2, y+2, 20] if the KgK 'y values 11, 00 are replaced by 1 -1, 00. The Hermitian matrix
KK is real and hence symmetric.

We also note that the X! matrix for the bounding value, § + T = y - 2, with the
maximum possible S 4 T value, is singular. In this case the KXK' matrix

(v +3—8)(S+ 1CF ~[28(S+ D(y +2— S)(y + 3 — 5)]Y*CF
—[28(5+ Dy +2— SH(y+3 - 5)/CF 28(y+ 2 — S)CF

clearly has one zero eigenvalue (with a redundant state). The physical subspace with
eigenvalue A, = {[(y + 3) + 35(y + 2) — 35%ICF} leads to the single physical state, { = 1,
with

(51b)

1 1
(K™ Dictikskr=n = S +3-SSs+ 1)CF)? = E'(’C)xskmn;!:l

1 1 (52)
(K™= kskr=00 = Kfzs(}‘ +2 - S)CF'2 = k_l(]C)KsKr=OO;£=I-
Finally, for [y + 1 y 10], with y + S+ 7 = even:
(KK, Thio 0 = (KKH(S, TDor,0
_ Num (534)
+24+5+DNy-S-TMNy+14+5-TMy+1-5+1N
with
Num = O+ 1) (y + Oy =2y + DI+ 1N for y = even
(y+3 (53b)
= (y + 2Ny y + 3Ny - for y = odd

while (CX1(S, T))i00 = 0. Note, however, that KsKy = 01 does not exist for T = 0 so

that the KCK! matrix becomes one-dimensional with Kxio.m given by the above. (Similarly
for §=0.)
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For [y + 1y10], with y 4+ §4 T = odd:

KKHS, oo = [+ DO+ DG +3) - (+3SES + 1) — (v + DT(T + DICF
(KNS, ot = [+ DO+ D +3) = 0+ DSS + 1) — (v + HT(T + 1)ICF
(KNS, Tioor = 2(y + 2)[S(S + DT(T + D)/’CF

(53c)
with
CF = Num
T3 SH TN+ ST +2+S-T)N(y+2- S+ DI
(534)
x
Num = +HNy =Ny + DIy 4+ DN for y = even
(y+3)(y My =N+ DMy + D ¥y
1
= + Dy1y + DNy — DN for y =odd. 53e
(yH)('y MWyllly + 3Ny - D y (53e)

Note that this 2 x 2 matrix has one zero eigenvalue for the special case of maximum possible
S+ T value, S+ T = y + 1, so that there is only a single physically allowed state of this

type.
The next case (with 2 = 3) contains the irreps [y+3 y (0] and [yy30] with two-

dimensional XK' matrices:
For [y+3 y00] with y + § + T = even (upper sign)
and with y 4 § -+ T= odd (lower sign)
(KK, )iz 31= HyP+9y+ 22 —S(S+ 1) = T(T + 1) £ (5 + 1T + L)ICF

KENS, TNy 1 11 =P +5y+ 2 =SS+ 1) =TT + D F (S +3)(T + PICF
(KKT(S, TNz 3 11 = =425 — 12§ + 3)2T — DQT +3)]/*CF. (54a)
For y+ S+ T = even:

Num
CF= OFATST NG T2 S-DNG+4+s-Dgrd—sson P
while for y + 5+ T = odd:

Num
CF= GFSTSIDIOT3-S-DHUp F3s- DG +3—s+nn O
with

Num = (y + 6)I1y1(y + DH(y + 3! for y = even
=@+HNO+DNY+ SNy - DI for y = odd (54d)

for both cases.

Equations (54) can also be used to give the XK' matrices for the conjugate irrep
[y+3 y+330] if KsKy = 2 2 and ] § are replaced by KsKr = 2 -3 and } -1

Irreps [y+2 y 10] and (y+1 y 20), and similarly irreps with a = 4 starting with [y+4 y 00],
contain §, 7 values with XX matrices of dimension 3. Such matrices can best be calculated
numerically for any ST value by the recursive process used to calculate the general alnalytic
expressions given by equations (47)—(54). There are, however, a number of irreps with
purely one-dimensional KKt matrices. These include the totally symmetric irreps {y000]
with § =T = *;-, % —-1,...,0,0r % The reduced matrix elements of equations (33} and
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(34) at once lead to:
For [y000]; or for [yyy0); with T = §:

Num
3 —
KES. S = s o + s 390 (55a)
Num = y!I(y + 2)!! for y =even
=(y - DIy + N for y =odd. (55b)

In addition, irreps {y100] with T = §, or 7 = S £ 1, up to maximum §,7 =
1o+ 1, 5~ 1) or £y — 1), 3(y + 1) have one-dimensional KK matrices completely
specified by S and T. The VCS state vectors for these irreps can be constructed by repeated
action with the generators, E, on the starting states with §,7 = 11 for y + 1 = odd or
S, T =10 for'y 4+ 1 = even. We obtain the (normalized) states

[y100] 3 & K=(+1)/2
' — _ =¥+
wsm.r:sur(g)—[s(s O +1)] PILISY
28 + 1
XDKMS(QS)DKMTCQT)( D (56)
LleO] 3 & 2 1/2 K=(y+1)/2
—_— — — =y

[(25 + 1)(28 + ]2
82
with analagous expression for §,7 = § 4+ 1, §. (Similar expansions are obtained for the
conjugate irreps, [yyy — 10], if the K1 values Kt = Kg are replaced by K7 = —Kg and
the phase factor (—1)X-0+1/2 ig replaced by +1.)
With equations (22)—(24), these Jead to the reduced matrix elements

172
(1001 + 151 @001ss) = =L AE LIy
_ 1/2

(25 ;(?(jsl;’ 2l (y+3+25)
[S(S +2)(25 + 1)(25 + 3)]'/?
25+ 1)

[S(S +2)(25 + 1)(2§ + 332
2(5 + 1)

x DY\ (25) DRt ()

57

{[y100]SS||T(EY|[y100}S + 18} =
(58)
(y—1-25)

([y100]S + 15 + 1||"'(E)||[¥100]$S) =

([y100]SSHT(EY||[y100]S + 1S + 1} = (y +3+25).

For { v100] the KKt values are
Num
(y+ 142Uy -1-251
(y +21(y — 2! for y = even (59a)

xxtes, s)=

Num =

—nn " =
(y-[-l)(y Dy <+ 3)! for y = odd

KKt +1,8) =KKHS, S+ 1)

¥yl et
= S gk s+ LS+, (596

Identical KCK! values are obtained for the conjugate [yy y—10).
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In addition, the irrep [y 110], again with 7 = $ or T = S+1, with maximum S, T = 22,
again has only one-dimensional X' matrices. In this case
5

1/2
(y110] - 3 YRR =
wsm.r:sm(m-—[4S(S+1)(ZS+I)] K;S[(S+K)(S+l KN (=1)""3

X D 4, (R5IDE 13, Q) + (=D DS (29)D2 4 _ar, (R1)) (60)

and

‘ 3 1/2
[¥110] —
Wsi Ms.7=smr ($2) = [4(3 + DS+ D25 + 3)}
S4+1
x Y US+ENS+ 1+ KA-DFE
K=—(8+1}

X {DEH(RIDE 13y, Q1) + (1P DS, (@)DE 4 Q1)) (61)

12
{¥110] _ 3
Ysits s (D) = [4(5 FDES+ D2 + 3)]
+S
x 3 US+1-K)S+2— KN(-1)F3
K==5
x |D,§Ms (Q)DE 1, Q) + (D DSy (Dl _ary (sz-r)} . (62

These lead to the reduced matrix elements
_[S(S+2)(25 + D28 + 3072

{{y110]1S + 1S+ 1||T(E)||[»110]8S5) = TR (y —285)
S(S 172
{{¥110]SS|IT'(E}|[y11015 + 154 1} = [5G +2)25 + @S +3)] (v+4+25
25+ 1)
— _ 12
10 s - ureEposs) = =D, 45 4 o),
28 — (28 4 1))1/2
{{y110)SS||F(E}||Iy110]S S — 1) = K );S + D) y+2). (63)
The recursion formulae then give the KX values.
For [y110]:
Num
t —
KKis, 5y = (y — 251y + 2+ 25!
Num = (y —2)1(y + 2!y + 2) for y = even {64a)
= (y— DUy +3H!! for y = odd
KKis -1, 8) = KK(S, 5 - 1)
(y+2+1285)
=2 KK, S). 64b
i K (646)

The conjugate irrep [y y-1 y-10] again has the same KK values.

An alternative method for finding the KKt matrices would start the calculational process
with the states of maximum (S + T') values, S+ T = fj — fs. For such states equation (41)
Jeads to a set of linear equations in the XX matrix elements for maximum (S + T') values
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if §', T' are chosen such that §'+ T’ > fi — f4, so that the left-hand side of equation (41)
is zero. As a specific example, the XK' matrix for the imep [y + 2y 10] for §, T values
such that S+ 7 = y + 2 is given (to within a common factor C = C(y, 5)) by

$+3)T-2)C —2r-hfe-dusede ‘/<S—%)(S+%)(r—é)cr+§)c

—ur-3)fes-gus+ie as-yr-1)c ~as-hyfr-trede
J(S~%)(S+%)(T~%)(r+%)c —us-pfr-harde S-pxr+dre

with rows and columns KzKr = %—;—,%—%,%%, in that order. The only non-zero
eigenvalue of this matrix leads to the single physically allowed state with index { = |
(see equations (43), (44)) and

S+3IT-D

Yt =Y TGS
§ =Ly L
G = L“T’%?)“ﬁ 65)
U e [SmDTHD
=TV TOFGLS)

with F(y, §) = (S+3)(T - 1) +4(S— (T - H+(S—3XT+3), where T = y+2—S. The
commen factor C(y, 5) can be evaluated (to within a constant) by requiring the Hermiticity
of the matrix elements for the single allowed states; e.g.

{=5LS+1T-1E|i=LST)={=18T{E|li=1;S+1T-1) (66)
(see equation (45)). This leads to the recursive formula

Cy,S+1)  S+1
C(y, 8  y+2-8§

67)

or

@sHN2y+4-25!
32y + 1)

If needed, the single constant C(y, %) can now be determined by relating the XK' matrix

elements for maximum (S + T) values to the starting matrix KK'(1, 1) = 1. However, the
reduced matrix elements of E are independent of the constant C(y, %) (cf equation (45)).

Cly,8) = C(y, 2). (68)

4. Summary

A double rotor coherent state expansion for the states of the SU(4) D SU(2) x SU(2)
Wigner supermultiplet scheme leads to a very simple matrix representation of this algebra.
Matrix elements of the vCS realizations for the generators &, T, E are given by very simple
expressions, involving ordinary angular momentum spin and isospin Wigner coefficients
with projection (intrinsic) quantum numbers X5, Kr (see, in particular, equations (22)-
(27). The K-matrix technique of vCS theory is used to convert these non-Hermitian
matrices to Hermitian form (see, in particular, equation (45)). The X matrices convert the
infinite-dimensional double-rotor space to the physical subspace of a given SU(4) irreducible
representation. XC-matrix theory thus effectively elevates the labels K, K7 to the role of
good quantum numbers. In view of the central role of the K matrices, analytic expressions
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are given for KK (as functions of S, T, and SU(4) irrep labels) for all SU(4) irreps which
lead to KX matrices with dimension < 2. These include the U(4) representations [yy00],
(v y-100], [y+2 y 00}, [y+1 y 10]1, [y+3 y O0], [y000}, [¥100], [y110] and their conjugates.
Effectively, this gives analytic expressions for the SU{4) O SU{2) x SU(2) algebra for
most of the irreps of interest in actual applications of the supermultiplet scheme. The only
numerical work required involves the determination of the &/ matrices which diagonalize
KKt in the case of multidimensional KX! matrices. The double-rotor vCs expansion of
this investigation can be combined with the techniques of [7] and [11] to calculate the most
general Wigner coefficients in the SU(4) D SU(2) x SU(2) Wigner supermultiplet scheme.
The details will be given in a future contribution,

Appendix. Rotation group conventions

The R(S2g), R(S2r) operators of this investigation follow the conventions of [4]. Since these
reverse the role of the quantum numbers K and M in comparison with the more frequently
used nuclear physics conventions [10], a careful definition is given here. The D%, () of
this investigation (with J = S or T, for @ = Qs or Qr) are given by el¥*d}, (8)e'*? with
d},,(B) = {JK|et#77| 7 M). This leads to the vcs realizations (cf equations (11) and (12))

I a ; 3 0
F(JO)__E r{J) = eV {icotﬁﬁzﬁﬁ}. (Al)

On the other hand, the left vCS realizations or intrinsic operators J (cf equations (13), (15)),
are given by

_ 19 - . i 8
il =~-— C(Jy) =e™® [—1-——-—-lcotﬁ +—
id

sin 8 8 ag ] (A2)

Note added in proof. A recent asticle on 'Vector coherent state representations of so(5) in an so(3) basis’ by
D J Rowe is to be published in J. Math. Phys.
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