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Abstract A double rotor vector coherent state construction of the SU(4) 3 SU(2) x Sup) 
Wigner supermultiplet leads to a simple matrix representation of this scheme. Matrix elements of 
the vector coherent state realizations of the group generators are given by very simple expressions 
in t e m  of ordinary spin (S) and isospin (T) Wigner coefficients with intrinsic projection labels 
KS and Kg. The K-mawix technique is used to effectively elevate these labels lo the status of 
good quantum numbers. The KKt matrices Bre given in analytic form for a number of i m p o m t  
irreducible representations. 

1. Introduction 

Vector coherent state (VCS) theory [1,2] has now been used to give very explicit expressions 
for the matix representations of many higher-rank symmetry algebras of interest in 
applications to physical problems [3]. The vector coherent state construction is an induction 
process in which a representation of a simple subalgebra (or subgroup) is augmented to a 
representation of a larger full algebra (or group). Two types of vcs expansions have 
been used to great advantage in this construction process. The most commonly used vcs 
construction involves a boson expansion in terms of a set of n Bargmann variables, z ,  
leading to a set of orthonormal basis functions with a scalar product defined in terms of 
the standard exponential Bargmann measure. In a more recent development [4], vcs theory 
has been used to generate rotor expansions in terms of standard angular variables, making 
use of the conventional angular measure of angular momentum coherent state theory. In 
particular, Rowe, Le Blanc and Repka [4] have used a coherent state rotor expansion to 
give a simple yet powerful construction of the matrix representations of the SU(3) 3 SO(3) 
basis of good orbital angular momentum. In this construction the projection label, K ,  of 
the Elliott angular momentum projection technique [5 ]  has effectively been elevated to the 
status of a good quantum number. Despite the power of the rotor coherent state expansion, 
the SU(3) 3 SO(3) group chain is so far the only example for which this technique has 
been fully exploited [6,7]t. 

It is the purpose of this contribution to show that there is a second example, also with 
well known nuclear structure applications, in which a coherent state rotor expansion leads 
to a simple but elegant construction of irreducible representations of a higher rank group, 
namely the SU(4) 3 SU(2) x SU(2) Wigner supermultiplet group. A complete labelling 
scheme for this group has been achieved by Draayer [S] who used the Elliott angular 

t See note added in proof. 
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momentum projection technique to augment the spin and isospin quantum numbers (SMs) ,  
( T M T )  with the projection labels Ks and K p .  In order to calculate the generator matrix 
elements and SU(4) reduced Wigner coefficients in this fully labelled but non-orthonormal 
basis, Draayer calculates the transformation coefficients from the K s  ( S M s ) ,  KT (T&) 
basis to the canonical, fully specified orthonormal U(4) 3 U(3) 3 U(2) 3 U(1) basis. 
Since the resultant calculational algorithm is somewhat laborious, this method has not been 
widely used in actual applications. To date, the only analytical expressions known for 
SU(4) reduced Wigner coefficients in the supermultiplet scheme are those for the special 
multiplicity-free irreducible representations for which the basis states are fully specified by 
S M s ,  T M T  alone [9]. A coherent state rotor expansion of the Rowe-Le Blanc-Repka type 
can again be used to convert the labels Ks, KT of the Draayer scheme into good quantum 
numbers through the IC-matrix theory utilized in all vcs constructions. vcs representations 
are in general non-unitary or Dyson representations. The IC-matrix transformation gives a 
systematic and simple algorithm for transforming the vcs matrices into unitary form. In 
addition, the zeros of the eigenvalues of the ICIC' mahix define the physical subspace of the 
vCS basis. The possible Ks, KT values together with the zeros of the ICK' eigenvalues thus 
also give a very simple method of determining the multiplicity of the possible S, T values 
in a given SU(4) irreducible representation. Due to the central role of the IC matrices, 
it will be shown with numerous examples in section 3 that these can be calculated in 
general analytical form. Section 2 gives the double rotor coherent state realization of the 
SU(4) 3 SU(2) x SU(2) generators. Together with the IC matrices of section 3, these give 
a simple direct evaluation of the SU(4) generator matrix elements which can lead to a full 
determination of the Wigner-Rad calculus for the SU(4) 3 SU(2) x SU(2) supermultiplet 
scheme. 

2. The double rotor expansion of the SU(4) 3 SU(2) x SU(2) algebra 

The supermultiplet scheme is based on the four spin-charge states of a single nucleon, 
Imsmr), with 

To gain the most convenient double rotor expansion it will be useful to define the basis 
states l i ) .  i = 1, . . . , 4 ,  by 

and define the 15 supermultiplet generators 191, S, T, and E,  in terms of U(4) generators, 
Cij, 

cij = Ca,$z,, i ,  j = I , .  . . , 4  
n 

(3) 

where i, j give the spin, isospin quantum numbers and a stands for all additional (orbital) 
quantum numbers needed to specify the single-nucleon creation and annihilation operators. 
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In terms of the Cij the generators are 

.so - ; ( c l 2  + c 2 1  + c 3 4  + C43) 
I 

1 

I 

& = i ( - c 1 3  - CZ + c I 4  + c 2 4  - c 3 l  + c 3 2  - c 4 1  + c 4 2 )  

s- = Z(-c31 - c 3 Z  + c 4 1  + c 4 2  - c I 3  + c23 - c14 + c24) 
To = $12 + c21 - c 3 4  - C43) 

T+ = 4 ( c l 3  + c Z 3  + cl4 + c24 + c 3 1  - c32 - c 4 ]  + c 4 2 )  

= T(C3I + c 3 2  f c 4 1  + c42 f c 1 3  - c 2 3  - c 1 4  + c 2 4 )  
I 

I Em = $1 I + czz - c 3 3  - C44) 

'E IO = = ( c l 3  + c 2 3  - c 1 4  - c 2 4  - c31 + c32  - c 4 l  f c 4 2 )  1 

(4) 
I E-IO = =(-C~I - c 3 Z  + c 4 1  + c 4 2  + C I ~  - c 2 3  + C I ~  - c 2 4 )  

1 EO1 = = ( - c l 3  - cZ3 - c 1 4  - c24 + c 3 1  - c 3 2  f c 4 2  - c 4 1 )  

EO-l h ( C 3 1  + c 3 Z  + c 4 1  + c 4 2  - c l 3  + c 2 3  - c 2 4  + c 1 4 )  

Ell = +(-cl1 + c 2 2  + ClZ - CZl) 

El-I = $33 - c44 - c 3 4  + C43) 

E - I 1  = i ( C 3 3  - c44 + c 3 4  - C43). 

I E-1-1 = ?(-Cl1 + Cz  - C12 + GI) 

The phases and normalizations of the Ec,q are chosen to put these into standard double 
The SU(4) irreducible representations are spherical tensor form, with E,p = TMs&,MT=B. 

labelled by four-rowed Young tableaux padtion labels [ fi,f2,f3, fa]. by the SU(4) labels 
[hi ,  h.2, h3], or by the Wigner supermultiplet (or standard Cartan SO(6) labels (P, p', p")) 
with 

S=l T=I 

A 1 = f i - f z  h = f 2 - f 3  h 3 = f 3 - f 4  

(5) = ;(hi + 2hz + h3)  P' = i(h1 +A,) P" = ;(A1 - A3). 
These characterize the highest-weight state I@) with 

Cijl@) = O  for i c j 

c33kb)  = id@) 
CII~@) = 0-1 + hz + CzzI@) = (A2 + As)/@) (6) 

The double rotor expansion uses the double rotation operator R(G) = R(QS)~(aT),  
with Euler angles as, Bs. ys = Gs and U T ,  @T. y~ = 5 1 ~  in the spin and isospin space. 
Drayer 181 has shown that the set of states, IR (51) I@)), obtained by rotation of the highest- 
weight state through all possible angles as, . . . , M. spans the full SU(4) space. Arbitrary 
state vectors I Q )  in this space are now tranformed into their coherent state realizations with 
a coherent state wavefunction 

'@(W = (@IR(WlQ). (7) 

CUI@) = 0. 

A state IaSMsTMr) with definite spin and isospin quantum numbers is represented by 
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The convention to be used for the rotation operators R(Q) and the SU(2) D-functions 
will be those of Rowe et al [4]. Since these are different from the ‘conventional’ nuclear 
physics choices [S, 8,101 (note in particular the interchange of the role of K and M quantum 
numbers relative to the common nuclear conventions [lo]), they will be carefully defined 
in the appendix. The work of Draayer [8] shows that the SU(4) irreducible representations 
[fi, fz, f3, f41 {hlhzh3) are spanned by the double rotor wavefunctions with Ks,  KT 
values restricted by 

(9) 

The double rotor realizations of the SU(4) generators of this section will show that 
the SU(4) double rotor coherent state wavefunctions are spanned by the symmetrized 
(normalized) double rotor functions 

(Ks + Kr)  = *hi, &(hi - 2). &(hi - 4), ..., 0 (or * I )  
(Ks - K T )  = fh3, f ( h 3  - 2). f ( h 3  - 4), . . . ,O (01 f I ) .  

x (D&Ms (nS)D,& ( Q T )  + (-I)”””+StrDS -KsMs (QS)D?K~M, (%)I. 
(10) 

To specify the double rotor ‘ P K ~ K ~  it will thus be sufficient to choose K s  > 0, and 
for KS = 0 : KT > 0. (The phase factor (-l)A~’iA’+s+T in the symmetrized functions of 
equation (IO) will be established below.) The requirement S > T > lKr1, together 
with the structure of the KK’ matrices (section 3), will thus determine the multiplicity of 
a given S,  T value. For states with low values of S + T, for which the eigenvalues of 
KKt are all non-zero (no redundant states), the number of occurrences of a given S, T will 
be determined by the number of possible Ks, KT combinations. The maximum possible 
value of S + T is S + T = A1 + A2 + A3 = fl - f4, and, for this maximum S + T 
value, Sk, or Tkn are given by $1 + h3) [8]. States with S + T = h1 + hz + ).3, with 
S(or T)> +(A1 + A d ,  always have an occurrence of 1. For these S,  T values the KKt  
matrix always has only a single non-zero eigenvalue giving only a single non-redundant or 
physically allowed state. In general, the states with S+T > A z + 2  will have K K t  matrices 
with some zero eigenvalues and hence some physically forbidden states. Table 1 gives a 
specific example-the possible S ,  T values for the irreducible representation [8620] with 
(Alhzh3) = (242). In this case there are five possible symmetrized states of the type of 
equation (IO), with KSKT = 20, 11, 1 - 1,02  and 00. Note that states with K s K r  = 00 
must have S + T = even since J.2 + A3 = even. States with both S and T > 2 can thus 
have a 5-fold occurrence for S + T = even and a 4-fold occurrence for S + T = odd. 
The maximum S + T value is 8 in this case. States with S + T = 8, S(or T)> 2, are all 
single. The KK’ matrix for this case has four zero eigenvalues. In addition, it can be shown 
(section 3) that the K K t  matrices for states with S +  T = 7 have two zero eigenvalues, thus 
reducing the possible number of physical states by two, while states with S + T = 6 lead to 
KKt  matrices with one zero eigenvalue, reducing the possible number of physical states by 
one. Note also that the ST value 00 can occur only in irreducible representations with A1 
and h3 both even (so that KSKT = 00 is possible; the additional requirement h2 + S+ T = 
even further requires hz = even). For irreps with hi, A3 = odd, odd; or A I ,  A3 = even, 
even, but A2 = odd; the minimum ST values are 10 or 01. For irreps with hi, h3 = even, 
odd or odd, even the minimum ST value is always $4. These minimum ST values are 
always single (with an occurrence of 1). 



In the VCS, rotor expansion operators X are transformed into their vcs realizations, 

r(x)ww = (AR(Q)XIW.  (11) 

We consider the SU(4) generators X = S , T , E .  If I*) is a spin, isospin eigenstate 
IaSMsTMr) ,  the realizations r(S), r (T)  of the spin and isospin operators act in the 
standard way, e.g. 

r(X), through XI*) --f r(X)W(Q), with (cf equation (7)) 

We shall also be interested in the intrinsic spin or isospin operators which follow from the 
left realizations of S or T with S or T components acting on the highest-weight or intrinsic 
states (to the left), to be denoted by a bar, with 

i%d'J'(Q) = (@lSkR(Q)l W. (13) 

Now if IW) is a spin, isospin eigenstate 

(@l&R(Q)l ~ S M S T M T )  = c ( 4 I S k l  c u S K s T K r ) D ~ I M l ( Q s ) o ~ r M , ( Q r )  (14) 
KS 

from which it can be seen that 

(specific realizations of both the Sk and .$ in terms of the Euler angles as. ps, ys and 
their derivative operators are given in the appendix. Following 141, the notation l=(Sk) is 
simplified to 3, when acting on a D-function). To gain the rotor vCS realizations of the 
generators E, note that 





Construction of the Wigner supermultiplet 3451 

Note that states with Ks + KT = 0 or 1 require special treatment due to the symmetrized 
form of the basis functions of equation (IO). Thus off-diagonal matrix elements in KsKr 
with KsKr or KhK; = 00 require an additional A, e.g. 
(11; S ‘ T ’ ~ ~ ~ ( E ) l l W  ST) 

(00 S‘T’ll~(E)lIll; ST) 

with similar factors of 

= -h x f[(2S + 1)(2T + l~l’~~(SOll~S‘l)(TOll~T’l)(-11) (=a) 
(23b) 

needed for K s K T  = 00, K;K; = 1-1; or KsKT = 1-1, 

= - A X  f[(2S+1)(2T+ l)]’/’(Sl l-llS‘O)(Tl l-l[T’O)(-AI -2) 

KkK; = 00. 

(f f ;  sT’[[r(E)[[i f ;  ST) 
In addition, 

=1(2S+1)(2T+l) l ’ iz{[~(1~ +212+13)+2-  iS’(S‘+ l ) + ; S ( S f l )  
-fT‘(T’+ 1) + i T ( T +  l ) l (~ f lo [ s ’~ ) (Tf lOlT’ f )  

+~(-1)A~+A3+S+T(-~l - I ) ( s -~ I  l[s’;)(T-il I I T ‘ ~ ) }  (24) 
(f - f ;  sqr(s)llf - f ;  ST) 

= [(2S + 1)(2T + 1)]”2 {[$(AI + 212 + 1 3 )  + 2 - fS‘(S‘+ 1) + fS(S + 1) 
-fT‘(T‘+ 1)) + kT(T + l)l(sflolS’~)(T-flOIT‘-f) 

4-i (-l)”+”l’S+T(A3 4- 1)(S-;l1[ S’i) (Ti 1 -1 IT‘-;)] . (25) 
Also, 
(01; S‘T’llr(E)llio; ST) = [(2s+ 1 ) ( 2 ~  + 1 ) P 2  

(IO; S‘T‘i[r(E)iioi; S T )  = [(2s+ 1 x 2 ~  + 
X f ( 1 3  + 1)(S11-IIS’O)(TO1+1IT’1)(1 + (-1”2+”+S+T 1 (26) 

X f ( A 3  + l)(SOlllS’l)(Tl l-l~T‘O)(l + (-1)A2’+A3’+S+T’ 1. (27) 
All other cases are given by the generic formulae of equations (22). 

There remains the task of establishing the symmetrized form of the double rotor basis 
functions of equation (10). This will be achieved by constructing the generic SU(4) 
irreducible representation [fi fz f3 f41 = [ h ~  + h ~ + 1 3 .  1 2 f 1 3 ,  h3 01 by a symmetric coupling 
of the states of the irreps [AloOO], [AzhzOO]. and [b$.3A30]; starting with the basic states 
[10001ST = f i ,  [IllO]ST = ii; and [1100]ST = 10 or 01. The build-up process 
requires the D-function build-up formula 

@,MI (n)D$%MZ(n) = D:,(a)(JiKi JzKzIJK) (11 MI JzMzIJM). (28) 

The starting states [1000] and [lllOj, the irreps of the single-particle creation and 
annihilation operators, are given by 

I 

I’wol Y I / Z ) M S ,  (1  /2)Mr ( Q )  
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whereas 

(30) 
In general, totally symmetric double rotor coherent wavefunctions of the type of 
equations (8) and (10) can have ST values (with T = S) up to arbitrarily high S. The 
phase of equation (29) is chosen to ensure that the ST values terminate at ST = SS, with 
S' = +AI = i .  Totally symmetric states with A I  > 1 (A? = A3 = 0) can be built by 
successive actlon with r(E). This leads to the (normalized) state 

(the factor +AI  in the phase is arbitrary; it is chosen merely for convenience to make the 
normalization factor real). 

Similarly, the normalized state for the irrep [A3A$30] conjugate to the totally symmetric 
irrep, again with T = S, is given by 

Note the different relative phases. Together with (22) these lead to the reduced matrix 
elements 

([YOOOIS+ 1 s+ iiir~~)ii[~oooiss) = ([YYYOIS+ I s +  iiir(E)ii[YYroiss) 
= [(ZS + 1)(2S + 3)11'2(;y - S). 

= [(2S + 1)(2S + 3)I'/Z(+Y + s + 2). 

(33) 
Note the termination at a maximum possible S value, S,, = i y .  Similarly, 

([~oooissiir(~)ii[~ooo]s+ 1 s+ 1) = ~~YYYOISSII~~E~I~~YYYOIS+ 1 s + I )  
(34) 

Finally, the irreps [AzAzOO] have Ks = KT = 0 only (see equation (9)). The ST values are 
restricted by the requirement A2 + S + T = even, starting with ST = 00 for A2 = even and 
with ST = 10.01 for A2 =odd. 

The symmetric coupling of irreps [A10001 and [AzAzOO] to resultant [(AI + Az)Xz001 
involves products of double rotor functions of the type 

( D ~ ~ , ~ , ( Q s ) D ~ , , , , ( ~ T )  + (-1) z s s  'D;K,M+ ( w D ? ~ ~ ~ ~ ,  ( Q ~ T ) } D &  (QSP&~, W r ) .  

The build-up formula (28) and the symmetry of the Wigner coefficients leads to final double 
rotor functions of type. 

(354 

{Di,MS(Rs)D:,Mr(&) + ( - l ) S ~ T - h - r * D S  -XI& ( n s ) D ? K , M , ( % ) }  (35b) 
where (Sz + 5) in the phase factor can be replaced by due to the requirement 
XZ + SZ + TZ =even. The further symmetric coupling of irreps [(A, + A2)A~00] with 
[A3A3A301 to resultant [(AI + A2 + h3)(hZ + k3)A30] leads to products of the double rotor 
functions of type (356) with functions of type 

{D~,,,(nS)D~~~~,(nT) + g s , ~ ~ , , , ( n S ) o ~ , ~ , ( n T ) } .  (35d 
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Application of equation (28) and of the symmehy properties of the Wigner coefficients lead 
to final double rotor functions of type 

(354  
with Kk, K; = (KI + K3),  (K1 - K3) or ( K I  - K3) ,  ( K I  + K3) .  Since ZS3 = even (or 
odd) for A3 = even (or odd), the basic phase of the symmetrized double rotor functions of 
equation (10) has been established. 

3. The 1c matrices for the double rotor SU(4) 3 SU(2) x SU(2) states 

The double rotor vcs representations of the SU(4) generators, the r(X) of section 2, are 
not unitary. This can be seen at once by noting that the reduced matrix elements of r ( E )  
change by more than the phase factor (-l)str-f-T’ under bra-ket interchange. (Compare, 
for example, equations (33) and (34).) In vcs theory, the r ( X )  are converted to unitary 
form y(X) via the similarity transformation 

~ ( x )  = K-’r(x)x. (36) 
If X is a double spherical tensor operator of type Xi:,,, the adjoint operators in the unitary 
representation must satisfy [4] 

Substitution into (36) leads to 

Following Rowe et a1 [4], we define 

with reduced matrix elements 

As usual, K K t  commutes with the subgroup generators S and T so that KK? is block 
diagonal in S and T and is one-dimensional for the minimum S, T values of 00: 4.4, or 
10,Ol. As always, we choose the starting value of K to be + I  for states with these minimum 
S, T values, the starting points for the vcs KC-matrix constructions. Kh9 matrices for 
larger values of S, T can then be calculated by the usual recursion relations. For example, 
equations (38) and (40) lead to the recursion relation 

K& K;, 

[D.&;(Qs)D&,;(QT) + (-1) h+S+T’-ZS, D ~ ( K ; M ; ( R S ) D Z , ; M ; ( R ~ ) ]  

yt(Xmsmr) = ( - l ) m s + m r y ( X - ~ ~ , - m ~ ) .  (37) 

K K ~ ( -  1 )mr+mr r t ( x - m s ,  -mr ) = r (x,,,, ) K K ~ .  (38) 

r*(xmsm7) = ( - I ) ~ ~ + ~ ~  rt(x-ms-mr) (39) 

(40) (K;K;; s’T’IIrXIIKsKr; ST) = ( - I ) ~ + ~ - ~ ‘ - ~ ‘  ( K ~ K ~ ;  sTllrllK;K;; S’T’). 

C (m+(s’, T’))K;, K; , ;K& K;, ( K S A ;  sTiirwiiK;2K;2; s ’ T ‘ K - I ) ~ + ~ - ~ - ~ ’  

(K;, K;, ; s ’~ ‘ l l ~ (E ) l l ~Sr  Kfi ; S T ) ( x x t ( S ,  T))Ks, Kr,: Kt2 K Q .  (41) 
K s ,  Kr, 

Different choices of the fixed K;, Kk, and Ks, KT? are usually sufficient to determine 
the KICt(S‘, T‘) matrices from the known AXr(& T) values. In some (rare) cases a second 
recursion formula may be needed. Followinp. Rowe et al 141. we use 
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This follows from the matrix element of relation (38): 

(K&K;: S'T ' i i~K+r#(E) i iK~K~~;  s'T') 

= (Kk ,K$, ;  S'T'llr(E)ICKtIIK~,K;,; S'T'). (424 

This is then multiplied by (K&,K;,; S'T'llr#(E)IIKs,KT,: ST) and summed over all K$K;,. 
The right-hand side of this relauon then leads to 

x ( K ; ~  K;, ; s 'T ' i i r (wKt1  I K ~ ,  K~,: ST). (429 

In the first step of this process, since KKt is diagonal in the S. T quantum numbers, 
it can be pushed through to the right since the sum over K;,K;, effectively yields a sum 
over a complete set of intermediate states. (I am indebted to D J Rowe for enlightenment 
on this point.) The second step uses equation (38). 

Using relations (41) and (42) the K K t ( S ,  T) matrices can be evaluated, starting with 
the minimum S, T values for a particular irreducible representation of SU(4). To make the 
transformation from the VCS basis IKsKr; S M s T M r )  to the Hermitian basis, it is sufficient 
to diagonalize the Hermitian KKt matrices via a unitary matrix, U :  

(43) KKtUt = A  = h.6 . .  I $I 

with i, j = 1, . . . , the dimension of K K t ( S .  T), yielding 

The map to the unitary realization of the operators, X. via equation (36), can then be mapped 
back to ordinary Hilbert space to yield, e.g. 

(45) 

Since the reduced matrix elements of r ( E )  are given simply in terms of ordinary 
angular momentum Wigner coefficients (equations (22)-(27)), a very simple form of the 
matrix elements of E has been achieved for irreducible representations for which simple 
expressions can be given for the K matrices. For this purpose analytic expressions wilI be 
given for the K K t  matrix elements for many of the simpler SU(4) irreducible representations 
starting with [f] = [h&00] and the imps which can be built from a coupling of [h2hz00] 
with [A~OOO], with hi = 1 ,2 ,3 , .  . . , a ,  leading to KKt matrices of dimension < a x a. 
For the irrep [yyOO] with AI = A3 = 0 and hence KsKr = 00 only, the K K t  matrix is 
one-dimensional and follows from the starting value of unity for ST = 00 (y = even), or 
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ST = IO (y = odd). A straightforward application of the recursion relation (41) gives for 
[yy00], with KsK? = 00 only and y + S + T = even only: 

Num K K t ( S ,  T) = 
(y - s - T)!!(y+ s +  T +  2)!!(y+ 1 + s - T)!!(y + 1 - s +  T)!! 

Num = y!!(y + 2)!!(y+ l)!!(y + l)!! 
= (y - l)!!(y + 3)!!(y + 2)!!y!! 

for y = even 
for y = odd 

where the double factorial is defined by y!! = y(y - 2 ) .  . . 2(or 1) for y = even(odd). 
(The numerators assure that O!! I . )  The next case (with a = 1) leads to the 
irreducible representations [yy-lOO], {AI  = 1,hz = y - 1. hg = 0). and its conjugate 
[yyl], (hi = 0, hz = y - 1. h, = 11, again with one-dimensional K K t  matrices, with 
KsK7 = 4 4  and 4 -4, respectively. In this case we must distinguish between states with 
y + S + T = e v e n o r o d d .  For[yy-lOO],withKsK~=~~,or[yylOJ,withKsKr=~-~: 
For y + S + T = even: 

Num 
K d ( S ,  T )  = (474  (y - s - T)!!(y+ S +  T +2)!!(y + s - T)!!(y - S+ T)!!' 
F o r y + S + T = o d d  

Num K K t ( S ,  T) = 
(Y - 1 - s -  T)!!(y+ 1 + s +  T)!!(y+ 1 + s  - T)!!(y+ 1 - s +  T)!! 

Num = (y - 2)!!(y + 2)!!(y + l)!!(y + l)!! for y = even 
for y = odd. = (y - l)!!(y + 3)!!y!!y!! (47b) 

As a specific example consider the matrix element of E for the case y + S + T = even, 
S'T' = S + 1 T + 1. Equations (24) and (47a) give 

( [ Y  y- lWS+ 1 T +  1IIEll[yy-looIST) 
K ( S ,  T) (y - S - T) (2s  + 1)(2S + 3)(2T + 1)(2T + 3) "' 

( S  + 1)(T + 1) 1 - - 
K ( S + l , T + l )  4 

(y + S + T + 4)(y - S - T)(2S + 1)(2S + 3)(2T + 1)(2T + 3) '/' ] . (48) 

Equations (25) and (47a) give the same result for the reduced matrix element of E for 
the irrep [yylo]. Except for a somewhat different phase convention, this and similar 
results for all irreducible representations with one-dimensional K K t  matrices agree with 
the analytic expressions of 191. The spin-isospin reduced matrix element of E is related 
to the SU(4) 3 SU(2) x SU(2) reduced Wigner coefficient with outer multiplicity label [9] 
p = 1, via 

16(S + 1)(T + 1) 

where CSU, is the quadratic Casimir invariant, Csv, = P(P + 4) + P'(P' + 2) + Pro. 

and [ y  + 1, y 101. 

y + S + T =odd (since K ~ K T  = 00 does not exist for this case); leading to: 

The next case (with a = 2) includes the imps  [y+2, y 001, its conjugate [y+2, y+2,20] 

For [y + 2, ~ 0 0 1 ,  with KsK7 = 11 or 00, the KK' matrices are one-dimensional for 
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For [y + 2, y 001, y + S + T = odd: 

(KKt(S, T))II.II 
Num - - 

(Z(y + 3 +  s +  T)!!(y + 1 - s - T)!!(y+2+ s - T)!! x (y + 2  - S+ T)!! 
( 5 0 4  

with 

Num = (y + 4)!!y!!(y + 3)!!(y + l)!! for y=even 
= (Y +5)!!(y - l)!!(y + 2)!!0, + 2)!! for y=odd. (506) 

For [y + 2, y 001, y + S + T = even, the 2 x 2KKt matrices are given by 

( K K t ( S ,  T))ii,ii = $(Y+ 3)(y + 4) - S(S + 1) - T(T + I)]CF 

(KKt(s, T))w.w = [(Y + 3)(Y +2) - S(S + 1) - T(T + 1)ICF 
(gKt(S. T))ii,w = -[2S(S+ I )T(T  + l)]'/'CF 

(51a) 

with the common factor given by 
Num 

( 5  1 b) cF= 
(Y + 4 +  S+ T)!!(y+ 2-  S - T)!!(y+3+ S- T)!!(y+3 - S+ T)!! 

with Num given by (50b). Equations (50) and (51) also give the K K t  matrices for the irrep 
[y+2, y+2, 201 if the K ~ K T  values 11,OO are replaced by 1-1.00. The Hermitian matrix 
K K t  is real and hence symmetric. 

We also note that the K K t  matrix for the bounding value, S + T = y + 2, with the 
maximum possible S + T value, is singular. In this case the KK' matrix 

1 (Y + 3 - S)(S + I)CF -IZS(S + I)(y + 2 - S)(Y + 3 - S ) ] W F  
2S(y + 2 - S)cF ( -[2S(S + l)(y + 2 - S)(y + 3 - S)1112CF 

clearly has one zero eigenvalue (with a redundant state). The physical subspace with 
eigenvalue AI = ([(y + 3) + 3S(y + 2) - 3S2]CF) leads to the single physical state, i = 1, 
with 

1 1 
A I  A I  
1 1 

A1 A I  

( K - l ) i = l : K ~ K ~ ~ I I  = -[(y+ 3 - S)(s + l)CF]'/* - ( K ) R r K ~ = l l : k l  

(52) 
(K-l)i=l;KsKr=M) = -[2S()! + 2 - S)CF]'" = -((IC)K5K,=M):;=I. 

Finally, for [y + 1 y 101, with y + S + T = even: 

(KKt(S. T))io.io = (KKt(S, V)OI.OI 

(53Q) 
Num - - 

( y + 2 + S +  T)!!(y-S- T)!!(y+ 1 +  S -  T)!!(y+ 1 -S+  T)!! 
with 

Num = - (Y + ') ty + 4)!!(y - 2)!!(y + 1)!!(y + I)! ! for y = even 

for y = odd 
(Y+3 (536) 

while ( K K t ( S ,  T))lo.ol = 0. Note, however, that K ~ K T  = 01 does not exist for T = 0 so 
that the K K t  matrix becomes onedimensional with KK\o,lo given by the above. (Similarly 
for S = 0.) 

= (y + 2)!!y!!(y + 3)!!(y - I)!!  
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For [y + 1 y 101, with y + S + T = odd: 

(KKt(ifW, T))io.io = [(Y + l)(y + 2)(y + 3) - (y + 3)S(S + 1) - (y + l)T(T + 1)ICF 

(KKt(S, T))io.oi = 2(y + 2)[S(S+ 1)T(T + l)J112CF 
( K m ,  T))Ol.Ol = [(y + I)(y + 2)(y + 3) - (y + I)S(S + 1) - (y + 3)T(T + 1)ICF 

(534 
with 

CF = Num 
(y+  3 + S+ T)!!(y + 1 - s - T)!!@ + 2 +  S - T)!!(y + 2 -  S+ T)!! 

(534 
1 

(Y + 3) 
1 

(Y + 1) 

Num = - (y + 4)!!(y - 2)!!(y + l)!!(y + I)!! for y = even 

=- (y + 2)!!y!!(y + 3)!!(y - I)!! for y =odd. (534 

Note that this 2 x  2 matrix has one zero eigenvalue for the special case of maximum possible 
S + T value, S + T = y + 1, so that there is only a single physically allowed state of this 
type. 

The next case (with a = 3) contains the irreps [y+3yOO] and [yy30] with two- 
dimensional KKt  matrices: 

For [y+3 y 001 with y + S + T = even (upper sign) 
and with y + S + T= odd (lower sign) 

(KKt(S, T))f ;, ; ; = ftY'+9Y + z+ - S(S + 1) - T(T + 1) f (S + $)(T + 4))CF 

(KK'(S. T)): 2 1 1 = -$[(2S - 1)(2S + 3)(2T - 1)(2T + 3 ) ] ' k F .  

(Kxt(S. T ) ) L  I 1 1 = Iyz + 5y + 9 - S(S + 1) - T(T t I )  7 (S + $)(T + !j))CF 
1 2 3 2 %  

(544 1 2 ' 1 1  

F o r y + S + T = e v e n :  

(54@ 
Num CF = 

( y + 4 +  s +  T)!!(y+2 - S - T)!!(y+4+ s - T)!!(y+4 - s + T)!! 
while for y + S + T = odd: 

Num 
CF = (54d 

with 
(y + 5 + S + T)!!(y + 3 - S - T)!!(y + 3 + s - T)!!(y + 3  - s + T)!! 

Num = (y + 6)!!y!!(y + l)!!(y + 3)!! for y = even 
for y = odd = (y + 4)!!(y + 2)!!(y + 5)!!(y - l)!! (544 

for both cases. 
Equations (54) can also be used to give the K K t  matrices for the conjugate irrep 

[y t3  y t 3  301 if KsKr = $ and are replaced by K ~ K T  = -? and -4. 
h e p s  [y+2 y 101 and [y+l y 201, and similarly irreps with a = 4 starting with [y+4 y 001, 

contain S, T values with K K t  matrices of dimension 3. Such matrices can best be calculated 
numerically for any ST value by the recursive process used to calculate the general alnalytic 
expressions given by equations (47x54). There are, however, a number of irreps with 
purely one-dimensional KK' matrices. These include the totally symmetric irreps [yooO] 
with S = T = $-,$ - I, . . . , 0, or i. The reduced matrix elements of equations (33) and 

3 3  
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(34) at once lead to: 
For [yOOO]; or for [yyyo]; with T = S 

Num 
W ( S ,  S) = 

(y - 2S)!!(y + 2s + 2)!! (554 
Num = y!!(y + 2)!! for y =even 

= (y - l)!!(y + 3)!! for y =odd. (556) 
In addition, irreps [ylOO] with T = S, or T = S f I ,  up to maximum S, T = 

~ ( y  + 11, f ( y  - 1) or i(y - I ) ,  f ( y  + 1) have onedimensional K K t  matrices completely 
specified by S and T. The vcs state vectors for these irreps can be constructed by repeated 
action with the generators, E,  on the starting states with S, T = 44 for y + 1 = odd or 
S,  T = IO for’s + 1 =even. We obtain the (normalized) states 

I 

with analagous expression for S. T = S + 1, S. (Similar expansions are obtained for the 
conjugate irreps, [yyy - IO], if the KT values K r  = K s  are replaced by KT = -Ks and 
the phase factor (-l)K-(J+l)/z is replaced by +l . )  

With equations (22)-(24), these lead to the reduced matrix elements 

F O ~  [y100] the KK+ values are 
Num 

(y  + 1 + 2S)!!(y - 1 - ZS)!! 
K d ( S ,  S) = 

(y + 2)!!(y - Z)!! for y = even 

(y  - l)!!(y + 3)!! for y = odd 
Num = 

K K + ( S  + 1, S) = K K t ( S ,  s + 1) 

K K ’ ( S + l , S + I ) .  
- y + l  - 

(y - 1 - 2s) 

(594 

Identical K K t  values are obtained for the conjugate [yy y-lo]. 
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In addition, the irrep [ y  1101, again with T = S or T = Ski ,  with maximum S. T = $5, 
again has only one-dimensional K K t  matrices. In this case 

[S(S +2)(2S + 1)(2S + 3)]'/2 
2(S  + 1) 

(y + 4 + 2s) (~~~iois~iir(~)ii[~iioi~+ I S +  I )  = 

The recursion formulae then give the KK? values, 
For [yllo]: 

Num 
( y  - 2S)!!(y + 2 +  U)!! 

K K + ( S ,  S) = 

Num = (y - 2)!!(y + 2)!!(y + 2) 
= (y - l)!!(y + 3)!! 

for y = even 
for y = odd 

K K + ( S  - 1, S) = KcKI(S. s - 1) 

The conjugate irrep [y y-1 y-IO] again has the same KKt  values. 
An alternative method for finding the KKt matrices would start the calculational process 

with the states of maximum (S+ T) values, S+ T = f l  - f4. For such states equation (41) 
leads to a set of linear equations in the K K t  matrix elements for maximum (S + T )  values 
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if S', T' are chosen such that S' + T' > f i  - f4, so that the left-hand side of equation (41) 
is zero. As a specific example, the ICIC' matrix for the irrep [y + 2 y IO] for S, T values 
such that S + T = y + 2 is given (to within a common factor C = C ( y ,  S)) by 

cs+l)(r-f)c 3 -m-?) I/- (s 2)(stz)c JV (s-Z)(s+~)(r-1)(7tf)C 

- 2 v - T )  i /-I (s 2)(st2)c 4(s-f)c7-I)C I -Z(S-f)J-C 

I 3  J-c -xs-f)J-c (s-?)(rtT)c 

with rows and columns KsK7 = sf: f -;. 49,. in that order. The only non-zero 
eigenvalue of this matrix leads to the single physically allowed state with index i = 1 
(see equations (43). (44)) and 

with F(y, S )  = (S+f)(T-4)+4(S-f)(T-f)+(S-4)(T+~), where T = y+2-S. The 
common factor C(y, S) can be evaluated (to within a constant) by requiring the Hermiticity 
of the matrix elements for the single allowed states; e.g. 

( i = I ; S + l T - l ~ ~ E ~ ~ i = l ; S T ) = ( i = 1 ; S T ~ ~ E ~ ~ i = l ; S + l T - 1 )  (66) 
(see equation (45)). This leads to the recursive formula 

or 
(2S)!!(2y + 4 -U)!! 

a y .  $1. 3(2y + l)!! C(y, S) = 

If needed, the single constant C(y,  $) can now be determined by relating the K K t  matrix 
elements for maximum (S+ T) values to the starting matrix ICICt(f, A )  = 1. However, the 
reduced matrix elements of E are independent of the constant C(y, 1) (cf equation (45)). 

4. Summary 

A double rotor coherent state expansion for the states of the SU(4) 3 SU(2) x SU(2) 
Wigner supermultiplet scheme leads to a very simple matrix representation of this algebra. 
Matrix elements of the vcs realizations for the generators S, T, E are given by very simple 
expressions, involving ordinary angular momentum spin and isospin Wigner coefficients 
with projection (intrinsic) quantum numbers Ks. KI. (see, in particular, equations (22)- 
(27)). The IC-matrix technique of vcs theory is used to convert these non-Hermitian 
matrices to Hermitian form (see, in particular, equation (45)). The K matrices convert the 
infinitedimensional double-rotor space to the physical subspace of a given SU(4) irreducible 
representation. IC-matrix theory thus effectively elevates the labels Ks, K T  to the role of 
good quantum numbers. In view of the central role of the K matrices, analytic expressions 
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are given for KK' (as functions of S, T, and SU(4) irrep labels) for all SU(4) irreps which 
lead to KXt mamices with dimension 6 2. These include the U(4) representations [yyOO], 
[yy-l00], [yt2y00],[ytly10]], [yt3yOO], [y000]. [y100], [yllO] and their conjugates. 
Effectively, this gives analytic expressions for the SU(4) 3 SU(2) x SU(2) algebra for 
most of the irreps of interest in actual applications of the supermultiplet scheme. The only 
numerical work required involves the determination of the 17 matrices which diagonalize 
KK' in the case of multidimensional KK' matrices. The double-rotor vcs expansion of 
this investigation can be combined with the techniques of [7] and [ I  11 to calculate the most 
general Wigner coefficients in the SU(4) 3 SU(2) x SU(2) Wigner supermultiplet scheme. 
The details will be given in a future contribution. 

Appendix. Rotation group conventions 

The R(Qs). R(Q7) operators of this investigation follow the conventions of 141. Since these 
reverse the role of the quantum numbers K and M in comparison with the more frequently 
used nuclear physics conventions [lo], a careful definition is given here. The D;,,(D) of 
this investigation (with J = S or T, for D = QS or QT) are given by e'Kudi,(B)e'MY with 
di,(g) = (JKle+'B'YIJM). This leads to the vcs realizations (cf equations (11) and (12)) 

On the other hand, the left vcs realizations or intrinsic operators 5 (cf equations (13), (15)). 
are given by 

l a  . i a  
= T- am P(J*) =e-' I=;?; - 

Note added in prooJ A recent arlicle on 'Vector coherent state representations of so(5) in an so(3) basis' by 
D J Rowe is to be published in J.  Mdh. Phys. 

References 

[I] Rowe D I 1984 J,  Math Phys 25 2662 
Rowe D 1. Rosensteel G and Oilmore R 1985 J. Moth. Phys. 26 2787 
LeBlanc Rand Rowe D J 1985 J. Phys. A: Math. Gen 18 1891, 1905; 1986 J.  Phys. A: Math Gen. 19 1083 

[21 Deenen J and Quesne C 1984 J,  Mark Phys. 25 1638. 2354 
Quesne C 1986 J. Math Phys. 27 869 

[3]  Hecht K T 1987 The vector coherent state method and its applications to problems of higher symmetry 
(Springer Lecture Notes in Physics 2W) (New York Springer) 

[4] Rowe D J, LeBlanc Rand R e p h  J 1989 J.  Phys. A: Mark, Gen. 22 L309 
15) Ellion J P 1958 Pmc Ro) .Soc. A 245 128,562 
161 Rowe D I 1994 Pmc. Contemporaq Physics (Drexrl University, 1991) (Singapore World Scientific) (to be 

[n Hecht K T 1990 J. Phy .  A: Math Gen. 23 407 
[SI Draayer 1 P 1970 1. Marh. Phys. 11 3225 
191 Hecht K T and Sing Chin Pang 1969 J. Math. Phys. 10 1571 

published) 

[IO] Bohr A and Motteison B R 1969 Nuclear Structure (New York. Benjamin) 
[I 11 LeBlanc R. Hecht K T and Biedenhm L C 1991 J. Phys. A: Math Gen. 24 1393 

Hecht K T 1993 J. Phys, A: Math. Gen. 26 329 


