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Abstract Cardy’s formula for the probability ~ ( r )  of crossing a rectangular critical percolation 
system in the vertical direction. with free boundaries on the two sides. is written explicitly 
in terms of the aspect ratio r = heightlwidth. The first three terms are given by n&) = 
24/33i-(:)/ r(4)2[e-”r/3 - *e-7n’13 7 +. $e-’3zr/3.. .I. which, with n&) = 1 - nv(I / r ) . ,m  
sufficient to determine x&) to high accuracy for all r .  

1. Introduction 

Cardy [I] has recently shown that the crossing probability in the vertical direction q ( r )  for 
a percolation system with rectangular boundaries of aspect ratio r at the critical threshold 
pc is given parameterically by 

where 
2 .=(E) 

2K(k2) 
K ( l  - k2) 

r =  

c 3r(f)/r(;)’ FS: 0.566046680, F ( a , b c ; z )  = 2Fl(a,b,c;z) is Gauss’ hyper- 
geometric function (in the notation of Abramowitz and Stegun [2] (As) ch 15), and K(m) 
is the elliptic integral as in AS ch 17. Here, r is the ratio of height h to width w of the 
rectangle, and vertical crossing is defined as a continuous connected path from any site on 
the top with any site on the bottom, with free boundaries on the two sides. For convenience, 
r is defined here as the reciprocal of that in [I]-equivalent to choosing vertical rather than 
horizontal crossing. With this definition, nv(r) decreases mononically from the value of 1 
to 0 as r goes from 0 to CO. 

The predictions of (1) agree with numerical studies carried out by Langlands etal [3,4], 
and the point ~ “ ( 1 )  = 1/2 for a square system was also confirmed by Grassberger~[5] and 
by Ziff 161. Note that (1) is valid for any kind of percolation (site, bond etc) and on any 
lattice (square, triangular, random etc) at the critical threshold, for large h and w with 
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r = h/w.  For finite h and w, finite-size corrections also enter [6,7]. Studies of percolation 
in rectangular systems have also been made by Monetti and Albano [SI, and numerical 
studies of crossing in three-dimensional percolation have been carried out recently [9, 101. 
Note aJ r )  is also designated by ~ ' ( p , ) ,  i7(p,) 1111, and R(p,) [12]. 

The crossing probability zV(r) satisfies 

z d r )  + nv(l /r)  = I ( 4 )  

because a system that does not percolate vertically must percolate horizontally on its dual, 
which is equivalent to the original system in boundary condition and shape, but of reciprocal 
aspect ratio [3]. When r 4 l / r ,  then q + 1 - 7 ,  and (4) is satisfied by (la) and (lb). The 
equivalence of (la) and (Ib)  follows from AS 15.3.6. 

Besides its definition as a crossing probability for a finite system, n,(r) may also be 
interpreted as the probability that the maximum height of the clusters connected to the bottom 
of an infinitely high rectangle of unit width is greater than r (again with free boundaries on 
the sides). It follows that the probability density that the maximum height of those clusters 
just equals r is given by (minus) the derivative of n, with respect to r :  

pmA-)  = - 4 ( r )  (5) 

and the average maximum height is therefore given by 

(6) 
m 

In this paper, I report on some formal simplifications of Cardy's results (lp(3).  These 
were found with the help of the computer math programs MATHEMATICA 2.2 [13] and MAPLE 
V Rel. 2 1141. For some of these calculations, MAPLE proved to be less useful because of its 
(apparently) limited ability with hypergeometric functions, but MATHEMATICA also missed 
some important identities. The series h(s) in (13) below was identified with the help of a 
sequence database [15]. Some of the relations were found by an empirical extrapolation of 
series results rather than by deductive proof, but there is little doubt that they are correct as 
they can be verified numerically to arbitrarily high precision. The results are given in the 
next section, and discussed further in section 3. 

2. Results 

2.1. Elimination of k 

First of all, note that k can be eliminated from (2) and (3) to yield 

To prove this, use Landen's transformation (AS 17.3.29) with m = 1 - kZ and m = 
4 k / ( l  + k ) 2  = I - q, to find K(l - kz )  = 2K(q)/(1 + k )  and K(1 - q )  = (1 + k)K(k2) ,  
respectively. Equation (7)  implies that e-"' is' the Jacobi nome q for parameter q (AS 

17.3.17). 
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2.2. Expansion of nv(r) about r = I 

The point r = 1 corresponds to il = 112. Writing K ( q )  as a hypergeometric function (AS 
17.3.9) and expanding about this point, one finds 

25 45 6 
K ( ; + * ) = -  1 + - X 2 + - X 4 + - x  +... 

16 r($)2 24 

H1/2 

( 
32 17 1054 

63 

where x 9 - f .  Because there are two separate series in this expansion, a somewhat 
complicated expression results for r = K ( f - x ) / K ( i + x ) .  It is thus convenient to introduce 
the quantity (1 - r) / ( l  + r), which is odd under the interchange r + l / r  and odd in x. 
(In [l] and 131, the function Inr,  which is also an odd function of x, is used, but it does 
not lead to simple expressions in this development.) It follows from (8a) that 

a(&)  =xF($ , t ;4 ;4x2) /F( t ,a ;  f;4x2) 

(86) 1054 9 368 11 = x +x3+ 32x5 + 4 3 7  + xx + T X  + ... 
IS 

where a = r(a)2/4r(a)2 
function of y = a ( l  - r)/(l + , r ) :  

2.188439615. This equation can be inverted to find x as a 

x=y-y3+ll .5- ;y7+113 IS,’ 3lSy 9-103 SZSY ” +  ..._ (9) 

Expanding (1) about x = 0 yields 

(Note that nv(r) - 1/2 must be an odd function of x to satisfy (4).) Substituting (9) into 
(10). one finds 

which is the desired expansion. It implies that - ~ i ( l )  =~ ~ f ( 1 )  = 21/3ac/3 x 
0.520246 171. While (11) is useful to find the behaviour of n,(r) for r near 1, it converges 
too slowly to be accurate when r is much greater than 2 or less than 1/2. Consequently, 
another approach was also pursued. 
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2.3. Closed-form expression for z&-) 

I found that zv(r) can also be written 

where 

m 
h(s) = n(l - S 9 4  

That is, explicitly, 

(134 

Additional coefficients that appear in (13c) and (14) are h, = 1, -4, 2, 8, -5, -4, -10, 

26, 0 for n = 0,. . .31. 
Because (14a) converges rapidly for r > 1 and (14b) converges rapidly for r < 1, these 

simple formulae allow z&) to be calculated to high accuracy for all r .  At the worst point, 
r = 1, the three terms in (14a) or (14b) give ~ " ( 1 )  to nine significant figures. That just a 
few terms in such expansions are sufficient was also found by Cardy in the context of other 
models [16-181. The leading exponential behaviour of iTv(r) in (14a) was previously given 
by Cardy [18] and Langlands er al [3]. 

8, 9, 0, 14, -16, -10, -4, 0, -8, 14, 20, 2, 0, -11, 20, -32, -16, 0, -4, 14, 8, -9, 20, 

I arrived at these results as follows. First, using As 17.3.21, (7) can be written 

which can be inverted for small q or large r to yield 

q = 16(q - 8qz + 44q3 - 192q4.. .). (16) 

Next, expand ( I )  in powers of 9,  

zv(r) = c q ' p [ ~  + f q  + &q2 + $ q 3 . .  .I. (17) 

The series for $I3, q4Ia, . . . in powers of q follow from (16). and when substituted into 
(17), they yield~the result 

z v ( r )  = 24/3~[q1/3 - $q7'. . .] (18) 
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where a term of order q4l3 has cancelled out. At this point, I extended the series 
empirically by using the requirement that n,(l) = 1/2. At r = 1, q = e" and 
the abqve two terms already give ~ " ( 1 )  zz 0.499999730085. Hypothesizing that the 
next non-zero term is of order qI3I3 and that its coefficient is an integer divided by 13 
(analogous to the previous terms), I guessed that that coefficient was 2 by calculating 
13(0.5 - 0.499999730085)/(24/3q'3/3c) = 2.01021.. .. Repeating this procedure for 
the higher powers qI9I3. qD13, . . :,  using multipleprecision arithmetic, I found all the 
c0efficients.h. following (14). I then found that the fourth root of h(s)  is simply 
1 - s - s* + s5 + s7 1 SI' - sL5 + sa + sZ6.. ., and the database [15] suggested that the 
reciprocal of this series is the generating function of the number of unrestricted partitions 
of n elements p(n) (AS 24.2.1), which finally led me to the closed-form expressions (13a) 
and (13b). I have since found that [15] also contains the expansion of the nome (15) to 
17th order, and using this in the calculation above leads to the same first nine values of h,. 

While (12) was thus found numerically, there seems to be little doubt that it is 
equivalent to (l), since it can be checked to arbitrary precision using MATHEMATICA or 
MAPLE. For example, r = 2 corresponds to k = 2-l/* and r~ = [(2l/* - 1)/(2]/* + 1)]* = 
0.029437252.. .. and ( l a )  or (16) gives ~ " ( 2 )  = 0.175646893800655239 129..  this 
number is reproduced to 12 digits by the first two terms of (14), and 5-6 additional digits 
are correctly given with each addtional term of (14). 

Note that the five terms in (11) give ~ " ( 2 )  to only 7 digits of accuracy, and each 
additional term adds only one additional digit. 

The point r = 4 corresponds to k = 25/4/(2'/2 + 1)) c 0.029437, q = [(Z114 - 
I)/(2II4 + l)] zz 5.57959 x These exact values of k 
and q for r = 2 and 4 were~found by using the transformations k' = 2k1/*/(1 + k )  
and q' = [(l - (1 - q)'/*)/(l + (1 - q))1/2]2 for r' = 2r, which follow from Landen's 
transformation. 

Equation (12b) was derived from (124 by assuming (4). but the equivalence of these 
two can also be shown directly. It is convenient to consider the derivative of n&), for 
which (12a) gives 

and ~ " ( 4 )  x 0.021630. 

while (12b) gives a similar expression, but with r replaced by I / r  and a coefficient of r-* 
added in front. The equivalence of these two cxpressions is implied by the identity 

which follows from the Poisson summation formula ([19], p 124; also [16]). 

follows from (1). From (l), one has 
Considering the function n;(r)  may also be useful in finding a direct proof that (12) 

Equating this to (21) yields an expression for drldq, which by (7) is equal to -[K(qjK'(I  - 
r ~ )  + K(l - q)K'(q)]/K(q)*. However, a direct proof of the resulting identity is not 
immediately obvious. Note that functions of the type of (13a) and (136) appear quite 
frequently in conformal field theories (e.g. [17]), although not usually as a fourth power. 
This ,result clearly reflects some underlying identities in these Jacobi-type functions. 
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3. Discussion 

Equation (144 shows that n,(r) drops essentidly by a single exponential for r 2 1, 
as noted previously [3, 181. This behaviour suggests a simple interpretation of nv(r) as a 
product of independent probabilities. Increasing r by unity, which corresponds to adding an 
additional square to the rectangular system, reduces the probability of percolating by a factor 
e-np % 0.350919 807 when r is large. This factor is significantly lower than the probability 
that the first square percolates (l/2), evidently because for the first square the bottom of the 
system is completely occupied, while for squares added to a high rectangular system, only 
a fraction of their bottom rows are occupied. This simple exponential behaviour of nv(r) 
(for h, w -+ 00) presumably occurs only at the critical point pc .  

For a finite system, the renormalization-group (RG) fixed point p* is determined by 
p x  = x,(h, w ,  p*) ,  where xv(.'z, w ,  p )  gives the spanning or crossing probability at 
occupation probability p in a finite system of dimensions h x w [12]. When the system 
is made infinite with h / w  = r fixed, p* limits to pc  because nv(h. w. p )  becomes a step 
function in p .  It follows, however, that if pc  # ?I&), then n,(h, w ,  p') will not limit to 
nv(r), and in [6] it is shown that this leads to a slower convergence of p' to pc as w -+ W. 

For a square boundary, this requirement is met by bond percolation on the square lattice, 
where, due to a number of symmetries, p* = lj2 = %(I) for systems of all size, but for 
site percolation, nv(w,  w ,  p') limits to pc  0.592746 as w + w rather than 1/2 [6,20]. 
However, if the aspect ratio is adjusted appropriately, the RG fixed point for site percolation 
can be made to coincide with n&); for such a system, p' will tend to pc  much faster than 
for systems of other shape, as w + w. From (I) or (12) I find that = 0.592746 
corresponds to r = 0.835 668 5, k = 0.092 991 07 and q = 0.688 636 28. Unfortunately, 
this value of r does not correspond to any obvious number (presumably reflecting some 
underlying symmetry in the system) which would imply a closed expression for pe 

For ( r ) ,  (12) implies 

% 1.280 356 234 428 962 546. 

(This numerical value was found by integrating (14a) from 1 to w and (14b) from 0 to 
I ,  requiring the use of just a few terms of those expansions.) Thus, for an infinitely high 
rectangular system, the average maximum height of the clusters connected to the bottom is 
about 1.28. Because ~"(1) = 1/2, it follows that exactly half of the times the maximum 
height is greater than 1, and half the times it is less than 1; the average maximum height 
is greater than 1 because of weighting by r .  The average of the quantity y is, however, 
identically zero, reflecting its symmetry about r = 1. 
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