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Abstract. The hull-gradient method is used to determine the critical threshold for bond
percolation on the two-dimensional Kagomé lattice (and its dual, the dice lattice). For this
system, the hull walk is represented as a self-avoiding trail, or mirror-model trajectory, on the
(3,4,6,4)-Archimedean tiling lattice. The resultpc = 0.524 4053± 0.000 0003 (one standard
deviation of error) is not consistent with previously conjectured values.

1. Introduction

The Kagoḿe lattice (figure 1) is one of the fundamental lattices of two-dimensional
percolation, as well as many other two-dimensional lattice problems. It is one of the
11 Archimedean tiling lattices (in which all vertices are of the same type), designated as
(3,6,3,6) in the notation of [1], which means that each vertex touches a triangle, hexagon,
triangle, and hexagon. The Kagomé lattice is intimately related to other important lattices
in percolation; its sites correspond to the bonds of the honeycomb lattice, which implies that
the percolation thresholdspc for those two systems are the same, 1− 2 sin(π/18), and by
duality they are also equal to one minus the threshold for bond percolation on the triangular
lattice [2].

For bond percolation on the Kagomé lattice, no exact expression forpc is known,
although two conjectures were made a number of years ago, both within the larger context
of the q-state Potts model from which percolation follows in the limit ofq = 1. Wu [3]
conjectured thatpc is the solution to

p6− 6p5+ 12p4− 6p3− 3p2+ 1= 0 (1)

which yields

pc(Wu) = 0.524 429 718. (2)

Subsequently, Enting and Wu [4] showed that the general conjecture is not valid forq = 3,
thereby casting doubt on its validity forq = 1. Tsallis [5] conjectured thatpc satisfies

−p3+ p2+ p = 1− 2 sin(π/18) (3)

which yields

pc(Tsallis) = 0.522 372 078. (4)
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Figure 1. The Kagoḿe lattice, showing a path of bonds that represent the occupied bonds of the
frontier of the percolating region, which is above it (gradient increases in the vertical direction).
The broken curve shows the hull walk, which ‘bounces’ back and forth between centres of the
occupied and vacant bonds of the hull.

Note that the quantity on the right-hand side of (3) is identical to the threshold for site
percolation on the Kagoḿe lattice and is the solution to the cubic equationy3−3y2+1= 0,
so it follows that (4) is the solution to the ninth-order equation

p9− 3p8+ 8p6− 6p5− 6p4+ 5p3+ 3p2− 1= 0. (5)

The only existing numerical values ofpc of relatively high precision appear to be those
of Yonezawaet al [6], who found 0.5244± 0.0002, and van der Marck [7], who found
0.5243± 0.0004. These results clearly favour Wu’s value over Tsallis’. Note that Huet al
[8] have also recently presented numerical evidence that Wu’s conjecture still works quite
well (and better than Tsallis’) for the Potts model of variousq. In order to investigate the
validity of these conjectures further, and to provide an accurate value ofpc for use by others
[9], we have carried out a new numerical study to determine the percolation threshold for
bond percolation on the Kagomé lattice.

2. Method

The method we employ is the hull-gradient method [10], in which the gradient-percolation
frontier is created by a hull-generating walk. In gradient percolation [11, 12], a linear
gradient inp is imposed on the lattice in the vertical direction; as the height increases, the
occupied bond densityp also increases. The estimate ofpc is related to the average position
of the frontier of the percolating region. To simultaneously create and measure that frontier,
a hull-generating walk is employed [13, 14]. In this walk, the status of a bond (whether
occupied or vacant) is determined when the bond is visited by generating a random number
and comparing that number with the occupation probability for that height.

The efficiency of this method derives from the fact that in the hull-generating method,
the entire lattice is not full before the walk begins. Rather, the lattice is initialized with all
bonds undetermined, and the state of the bonds are decided only when they are visited. If
the walk does not reach a given bond, then the status of that bond remains undetermined,
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Figure 2. The (6,4,3,4)-Archimedean lattice, on which the hull walk of figure 2 effectively
takes place. The trajectory of the walk is equivalent to a mirror-model trajectory [21, 22] on the
(6,4,3,4)-lattice, in which the bonds on the underlying Kagomé lattice act as the mirrors.

and no random number need be generated. The error of this method is at the statistical
limit 0.5N−1/2, whereN is the total quantity of random numbers generated. Previously,
we used the hull-gradient method to findpc for site percolation on the square lattice to
six significant figures, 0.592 7460± 0.000 0005 [10, 15]. This value was confirmed using
a different method (also implemented using hulls) [16], and is consistent with the most
precise value 0.592 77±0.000 05 [17] obtained using the more traditional average crossing-
probability method [18]. In [10], we also applied the hull-gradient method to determinepc
for site percolation on the Kagoḿe lattice, and found a value (0.652 704± 0.000 009) in
agreement with the theoretical prediction mentioned above.

For bond percolation, the hull walk simplifies to a trajectory that ‘bounces’ back and
forth between the centres of the occupied and vacant bonds of the hull, as first noted by
Grassberger [19] for the case of bond percolation on the square lattice. For the Kagomé
lattice, a similar method can be used. As shown in figure 1, the walk moves along line
segments that connect centres of adjacent bonds. These line segments produce a new lattice
whose topology is the Archimedean (6,4,3,4)-lattice [1] shown in figure 2. Here, the walker
turns clockwise when an occupied bond is hit, and anticlockwise when a vacant bond is
hit, so that the bonds are effectively rotators [20] or mirrors [21, 22] on the vertices of the
(6,4,3,4)-lattice. An occupied bond (probabilityp) on the Kagoḿe lattice corresponds to a
mirror placed tangent to the vertex of the hexagon on the (6,4,3,4)-lattice, while a vacant
bond (probability 1−p) corresponds to a mirror that intersects the hexagon. The hull walk
is then a mirror-model trajectory [21, 22] on the (6,4,3,4)-lattice.

Many other representations of the hull walk can also be made. The vacant bonds on the
Kagoḿe lattice can be associated with occupied bonds on the dice (or ‘diced’) lattice shown
in figure 3, which is dual to the Kagoḿe lattice, and the walk creates a hull on that lattice
also. The hull trajectory is also a self-avoiding trail on the directed (6,4,3,4)-lattice, with
opposing direction vectors at each vertex. The hulls on this lattice can also be produced
by a random tiling similar to [23], with ‘kite’-shaped tiles having weightsp and 1− p as
shown in figure 4.

In gradient percolation, the hull of the percolating region resides on bonds whose average
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Figure 3. The same hull as in figure 2 on the dice (or ‘diced’) lattice, the dual to the Kagomé
lattice. Vacant bonds on the Kagomé lattice correspond to occupied bonds on the dice, and
pc(dice) = 1− pc(Kagoḿe).

Figure 4. A tiling representation of the hull walk on the Kagomé lattice, shown in the central
part of the figure. The tile marked with probabilityp corresponds to an occupied bond on the
underlying Kagoḿe lattice, while the one marked 1− p corresponds to a vacant bond.

value ofp gives an estimatepc(g), which approachespc as the gradientg ≡ |∇p| goes to
zero [11, 12]. Equivalent to taking the average value ofp on bonds of the hull, one can
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Figure 5. The representation of the (6,4,3,4)-lattice on a rectilinear
grid, as utilized in the computer program’s two-dimensional array.

simply take as the estimate [12]

pc(g) = nocc

nocc+ nvac
(6)

since the expected fraction of occupied bonds in the hull equals the average value ofp of
the vertices that belong to the hull. Here,nocc is the number of vertices corresponding to
occupied bonds andnvac is the number of vertices corresponding to vacant bonds in the
hull.

To represent the (6,4,3,4)-lattice on the computer efficiently, it is necessary to transform
it to align on a rectilinear grid. One way to do this is shown in figure 5, where the basic
rectangle of six sites is repeated in every second column and every third row. While we
have distorted the lattice laterally to accommodate the square lattice periodicity, we have
not shifted any vertices vertically with respect to each other, so as not to affect the gradient
in the vertical direction. In producing that gradient, we made the change inp proportional
to the actual height, so that changes between the wider rows in figure 2 equal twice the
change of the narrower ones. The gradientg is defined here byg = 1p/` where1p is
the change ofp between the wider rows, and̀is the bond length, taken to be unity. (We
also considered two alternate representations where the gradient was not precisely uniform
on a local scale; the behaviour of these systems is discussed in the appendix.) A three-
dimensional array was used to store the six possible outgoing directions based upon the two
incoming directions, the six types of vertices, and the status (occupied or vacant) of the
vertex.

The lattice was initialized by filling the first column halfway with occupied bonds and
the rest with vacant bonds, which prevents the walk from closing on itself at the start. With
the gradient in the vertical direction, the walk naturally drifts to the right. Periodic boundary
conditions were applied in the horizontal direction, and each new column to the right was
cleared off as it was first visited. This allows the simulation to run indefinitely and have
essentially no boundary effects from the horizontal ends of the system. We tracked the
maximum distance the walk wandered to the left of the moving front in order to confirm
that the system width was sufficient to preclude wraparound errors.

To rule out systematic errors related to random number generation, three different
generators were tried. For most of the runs we used the shift-register sequence generator
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R7(9689) [16, 24] defined by

xn = xn−471
∧xn−1586

∧xn−6988
∧xn−9689 (7)

where∧ is the bitwise exclusive or operation. This ‘four-tap’ generator is equivalent to
decimating by 7 (taking every seventh term) of the sequence generated by the two-tap rule
R(9689),xn = xn−471

∧xn−9689, which follows from [25]. This decimation has the effect
of vastly reducing the three- and four-point correlations of the two-tap generator, and was
previously found to yield good behaviour for problems of this type [26]. For the system
with the second smallest gradient, we considered two additional random number generators.
The second generator, R21(9689), was obtained by further decimating R7(9689) three times,
simply by using every third number, which may yield better statistical properties. For the
third generator, we used a traditional congruential generator CONG, but with a very large
modulus of 64 bits [27]:

xn = (5081 641 266 417 562 522xn−1+ 11) mod 264. (8)

First, to study the general finite-size behaviour, we considered lattices of height
H = 128, 256, 512, 1024, 2048 and 4096, with widths sufficient to avoid wraparound error,
andp ranging all the way from 0 to 1. For these systems,g = 1.5/H , the factor of 1.5
resulting from the changing increment ofp between the wide and narrow rows as described
above. Approximately 1011 occupied plus vacant vertices were generated for each of these
lattices. Then, to obtain a precise final value, we used systems with very small gradients
g = 2.564× 10−5 and 7.324× 10−6 by using lattices of height 4096 and 8192, withp
ranging from 0.49 to 0.56 and from 0.505 to 0.545, respectively; 2×1012 steps were carried
out for each of these systems. In all, several months of workstation computer time were
used to obtain the final results.

In the simulations, we kept track of the maximum and minimum heights of the hull. As
g decreases, the relative width of the walk decreases asg3/7 [12], allowing us to expand the
gradient as mentioned above. Note that we also carried out runs on a system of height 64,
but ran into difficulty because the walk wandered all the way to a top or bottom boundary
where it got stuck in a dead end. Presumably, this could be averted by constructing those
boundaries more carefully, but we did not attempt to do it.

3. Results and discussion

First we compare the three random number generators. Table 1 gives the results for runs
for g = 2.564× 10−5, where all generators were used. Error bars represent one standard
deviation, and follow from the statistical formula [pc(1 − pc)/N ]1/2 ≈ 0.5N−1/2 where
N = nocc+ nvac, since the occupancy of each vertex is achieved with complete statistical

Table 1. Results forpc(g) given by (6) for runs with heightH = 4096 and gradient
g = 0.000 025 64, using three different random number generators (RNG).N is the total number
of occupied and vacant bonds generated, andσ represents one standard deviation of error (68%
confidence interval).

RNG N pc(g) σ = 0.5N−0.5

R7(9689) 1.0× 1012 0.524 4048 ±0.000 0005
R21(9689) 0.5× 1012 0.524 4053 ±0.000 0007
CONG(64-bit) 0.5× 1012 0.524 4059 ±0.000 0007
Average 2.0× 1012 0.524 4052 ±0.000 0004
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Figure 6. A plot of the estimatepc(g) determined by (6), versus the gradientg, implying the
linear relation (9). The error bars represent one standard deviation of statistical error.

independence. Clearly, the three random number generators give statistically consistent
results, and we thus averaged their results to get the final data point for thisg.

Our complete results are shown in figure 6, where we plotpc(g) versusg for all the
lattices we considered. This plot provides good evidence that the dependence ofpc(g) upon
g is linear (as observed by Rossoet al [12] for the case of site percolation on the square
lattice) with the behaviour

pc(g) = pc + 0.010g. (9)

The slope 0.010 implies that the average value ofp differs from pc by an amount
corresponding to one hundredth of a lattice spacing, independent of the gradient. For
g = 2.564× 10−5, this implies a finite-size correctionpc(g) − pc = 2.6 × 10−7 that
is somewhat smaller than the error bars given in table 1. Forg = 7.324× 10−6, the
simulations of 2.2× 1012 steps using R7(9689) yielded 0.524 4055± 3.4× 10−7. Here, the
finite-size correction is insignificant compared with the statistical error. Combining these
results, we obtain our final result

pc = 0.524 4053± 0.000 0003. (10)

This result is consistent with—but nearly 1000 times more precise than—previous values
[6, 7]. It evidently agrees with neither Tsallis’ nor Wu’s predictions, although the difference
with Wu’s approximate conjecture is remarkably small, only 47 parts per million (but still
much larger than our error bars of less than one part per million). Note that it would
be quite difficult to observe this small difference inpc using conventional methods, (e.g.
[6–8, 17, 18, 28, 29]).

If neither Wu’s nor Tsallis’ conjecture is valid, is there perhaps some other simple
polynomial that yieldspc? In the absence of a theory, we can search numerically for possible
candidates consistent with our numerical result. However, if we allow the maximum order
of the polynomial to be six, and the integer coefficients to be as large as say±24 (except
for the leading coefficient, which we restrict to unity), then we find literally thousands of
polynomials with roots within two standard deviations of (10). Some examples are:

p4+ 7p3+ 17p − 10= 0 pc = 0.524 405 335 (11a)

p4− 24p2+ p + 6= 0 pc = 0.524 405 671 (11b)

p5− 2p4− 2p3+ 16p2− 4= 0 pc = 0.524 405 424 (11c)



5358 R M Ziff and P N Suding

p5+ 5p3− 8p2+ 18p − 8= 0 pc = 0.524 404 863 (11d)

p6+ 3p5− 3p3+ 12p − 6= 0 pc = 0.524 405 290 (11e)

p6+ 5p5+ 7p3− 5p2+ 6p − 3= 0 pc = 0.524 405 306 (11f)

p6+ 3p5+ 9p4− p3+ p2+ 2p − 2= 0 pc = 0.524 405 134. (11g)

Note also that( 11
40)

1/2 = 0.524 404 424 is only slightly low. Unfortunately, it is not possible
by numerical means to determinepc with sufficient accuracy to distinguish which of these
many polynomials is the correct one (if indeed one is!).

Note finally that (10) implies that the bond threshold of the dice lattice shown in figure 3
is given by

pc(dice) = 1− pc(Kagoḿe) = 0.475 5947± 0.000 0003. (12)

Appendix

Besides the system described above with the gradient applied completely uniformly, we also
considered two systems in which gradient was not constructed so precisely on a local scale,
and it is instructive to see their effects on the finite-size behaviour. First, we squared-off
the (6,3,4,3)-lattice by ‘stretching’ it horizontally, leading to a lattice similar to figure 5
but rotated by 90◦. Thus, we effectively pushed up and down alternating columns in the
original lattice, and the gradient was applied equally between all the rows in this distorted
lattice. The idea was that these local variations should have little effect on the behaviour
when the gradient is small. However, the deviations turned out to be rather large, until the
gradient dropped to about 0.002, as shown in figure 7 (case A). As a second test (case B in
figure 7), we represented the lattice as in figure 5, but applied the gradient equally between
all rows, whether ‘wide’ or ‘narrow’. Again, the behaviour of the finite-size corrections to
pc(g) differed from the uniform case, but not as much here. In the limit ofg small, where
p changes very little from row to row, all systems followed the same limiting finite-size
behaviour as (9). These results show, however, that for the linear behaviour to remain valid
for moderately large gradients, a uniform gradient must be applied to the lattice in its actual
configuration.

Figure 7. A similar plot as in figure 6, with data from two systems (case A, broken curve
through data points, and case B, full curve through data points) in which the gradient is not
locally uniform, as described in the appendix. The full line represents the fit of the data of
figure 6 for the system the uniform gradient. For smallg, all systems follow the same asymptotic
behaviour.
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