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Abstract. Extensive Monte Carlo simulations were performed to evaluate the excess number
of clusters and the crossing probability function for three-dimensional percolation on the simple
cubic (s.c.), face-centred cubic (f.c.c.), and body-centred cubic (b.c.c.) lattices. Systems
L x L x L’ with L > L were studied for both bond (s.c., f.c.c., b.c.c.) and site (f.c.c.)
percolation. The excess number of clustarger unit length was confirmed to be a universal
quantity with a valueb ~ 0.412. Likewise, the critical crossing probability in ttg direction,

with periodic boundary conditions in thex L plane, was found to follow a universal exponential
decay as a function of = L’/L for large r. Simulations were also carried out to find new
precise values of the critical thresholds for site percolation on the f.c.c. and b.c.c. lattices,
yielding p.(f.c.c.) = 0.199 2365+ 0.000 0010,p.(b.c.c.) = 0.245 9615+ 0.000 0010. We also
report the valuep.(s.c.) = 0.311 6080+ 0.000 0004 for site percolation.

1. Introduction

The standard percolation model [1] involves the random occupation of sites or bonds of a
regular lattice. At a critical occupation probabilipy, the mean size of clusters of occupied
sites becomes infinite, while the number of clusigis) per site or per unit volume remains
finite with n. = n(p.).

The value ofr, depends on the microscopic characteristics of each system, and because
of this it is a non-universal quantity. For two-dimensional (2D) systems, precise numerical
values ofn, for bond and site percolation on the square and triangular lattices were found
by Ziff et al [2], whose results for bond percolation confirmed the theoretical predictions of
Temperley and Lieb [3] and Baxtet al [4]. In three dimensions, there are no theoretical
predictions fom,., and its values for different systems apparently have not been reported in
literature.

In [2], it was also found that thexcessnumber of cluster$ = lim,_, ., LL (n(L, L") —
ne), withr = L'/L = fixed, wheren(L, L) is the number of clusters per unit area in a finite
system of sizd. x L’ with periodic boundary conditions, is a universal quantity that depends
only upon aspect ratie. (Note that in [2], the authors definedas clusters per site rather
than per unit area, but the result fbiis the same.) This universality is consistent with the
theoretical arguments of Privman and Fisher [5], and has also been discussed by Aharony
and Stauffer [6], and by Mler [7] for the Ising model. Kleban and ziff [8] introduced an
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Table 1. Values of p. for bond and site percolation on the b.c.c., f.c.c. and s.c. lattices from
present (*) and other recent work. The numbers in parentheses represent the errors in the last

digit(s).
System De Reference  Value used here
b.c.c. (bond) @803 [1]

0.18022) [30]

0.180287%10) [23] 0.1802875
b.c.c. (site) @46 [1]

0.24582) [30]

0.245961%100 *
f.c.c. (bond) 0119 [1]

0.120012) [30]

0.120163%10) [23] 0.1201635
f.c.c. (site) 0198 [1]

0.19942) [30]

0.199236%100 * 0.1992365
s.c. (bond) @488 [1]

0.24872) [30]

0.24882) [31]

0.248 7513 [32]

0.2488143) [33]

0.2488122) [26]

0.24881245) [23] 0.2488126
S.C. (site) @116 [1]

0.31144) [30]
0.31160510)  [26]
0.311 6046) [33]
0.311 6035) [21]
0.31160Q5) [34]
0.311608113) [27]
0.31160804)  [9]

excess number per unit Iengfhz lim,_ o b(r)/r = lim;_, o L?(n(L, L") — n,) for long
cylindrical systems.’ > L, and derived exact results for bobitr) andb in 2D systems.
Again, however, no theoretical predictions foin three dimensions exist.

In this paper, we determine. and b for various 3D rectangular solid systems of
dimensionsL x L x L' with L’ > L. We consider bond percolation on the simple cubic
(s.c.), body-centred cubic (b.c.c.), and face-centred cubic (f.c.c.) lattices, and site percolation
on the f.c.c. lattice.

A prerequisite to finding the value of. for each of these systems is knowing the
critical occupational probabilityp. to high accuracy. Previously, accurate values were
found for bond percolation on all three lattices and site percolation on the s.c. lattice only,
as summarized in table 1. To round out these values, we carried out simulations to determine
p. for site percolation on the b.c.c. and f.c.c. lattices to high accuracy—although we used
only the latter in the study of the excess cluster number, since the universality was clearly
confirmed with the four systems that we studied. In another work [9], we have studied site
percolation on the s.c. lattice, and also report this result in table 1.

The simulations for finding:. were also used to study the critical crossing probability
for the 3D systems. The crossing probability functiofi®) of a system of shapE gives
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the probability that at least one cluster connects two disjoint pieces of the bouiidaaynd
has been of much recent interest following the realization that it is a fundamental, universal
property of percolation, independent of the underlying lattice type, and subject to conformal
invariance [10-13]. In two dimensions, Cardy [11] derived an explicit expression for the
vertical crossing probabilityr, of rectangular systems x L', with open boundaries in the
horizontal direction, and Watts [14] derived an expression for the probability of vertical but
not horizontal crossing for this system. The for 2D systems with periodic (and other)
boundary conditions was studied by Hovi and Aharony [15]. A number of systems were
also studied by various groups including ldtial [16], Hsu et al [17], Gropengiesser and
Stauffer [18], and Vicsek and Ké&sz [19]. In three dimensions, work has been restricted
to simple cubical boundaries x L x L, with crossing studied between two opposite planes
and various boundary conditions on the sides [16, 20, 21].

Here we findx, for the L x L x L’ systems for allL’ by measuring the distribution
of the maximum height of clusters connected to the base of the rectangular system. (A
similar method was used in [22] for 2D systems.) We consider crossing ih’tdegection
for systems with periodic boundary conditions in thex L plane, and show that, is a
universal function of = L’/L for large L.

In the following three sections we report on the determination of the new valugs of
the determination of. andb, and the determination of,(r). The results are summarized
and discussed further in the conclusions section.

2. Percolation thresholds

Precise values for the thresholds for bond percolation on all three lattices, and for site
percolation on the s.c. lattice, have been found elsewhere. Here we also determine accurate
values for site percolation on the f.c.c. and b.c.c. lattices. A summary of our results and
other recent results is given in table 1.

The procedure we used to fing was similar to that we used for bond percolation in
[23]. We grew individual clusters by a Leath-type algorithm and identified the critical point
using an epidemic scaling analysis. A virtual lattice of 2048es was simulated, using
the block-data method first described in [24]. There were only two minor changes made
to the simulation of [23] so that it could be used to study site percolation. First, as the
clusters were grown, the sites were either occupied with a probahilityr left vacant with
a probability, 1— p. If a site was determined to be vacant, then (unlike in bond percolation)
it was never revisited as a potential growing site. The other difference is the cut-off for the
growth of these clusters was set t& 2524 288) wetted sites, as opposed i (1048 576)
and 2! (2097 152) in [23].

The simulation yielded the fraction of clustePss, p) that grew to a size greater than
or equal tos sites. Whenp is nearp., one expects® (s, p) to behave as

P(s, p) ~ As” T f((p — pe)s”) ~ AsZT[1+ C(p — pe)s” + -] 1)

wheret ando are universal exponents [25]. Here we assumed the value.189 and

o = 0.445, consistent with other 3D work [23, 26, 27]. As in [23], plotss6f2P (s, p)
versuss? for site percolation of the b.c.c. and f.c.c. lattices were used to find the value of
the percolation threshold, which corresponds to horizontal behaviour for lamyesuch a
plot. In all, we generated.d x 10’ clusters for the f.c.c. lattice and2x 10’ for the b.c.c.
lattice for a range of values gf requiring several weeks of workstation computer time.
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The results are plotted in figure 1 and imply the following values for the critical thresholds:

pc(b.c.c.) = 0.245 9615+ 0.000 0010

2
p.(f.c.c.) =0.199 2365+ 0.000 0010 @

These results are consistent with (and more than 1000 times more precise than) previous
work, as shown in table 1.

3. Values ofn, and the finite-size correctionb

Using the values of the critical thresholds given in table 1, we carried out simulations to
measure the number of clusters for bond percolation on each of the 3D lattices and site
percolation on the f.c.c. lattice. Clusters were grown successively from every unvisited
site by a growth algorithm [28] on a 3D square barx L x L’ with L’ > L. Periodic
boundary conditions were assumed in each horizontal plane. (Here, vertical is taken to be
the L’ direction.) The first cluster was started in the upper left-hand corner of the first
plane ¢ = 0) at the point(0, 0, 0). From this corner, a cluster was grown to the nearest-
neighbouring sites as defined for each system by the unit vectors in [23], occupying the
connecting bonds or neighbouring sites with a probability,and leaving them unoccupied

with a probability, 1— p.. After the first cluster was grown, a new cluster was seeded from
the first unoccupied site in the left-most column, and grown until it died. After all sites of
the first plane were tested, the growing plane was moveg=tdl, and so on. Because the
previous planes were completely occupied, their data could be discarded and the memory
recycled. Furthermore, the clusters never extended up to a plane of digtan82L from

the growing plane. As a consequence, a system of kizeL x 32L could be used to
effectively simulate @ x L x oo system by wrapping around in the third direction.

We ran simulations td.’ = 2 x 10°, with L = 4, 5, 6, 7, 8, 10, and 12 for the s.c.
lattice, L = 4, 6, 8, 10 and 12 for the f.c.c. lattice (both site and bond), And 4, 6, 8,

10, 12, and 16 for the b.c.c. lattice. In total, we greWd6lx 10' clusters for the b.c.c.
lattice, 188 x 102 clusters for the s.c. lattice,44 x 102 clusters for bond percolation on
the f.c.c. lattice, and.32 x 10! for site percolation on the f.c.c. lattice, which required
several additional months of computer time.

In figure 2, we display a representative 4 plane of each of the three lattices, showing
how the lattices were oriented in our simulations and how the unit dimension was defined.
For modelling the s.c. lattice, the plane shown in figuri&) 2¢ repeated for the whole length
of the cylinder, while for the other two lattices, the plane shown in the figure is repeated
on every other plane. In the case of the s.c. lattice, all of the available sites in the plane
are considered active, for the f.c.c. lattice, only half of the underlying cubic-lattice sites are
active, and for the b.c.c. lattice, only a quarter of the cubic-lattice sites are active. Note
that the unit dimension that we define for the b.c.c. and f.c.c. lattices is neither the unit cell
dimension nor the nearest-neighbour distance, but half of the unit cell dimension.

Now, for a finite system of volum& with periodic boundary conditions, analogous to
what was found in [2] for two dimensions, we expect

P
n=~n.+—+—
Vv o v2

where b, representing the excess number of clusters in this finite system, is universal, a
function of the shape only. Here we studied< L x L’ systems, wheré’ > L, with the
volume given byV = L?L’. For systems of this shape, we expect the excess number of

4+ .- (3)
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Figure 1. Plot of s™2P(s, p) versuss® for (a) f.c.c. and b) b.c.c. lattices using = 2.189
ando = 0.445. Each curve represents a different valugppfvhich are (from top to bottom)
(a) 0.1992375, 0199 2365, and 199 2355, andk) 0.2459625, 459615, and 245 9605.
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Figure 2. Representative 4 4 planes for thed) s.c., b) f.c.c.,, and €) b.c.c. lattices. The

full circles represent active sites in the plane and open circles represent active sites in the
neighbouring planes. The full lines represent bonds in the plane and broken lines represent
bonds which go to the neighbouring planes.

clusters per unit length/(L’/L) to be a constant, i.e.
b~bL'/L (4)
for L’ > L. Then it follows from (3) that

% + 76 +o (5)

Note that to obtain this form we wrote = &(L'/L)?. The justification for choosing this
form for ¢ is that it allowsn to be independent of’ (necessary because (5) represents the
limit L’ > L) and this form is supported by numerical observations as shown below. While
terms of fractional order irl. may also appear in the series fbr we have not observed
them numerically in this work.

In (5), bothb andb are functions of the system shape only and are universal quantities,
but ¢ and ¢ vary from system to system and are not universal. Equation (5) implies that
n. can be found from a plot of versus ¥L3, as shown in figure 3 for our data from the
b.c.c. lattice. The values of., which are shown in units of number of clusters per unit
volume as defined in figure 2 for the various lattices, are given in table 2. These values
can be converted to units of number of clusters per site by taking into account that the s.c.,
f.c.c., and b.c.c. lattices have i and%1 sites per unit volume, respectively.

Equation (5) can be rearranged as

n=n,+

O
(n—nc)L3=b+ﬁ+-~-. (6)

Therefore, once:. is determined) andé can be found from a plot ofn — n.)L3 versus
1/L3. Figure 4 shows this plot for the systems that we studied. The resulting values of
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Figure 3. Plot of n versus ¥L3 for bond percolation on the b.c.c. lattice. The intercept of this
plot yieldsn. and the slope yields according to equation (5).

Table 2. Values ofn, (clusters per unit volume), andé for the systems studied.

System ne b ¢

s.c. (bond)  @72931@5) 0.4143) 6.0(7)

fc.c. (bond) 0153844Q5) 0.4143) —1.4(3)
f.c.c. (site) 0013265%5) 0.4093) —1.8(3)

b.c.c. (bond) ©74586@5) 0.4093) —5.5(7)

andé for each of the systems are listed in table 2. A universal value-6f0.412+ 0.002
is obtained from these results. Note that the linearity of the plot in figure 4 provides fairly
good confirmation that the third term in (5) is indeed proportional t8.

4. Critical crossing probability

Our simulations fom,. could also be used to obtain, by comparing the distance from the
growth plane to the maximum height plane. If this distance is greater than or equal to some
fixed valueL’, then crossing will occur in al, x L x L’ system (with periodic boundary
conditions in eaclL x L plane). In other words, we could determimg(L, L, L') for all L’
by keeping track of the distribution of distances between the growth plane and maximum
height planes in our continuous simulations.

In two dimensions, the probability of crossing a system of aspect ratibieight/width
in the vertical direction, with periodic boundary conditions in the horizontal direction, is



8154 C D Lorenz and R M Ziff

0.44

0.435 F

043

0.425 F

042 +

(n-nc) L3

0415

041 \Ll\&\
L i

0.405 =

04 F

0‘395 i i i I I
0 0.001 0.002 0.003 0.004 0.005 0.006

1/L3

Figure 4. Plot of (n — n.)L3 versus ¥L3 for the b.c.c. (bond), f.c.c. (bond), f.c.c. (site), and
s.c. (bond) (from top to bottom) systemsat In these plots, the intercept represents the value
of b and the slope is the second correction térnThe values ob and¢ are listed in table 2.

given by [13, 29]

5
JTU(V) ~ a—21r(2—D) — @ u"" (7)

for large r, where D = ?1—; is the 2D fractal dimension. Equation (7) follows from a

conformal transformation from an annulus to a rectangle, using that the probability a cluster
extends beyond a radial distande scales asR?~¢. We have separately verified that
equation (7) holds accurately for allsomewhat greater than 1.

For 3D systems, while it is still true that the radial probability scalesR&s?, we
cannot connect it tar, of the L x L x L’ system, because we cannot make a conformal
transformation between the concentric spheres and a rectangular solid. However, we still
expect an exponential dependence upen L’/L, because that term represents the smallest
eigenvalue of the transfer matrix. We thus hypothesize

T, ~ Ke ™" (8)

for larger. To check this, we plot I, versusr in figure 5, which contains the results from

all four systems studied, fat = 8, 10, and 12. To get the best data collapse, we defined
r = (L’+¢)/L, which allows for a lattice finite-size effect or boundary extrapolation length
in the L’ direction, in which the effective location of the free boundary is not uniquely
defined [22]. (Such an ambiguity in size does not occur in khdirections, because of

the periodic boundary conditions.) In fact, the data for all three bond percolation systems
collapsed nicely witht = —1.3, while the data for site percolation on the f.c.c. lattice
required a constant of = 1.36 to fall on the same curve. Figure 6 shows the effect of

¢ by comparing an enlarged portion of our data from the s.c. (bond) lattice Wher0
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Figure 5. Plot of Insr, versusr = (L' +¢)/L for the b.c.c. (bond) (broken curves), f.c.c. (bond)
(dotted curves), f.c.c. (site) (also dotted curves), and s.c. (bond) (full curves) lattices of size
L x L x L' with L = 8, 10, and 12 ap.. In these plots, the intercept represents the value of
In K and the slope is:. The values of Ik andm are 075+ 0.05 and 137+ 0.01.

and¢ = —1.3. The corresponding values af and InK are 137+ 0.01 and 075+ 0.05,
respectively.

The exponential form of (8) can be understood as follows. For each additional cube
added to al. x L x L’ system, (8) states that, decreases by a factor of &8 ~ 0.254.
For large L', these factors are statistically independent, implying the exponential form.
However, for smallL’ the probability will be affected by the complete occupation of the
first plane, which is reflected in the coefficiekitas well as higher-order terms not included
in (8).

5. Discussion of results

Our values for the critical thresholds of site percolation on the f.c.c. and b.c.c. lattices are
listed in table 1. Along with the other results which are summarized in that table, the
thresholds of all three 3D systems, for both site and bond percolation, are now known to a
very high accuracy.

Table 2 listsn., b and ¢ for the four systems studied. Our simulations confirm that
is universal in three dimensions as in two dimensions [2], with a valae0.412. In two
dimensions, the corresponding valuebis= (5v/3)/24 = 0.360 844 . . [8].

The average density of clusters per sitg, varies from system to system, as expected.
The values fom, in table 2 show that the simple cubic is the most dense system, according
to the convention we used to define the unit volume of the system.

Our simulations have also shown thaf is universal as shown in figure 5, and
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Figure 6. Plot of Inm, versusr = (L' + ¢)/L for an enlarged portion of the data from the
s.c. (bond) lattice of sizé x L x L’ with L = 8 (square), 10 (circle), and 12 (triangle) at.
The upper three curves show the data plotted With 0, and the bottom curve shows the data
collapse wher? = —1.3 is used.

possesses an exponential decay (8) with= 1.37 + 0.01, compared with a value of
57 /24 = 0.654498 .. in two dimensions. For a cubical systeth & L x L or r = 1),
equation (8) implies a value of, = 0.54 4 0.04, while a direct analysis of our data at
that point yields the more precise valag = 0.573+ 0.005. The latter value is somewhat
higher than the result.913+ 0.005 recently reported by Acharyya and Stauffer [21] for a
system with helical boundary conditions in the plane, which are similar to periodic boundary
conditions but with the rows shifted by one. We believe that in the limit of ldrgbese
two boundary conditions should be equivalent, although this belief is not supported by the
discrepancy in the values seen above.

Many additional questions are raised for 3D systems. Whiatisr”) wherer’ = L'/L
andr” = L"”/L for an L x L' x L” system (with periodic boundary conditions in all
directions)? What is the effect of helicity or a twist of the ordein the periodic boundary
conditions? Isb related to the number of ‘percolating’ clusters per unit length (however
precisely that may be defined)? Finally, can one devise a system that conformally transforms
to concentric spheres, so that the crossing probability across that system will be given by a
formula analogous to (7)?
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