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Abstract
Genetic learning algorithms are widely used to control ultrafast optical pulse
shapes for photo-induced quantum control of atoms and molecules. An
unresolved issue is how to use the solutions found by these algorithms to learn
about the system’s quantum dynamics. We propose a simple method based
on covariance analysis of the control space, which can reveal the degrees of
freedom in the effective control Hamiltonian. We have applied this technique to
stimulated Raman scattering in liquid methanol. A simple model of two-mode
stimulated Raman scattering is consistent with the results.

(Some figures in this article are in colour only in the electronic version)

The central challenge of coherent control of quantum dynamics is to find the optimal path to
guide a quantum system from its initial state to some target final state [1, 2]. Several theoretical
methods have been developed to aid this search [3, 4], and there has been considerable
experimental success as well [5–7]. However, in all but the simplest systems, the search is
hampered by incomplete knowledge of the system Hamiltonian. Strongly coupled systems
such as large molecules in condensed phase are so complicated that it is nearly impossible to
calculate optimal pulse shapes in advance.

Feedback learning algorithms overcome this limitation by using the physical system itself
to explore its own quantum dynamics through an experimental search [8]. A typical search
experiment compares the ability of several thousand different shaped laser pulses to transform
the system |ψ〉 from its initial state at time t = 0 to some desired target state |χ〉 at a later
target time t = T . Examples of transformations that have been studied include molecular
photodissociation, atomic photoexcitation and photoionization. The pulse shapes are selected
through a fitness-directed search protocol, such as a genetic algorithm [9]. The fitness is a
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measured quantity proportional to the objective functional J [H ; xi], which is the square of
the projection of |χ〉 onto |ψ〉 at the end of the experiment:

J [H ; xi] = |〈χ(T )|ψ(T )〉|2. (1)

J depends on the Hamiltonian H for the system evolution, which depends in turn on the
laser electric field E(t) determined by the settings of the n pulse shape control parameters xi ,
i = 1, . . . , n. J reaches its extreme value for the optimal pulse. This pulse can be calculated
using optimal control theory if H is known [4, 10]; otherwise, it must be discovered through
the learning search.

Several recent papers have suggested modifications or extensions of learning feedback
that can measure properties of the system Hamiltonian [11–15]. Here we propose a different
approach based on the analysis of the trial experiments. We will show that the ensemble of
trial pulse shapes can reveal essential features of the dynamics.

Genetic algorithms and similar evolutionary search strategies have many different
variations [16]. Our implementation starts with approximately 50 randomly generated optical
pulse shapes produced by spectrally filtering an ultrafast laser pulse [17]. Each pulse shape
is described by a column matrix of control parameters xi called a genome consisting of about
25 numbers (genes), each encoding the amplitude and/or phase of a different segment of the
optical spectrum. The control target is measured for each pulse shape. Then the algorithm
creates a new generation of pulse shapes by combining attributes of the fittest members of the
previous generation [18]. After several generations, the pulse shapes usually cluster near high
fitness regions of the search space. When the algorithm finds a pulse shape or several shapes
that cannot be improved over many generations, the search stops, and the highest fitness pulse
shape is declared the optimal solution to the search. We test 1000 to 10 000 pulse shapes in
a typical experiment. We maintain a record of every pulse shape, its fitness and its parentage
(genealogy).

The learning algorithm achieves control without prior knowledge of the system
Hamiltonian, and has far more degrees of freedom n than the minimum required for control.
The number of possible solutions is exponential in n. In a typical search, the phase of each
colour is adjusted by the spectral phase filter to a precision of about 10◦, so there are 25

possible values of each gene. This means that the number of possible solutions for a genome
of length 25 is 25×25 � 4 × 1037. Genetic algorithms can search this large state space with
great efficiency [9]. Unfortunately, simply finding a good solution has not often provided
significant insight into the system dynamics or Hamiltonian. The optimal pulse shape found
by the learning algorithm, while sufficient to achieve control, is often complicated and may
contain unnecessary features.

The conditions for reaching an extremum in J [H ; xi] may only depend on two or three
essential features of the control field E(t). These features are not obvious in the successful
genome because they may depend on all 25 genes. The Hamiltonian could be written in a
much simpler form if these essential degrees of freedom (uj ) were found. Here we show
how to establish the uj through covariance analysis of the pulse shapes evaluated during the
learning search [19]. Covariance analysis is commonly used to reduce the dimensionality of
and to find patterns in high-dimensional data sets.

We propose to apply these techniques, not to sets of data, but to the control space for
the experiment. Linear combinations of genes with high fitness should appear correlated in
the fitness-driven genetic algorithm. These correlated linear combinations correspond to the
principal components of the control field that direct the quantum dynamics under investigation.
Principal control analysis is the application of covariance techniques to a fitness-directed
search.
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Principal control analysis is implemented on our system by calculating the covariance
matrix of the set of all pulse shapes in the search, defined by

Cij = 〈δiδj 〉 − 〈δi〉〈δj 〉, (2)

where the expressions δi = xi+1 − xi, i = 1, . . . , n − 1 are the nearest-neighbour phase
differences. By using the phase differences in the analysis we remove the ambiguity associated
with the unimportant global phase. The covariance matrix is not the only measure of
correlation. We could also weight the terms of the covariance matrix using the fitness, or
normalize each term to the individual gene variance. In this paper, we will use the simple
covariance. This is appropriate because all the δi are of the same type.

Once the covariance matrix is determined, we calculate its eigenvectors and eigenvalues.
Each eigenvalue λj is the variance of the projections onto the corresponding eigenvector.
This has a special meaning for a learning control search: it shows how far the control setting
moved during the learning process. A small subset of eigenvalues usually contains most of the
weight of the trace of the covariance matrix. The correlations of the projections with the pulse
shape fitnesses allow us to determine which control directions were most important for the
physical process under consideration. The controls expressed in the basis of the eigenvectors
are uncorrelated: each of these controls changes the fitness without correlation with the others
over the search set.

We propose that these eigenvectors with the largest fitness correlation are the essential
control directions (uj ). We expect the eigenvectors with the larger eigenvalues to be most
strongly correlated with the fitness of a pulse shape solution. Conversely, a low correlation
indicates those eigenvectors that have not contributed substantially to increasing the fitness
during the search. These eigenvectors correspond to extraneous dimensions, which could be
eliminated (i.e., their projection set to zero) without losing substantial control.

By projecting the GA solutions onto the k < n eigenvectors that correlate best with the
fitness (the principal controls), we reduce the dimension of the control space. The solutions
with highest fitness, when expressed in the reduced basis of the principal controls, represent
the essential features of the search solutions. The objective functional also takes on a simpler
form in this basis:

J = J [H ; u1,...,k] (3)

where each uj can assume a range of values on the order of ±√
λj . The search for the specific

target state is now a matter of optimizing each control uj over this range.
In summary, we propose to apply covariance techniques to the control space of learning

feedback experiments. Control values derived from the genomes are analysed by a covariance
matrix, defined in equation (2). The matrix eigenvectors are independent control directions.
The correlation of the fitness with the eigenvectors suggests which control directions are the
most important. The corresponding eigenvalues indicate the necessary excursion along each
axis. Therefore, searches conducted in the eigenvector basis are more efficient. Finally, the
essential features of the search solutions are found by projecting the optimal learning control
solutions onto the important control directions.

We now apply this analysis to a well-studied control problem: the selective excitation
of vibrational modes in liquid methanol. The experiment has been described previously
[18, 20, 21]. An intense shaped 800 nm ultrafast laser pulse (the pump laser) is focused into
a cell containing methanol. Above a threshold fluence, the pump induces stimulated Raman
scattering into either the symmetric or antisymmetric Raman-active C–H stretch mode. Either
mode can be selectively excited by adjusting the shape of the pump pulse through phase shaping
and/or amplitude shaping of its spectrum. These experiments led to the demonstration of a
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Figure 1. Left: Raman spectra (a) and Wigner representation (c) of the optimal pulse shape after
optimizing the symmetric C–H stretch mode. Wigner representation (e) of the control pulse shape
found by principal control analysis. Right: similar for antisymmetric stretch.

control mechanism for SRS in methanol based on periodicity in I (t) [20]. In this paper, we
show that PCA emphasizes these same features of the control field.

Figure 1 depicts the results of a phase-only feedback control experiment. Panels (a) and
(b) show the Raman spectra produced by the optimal pulse for the symmetric stretch and
antisymmetric stretch, respectively. The two searches evaluated a total of 3240 pulse shapes.
Moderate fitness increases were observed for either target mode after 25 generations. The
fitness increase was greater for the symmetric mode. This is typical of our searches based on
phase-only control [21].

A Wigner representation of the pulse shape solution found by the learning algorithm is
plotted in panels (c) and (d). The Wigner function is a spectrally resolved field auto-correlation:

W(ω, t) =
∫

dω′ E(ω − ω′)E∗(ω + ω′) e−2iω′t . (4)

Wigner representations are complete time-frequency spectrograms of the optical control field
(up to a global phase), but the important features leading to control of the methanol are obscure.
The inability to interpret the result easily is typical of many GA search solutions [22, 23].

The principal control analysis of this problem begins with a single covariance matrix
(equation (2)) for the entire collection of pulse shapes evaluated in the two feedback
experiments. The physical system under control was the same in the two problems; only
the target was different. We therefore expect the independent searches to be nearly spanned
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Figure 2. Panel (a): eigenvalues of the covariance matrix in descending order. Panel (b): phase
functions associated with the three principal control eigenvectors. For the symmetric stretch, the
fitness correlates well with the third (thin) and second (middle) eigenvectors. Antisymmetric stretch
fitness correlates well with the second (middle) and first (thick) eigenvectors. Panel (c): correlation
of fitness f with the control vectors for the symmetric stretch ordered by eigenvalue. Specifically,
the correlation is (〈ηif 〉− 〈ηi〉〈f 〉)/σηi

σf . Panel (d): similar for the antisymmetric stretch. Panel
(e): the correlation in the original basis ordered by frequency: (〈δif 〉 − 〈δi〉〈f 〉)/σδi

σf for the
symmetric stretch. Panel (f): similar for the antisymmetric stretch.

by a small number of eigenvector controls. The covariance matrix is not simple to interpret
because the principal controls in this problem are widely distributed among all of the control
settings in the search space. However, the essential features of the control problem begin
to emerge if the covariance matrix is diagonalized. This can be seen in figure 2(a), where
the eigenvalues of the covariance matrix are plotted in descending order. The algorithm has
made large excursions only along the few control directions that have large eigenvalues. The
phase functions associated with the three largest eigenvalues are shown in figure 2(b). The
correlation of eigenvector with fitness is plotted in figure 2(c) for the symmetric stretch and
in figure 2(d) for the antisymmetric stretch. We find that eigenvectors corresponding to the
three largest eigenvalues are also the three control directions that correlate most strongly with
fitness. Therefore, we propose that the dimension of the search space can be reduced without
inhibiting control. We take these three eigenvectors to be the principal controls.

Each pulse shape can now be re-expressed in the eigenvector basis. To arrive at the
essential features of the best pulse, we calculate the projections ηk of the optimal pulse
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Figure 3. Top: magnitude of the Fourier transform of I (t) for the optimal pulse shape found by
the learning algorithm (dashed) and for the essential pulse shape found through principal control
analysis (solid) for the symmetric stretch mode. Bottom: similar for the antisymmetric stretch
mode.

shape onto the principal control directions uk . When these uk are expressed in the original
basis, their components are individual discrete frequencies that make up the field. Therefore,∑k

j=1 ηjuj (ω) produces a pulse that contains traits necessary to achieve the target, with
minimal extraneous features. Figures 1(e) and (f ) show the Wigner plot of this essential pulse
for the symmetric stretch and antisymmetric stretch, respectively. The essential pulse for the
symmetric stretch preserves 66% of the original pulse shape vector

( ∑3
j=1 η2

j (ω) = 66%
)
.

For the antisymmetric stretch, this number is 86%.
Our analysis so far has been independent of the specific nature of the physical system

or the dynamical Hamiltonian; however, the principal control directions contain features that
will be found in the dynamical Hamiltonian since the laser electric field now only depends on
a few parameters:

H(t) = H(E[uj=1,...,k; t]). (5)

This dependence can provide important constraints. We find that the results of PCA are
consistent with the control mechanism previously demonstrated [20]. The control mechanism
is based on periodicity in I (t), with the Fourier transform of I (t) revealing the most important
Raman coupling frequencies in the problem [24]. Figure 3 (top) shows the magnitude of the
FT [I (t)] for the optimal pulse shape found by the learning algorithm for the symmetric stretch
mode (dashed) and for the same pulse shape projected onto the principal control directions uk

(solid). Figure 3 (bottom) shows similar plots for the antisymmetric mode.
For both modes, projecting the optimal pulses onto the principal control directions

enhances the frequency components around 3 THz. The coupling frequency found through
principal control analysis agrees with the model based on the mode separation in methanol.
Additionally, comparing the phases of the Fourier transforms for each mode yields a phase
difference of π/2 in the region around 3 THz, consistent with the model described in [20].
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In conclusion, we have shown how covariance analysis of a genetic search algorithm can
uncover essential features of the dynamical Hamiltonian. Although our example involved only
phase shaping of the optical field, this technique should be applicable to any system where
fitness-directed learning algorithms have been used to reveal the path from an initial quantum
state to a target. Principal control analysis can also be incorporated into the experimental
search protocol. By discovering the principal controls, it should be possible to search the
space more efficiently, and to test ideas about the system dynamics as the search is proceeding.
The method should be most useful in cases where the dynamics can be described by only a
few principal degrees of freedom, which are linear combinations of the control parameters of
the search space.
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