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Abstract. The equations that describe the behaviour of a time-unsteady plasma 
column have been simplified by neglecting energy transfer by radiation and convection. 
Furthermore, the thermal diffusivity of the plasma was assumed to be constant and a 
simplified expression for the electrical conductivity was adopted. Thus the energy 
equation was cast into a universal form, requiring the specification of only two para- 
meters to obtain solutions. Although some approximate closed form solutions were 
obtained it was necessary to solve the general a.c. arc problem on a digital computer. 
In view of the good agreement between the theoretically derived voltage waveforms 
and those found from a specially designed a.c. cascade it is concluded that the behaviour 
of the low current a.c. arc can be described by the solution of a complicated heat 
conduction problem. These solutions have the advantage over older theories that 
they can be directly related to measurable or calculable quantities that characterize a 
particular gas. 

1. Introduction 
Until recently studies of the electric arc have been in the domain of physicists and electrical 

engineers (Finkelnburg and Maecker 1956, Loh 1959). The advent of the ballistic missile, 
however, created the need for laboratory simulation of the high temperature re-entry 
environment and the aeronautical engineer quickly turned to the arc heater (or plasma jet) 
as a means of obtaining high enthalpy gas flows. In these devices the aim is to pass a stream 
of cold gas through and around a stabilized arc discharge thereby heating the flow to 
extreme temperatures. It is evident upon reviewing the literature (John and Bade 1961) 
that the development of the arc heater type of device has relied almost exclusively upon trial 
and error procedures. The complex interaction between the arc temperature field and the 
surrounding flow field, and the non-linear dependence of transport properties upon 
temperature have made analysis of the problem especially difficult. 

The present work was initiated in an attempt to understand some of the fundamental 
processes that occur in an arc type of gas heater, specifically one that uses an alternating 
current power supply. The details of this device, as well as some analytical investigations 
of its behaviour have been reported (Phillips 1964a, b). 

The theory of the arc as developed here entirely disregards any phenomena that are due to 
the presence of electrodes. As is customary in studies of this sort only the quasi-neutral 
arc column is considered, for in many cases this part of the discharge determines the 
characteristics of the whole arc. For the cylindrical d.c. arc column, it is a simple matter 
to formulate an energy balance known historically as the Elenbaas-Heller equation. 
Uhlenbusch (1962 Dissertation, Tech. Hochschule Aachen) presents a summary of the 
various approaches that have been used to solve this equation in the case of the wall- 
stabilized d.c. arc. In general, the theory of the cylindrically symmetric arc is firmly 
established and compares well with experiment. 

The analytical description of the energy transfer processes in dynamic arcs is complicated 
by the presence of the time variable. Most of the work on a s .  arcs has been done in 
connection with circuit breaker design, but nothing as comprehensive as that reported for 
d.c. arcs appears in the literature. In short, the theory of the a.c. arc is not well established. 
Two noteworthy attempts at  a theoretical treatment of the dynamic, cylindrical, positive 
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column were reported about 25 years ago by Cassie (1939) and Mayr (1943). Both of these 
investigators formulated arc models where the radial variation of properties \vas not 
included or was integrated away and not considered further. Cassie (1939); for example. 
assumes an arc column where the temperature is constant in space and time, having constant 
per-unit-volume resistivity, po\vei loss and energy content. In order to obtain a variatioii 
in column conductance he invokes a variable arc radius. This leads to an ordinary 
differential equation with conductance as the dependent variable. Mayr (1943). on the 
other hand. defines an ‘ersatz‘ arc gas whose transport properties exhibit a Gaussian 
dependence upon the radial variable. An integration over the arc radius is then performed 
so that there remains only an ordinary differential equation for the arc conductance. If 
the assumption is made that the column energy loss per unit length is constant, it is possible 
to solve Mayr’s equstion for specified applied current oi voltage variations. While the 
work of both Cassie and Mayr has had some limited usefulness for circuit breaker engineers. 
little insight into the detailed energy transfer processes that affect arc behaviour has been 
gained. 

Other attempts (Bishop 1954, Noeske 1957, Edels and Ettinger 1902) to explain the 
nature of the dynamic arc are subject to the same objection put forth above; an integral 
approach is used to cast the governing partial differential equation into a simpler ordinary 
differential equation. The situation can be likened to a boundary layer theory based 
solely upon solutions of the Karman-Polhausen type xith no knowledge of the exact 
profiles that exist. 

From the theories of Cassie and Mayr there arises the notion of an arc time constant, a 
typical time required for thermal re-adjustment. Because of the oversimplified nature of 
the Cassie and Mayr models, however, and because the boundary conditions in either case 
are not clearly defined? it is not possible to relate this time constant to any of the knoivn 
conditions under which an arc is operating. i n  the presenr nark a theory is developed 
which contains a time constant that is easily related to known conditions. This is made 
possible, in part, by considering a wall-stabilized arc, i.e.: one burning in a well-cooled 
tube. Frind‘s (1960) work in this area is noteworthy, but his t i ne  constants are applicable 
only to idealized, constant radius arcs. 

In the present investigation a theory for the cylindrically symmetric, dynamic: \va!l- 
stabilized arc has been formulated that considers the detailed structure of the column. A 
simplified electrical conductivity Function was assumed so that the behaviour of a dynamic 
arc could be determined, independent of any type of gas. A set of non-linear partial 
differential equations resulted. In two special cases? for a high-frequency a.c. arc and for a 
d.c. arc that experiences a step function modulation in current, it was possible to obtain a 
closed form solution to the governing equations. In the general case, numerical solutions 
for the quasi-steady a.c. arc have been obtained with the aid of a digital computer. 

In an earlier work (Phillips 1964 Dissertation, University of Michigan) it was shoan that 
the theory in question applies not only to a stagnant arc column but also describes rhe 
portion of an arc far from the entrance region of tube-type arc heaters. This fact has made 
it possible for the author to compare the theoretically derived voltage waveforms with 
those obtained from a Maecker-type cascade employing axial gas flow. Good agreement 
in waveform shape and amplitude \vas obtained (Phillips 1964 Dissertation). 

2. The fundamental equations 
The equations needed to provide a description of the energy transfer processes within an 

electric arc are the ivell-established multi-component conservation equations. I t  is not 
intended to derive those equations here since they are exhaustively discussed in the literature 
(Hirschfelder. Curtiss and Bird 1954). 

I t  is stipulated that no external magnetic fields \Till be applied to the region occupied by 
the arc column and, furthermore, the current carried by the arc will be small enough so that 
the self-magnetic field will be of no importance. In addition it is assumed that the arc gas 
is quasi-neutral. ‘4 result of the above stipulations is that little new knowledge is gained 
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from Maxwell's equations and that the conservation equations combined with a suitable 
form of Ohm's law suffice to describe the arc column properties completely. 

If we neglect the efects of radiation, convection and chemical relaxation, it is possible to 
specialize the energy equation and Ohm's law to strict cylindrical symmetry. In the 
absence of charge separation and ind>uced electric fields, the electric field in the arc has only 
an axial component and is independent of radius. It is therefore a function of time alone. 
The arc burns in a well-cooled tube of radius R whose walls are maintained at  a constant 
temperature, but which carry no current. In line with other investigators the diffusive 
contribution to energy transfer is combined with the 'frozen' thermal conductivity K to 
give a total effective thermal conductivity K .  Thus the energy equation becomes 

where 0 9 r < R. T(R, t )  = TT, and i > 0. Here, U; T. p and h are the electrical conduc- 
tivity, temperature, density and the mixture enthalpy, respectively. In addition? Ohm's 
law becomes 

p. 

6 
E(t) 1 2m-~(T)dr  = I ( t )  

where E and I are the time dependent electric field and current. In  this form the energy 
equation is simply a relation between the Joule heat produced in the arc column, the energy 
transport by conduction and the storage term p 81/32. The electric field strength is under- 
stood to have the spatially constant axial value mentioned above. In general, an equation 
describing an electric circuit should accompany the above set: but it is presumed here that 
the arc is sustained by a current source: so that I ( t )  occurring in Ohm's law is a specified 
function of time. 

The temperature variation of the transport properties and the quadratic manner in which 
the electric field enters the problem introduce strong non-linearities, and unless one is willing 
to embark on a complete numerical programme for the solution of these equations, it is 
necessary to make some simplifications. We begin by introducing a transformation first 
used by Schmitz (1950). He defined the heat flux potential S(T)  by the relation 

T 

S!T) = / i7(a)dc. 

Y;,f 

Using S instead of temperature as the dependent variable removes the thermal conducriviry 
from the problem, but one must then express all other thermodynamic and transport 

Figure 1. Temperature dependence of heat 
fiux potential for nitrogen and argon. 
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properties in terms of S. The heat flux potential for nitrogen and argon is shown in 
figure 1. The pressure is one atmosphere and the data are due to John et al. (1963) and 
Marlotte (1963 private communication). 
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T h e x  remains the problem of dealing with the e!ectrical conductivity function. In 
figures 2 and 3 the electrical conductivity of nitrogen and argon is shown as a function of S 
and it is seen in either case that U becomes non-zero quite abruptly and rises sharply to rather 
large values. In his studies of direct current arcs Maecker (1 959) showed that approximating 
the (U, S) behaviour by two straight lines yields good results. Specifically we assume 

U = 0, 

U = B(S - S,), 

s < s, 
S > S, 

where SI and B are appropriate constants. 
While this model has some drawbacks it has the advantage of allowing the governing 

equations to be fully non-dimensionalized. Thus they can be solved in general with no 
reference to a particular gas. In addition, the sharp onset of electrical conductivity caused 
by this model introduces the notion of a conducting zone or arc radius, an extremely useful 
fiction. This radius is the position where the local heat flux potential is equal to S,. the 
cut-off value, and for the a.c. arc it is a function of time. This latter fact introduces an 
interesting mathematical complication which will be discussed later. 

Finally, in order that the proposed analysis not be tied to any specific gas: it is convenient 
to introduce a new integral variable F, defined by the relation 

T 

T;ef 

F(T) = 1 p(a)Cp(a)dc. 

This function can be easily computed (Drellishak et al. 1964) and one can prepare an 
(F ,S)  plot for any gas. The heat capacity term in the energy equation beconies 

p(al2jat) = F'(as/at)  

where F' is the local derivative with respect to S of the auxiliary function. Since F' = 
pCp/2, the coefiicient of the time derivative term is nothing more than the inverse of the 
instantaneous, temperature-dependent thermal diffusivity of the arc gas. Figures 2 and 3 
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indicate that for common gases like nitrogen and argon one can approximate the (F,S) 
behaviour over a limited range by a straight line. This implies that F' is a constant, which 
we will call A-l. 

The energy equation can now be rewritten in the following form: 

la '  o < r < r o ,  t > ~  € ' B ( S - S , ) + - -  r -  =-- r a r ( 2 )  h a t '  

la '  r , < i - < ~ ,  t > ~ .  1 3  7zkg) =-- A at 7 

i a  

Here ro is the radial location at which S = S, (see figure 4) and is a function of time. 
Because of the discontinuous coefficient introduced by the cut-off model for the electrical 
conductivity, there are two partial differential equations to solve for the heat flux potential. 
The solutions of both equations must agree in slope and magnitude at the moving boundary 
r,(t) and there must be no heat sources within the region of interest. Hence, the three 
auxiliary conditions are 

Sr(O, t )  = 0: S(ro-, t )  = S(ro-, t )  = S,, ST(ro+, t )  = &(io-, t )  

and, at the tube wall, 
S(R ,  t )  = S,. 

The plus and minus signs denote evaluation of the functions and their derivatives approach- 
ing the moving boundary from the outside and inside, respectively. It is the condition 
regarding continuity of slope that determines the position of the conducting zone radius, 
which is unknown, apriori. IR fact, if the problem is posed in the normal way by specifying 
the current behaviour, there are three dependent variables S(r, t ) ,  E(t)  and r&). In order 
to make the problem determinate an additional equation is required. This is provided by 
Ohm's law, 

2 ~ B € ( f )  
1. 

r (S  - Si)dr = Z( t ) .  
0 

The boundary value problem thus posed, while linear in the variable S(r, t ) ,  presents a 
non-linear system by virtue of the moving boundary and the fact that the electric field 
strength occurs quadratically in the energy equation. In spite of the simplifications that 
have been applied to the problem, it is still mathematically formidable. Even if the field 
strength E(t) and the boundary position r,(t) are prescribed (thereby eliminating the need 
for some of the above equations), one still is confronted with a partial differential equation 
with variable coefficients. 

In order to arrive at a set of universal equations which apply to any gas we introduce 
several dimensionless variables, as well as a transformation that eliminates the moving 
boundary. For the inner region this transformation takes the form 

x = r/r,(t)> 0 < r < r,(t) 
and for :he outer: annular zone rhe moving boundary is eliminated by the introduction of 

y = ( R  - r)/(R - ro(t))> ro(t) < r < R. 
The range of variation for both of these new independent variables is between zero and one. 
The dependent variables are made dimensionless by introducing 

U = (S - S,)i(S, - SJ, 0 < r ,< r,(t) 
and 

V = (Si - S)/(Si - SJ, r,(t) < r < R. 
Finally, we define 

p ( t )  = ro(t)/R, E = B112RE*, I = I*/(& - S2)RB11z. 0 = R2/h, r = t / 0  

ivhere 8 is the usual time-scale factor for the heat conduction problem. Earlier, p was 
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used to denote the gas density, but hereafter it uill only refer to the dimensionless moving 
boundary and should cause no confusion. The starred quantities are the dimensional 
values and will not appear again. When the above variables are introduced into the 
boundary value problem a set of universal differential equations is obtained nith the 
paiticular operating conditioils of the arc contained solely within the current forcing 
function. The problem becomes: 

U z ( 0 , ~ )  = 0, U(1: T )  = 0, p!us initial condition, 

Y(0,  7 )  = I ,  V(1: 7 )  = 0: plus initial condition, 

and 

P U d I >  7)  = - (-1 1 - P  V&; T )  

1 
2 v [ p ( ~ ) ) ~ E ( ~ )  j' xU(x ,  7)d.r = Z ( T ) .  

The non-linearity of the system that is due to the moving boundary can now clearly be seen. 
In this new fixed domain each differential equation has acquired a term proportional to 
dp2/dT. Since p is one of the dependent variables, the system is non-linear even if the time 
dependence of the electric field is exp!icitly known. 

It is not strictly necessary, in fact, to consider E(t)  as an unknown, but physically it 
makes more sense to specify the arc current and determine the resulting field strength. 
For any specified current an arc will be thermally stable but only for certain variations of 
E(r) will this be true. It would be possible; in fact, to assume an explicit temporal variation 
of the conducting zone radius and find the temperature profles that would produce this 
variation. Then, however, not all of the original equations could be satisfied and one 
would have to be content with some non-constant tube wall temperature and/or variable 
tube diameter. 

Even the simplest temporal variation of p that one can devise proves to be too difficult 
to permit the solution of the boundary value problem. If dp2/dT is a linear function of r. 
for instance, the partial differential equations have variable coefficients and, because of 
the second term in the left-hand side of each equation, are not separable. Only when 
n'p?/n'~ is either zero or a constant of either sign can a closed form solution to the above 
formulated boundary value problem be readily found. These cases correspond approxi- 
mately to a high-frequency a.c. arc and a step-modulated d.c. arc, respectively. The latter 
problem is treated in detail elsewhere (Phillips 1964 Dissertation). The high-frequency 
a.c. arc is discussed in the following section. 

3. The constant radius a.c. arc 
In the preceding section it was mentioned that the boundary motion specified by 

dp2,'d7 = 0 is appropriate to a high-frequency a x .  arc. An appeal to physical intuition 
will indicate why this is so. We note that equation (1) describes a sophisticated heat 
conduction problem and? as in any time-unsteady conduction problem, the thermal diffusivity 
is a measure of the speed at  Lvhich temperature changes can be effected when either a 
boundary condition or an internal heat generation function is altered. Then, since the 
conducting zone radius is the locus in the space-time plane of a fixed temperature, its 
position and rate of change of position is governed by the thermal diffusivity. Since the 
boundary position is thermally determined, it is reasonable to expect that under some 
conditions the motion of this interface will be small and its effects unimportant. Specifically, 

0 
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if the external conditions that are imposed upon the arc (the current function) are changed 
so rapidly that the arc cannot readily adjust to these changes, or if the arc is thermally 
‘slow’, there will be little overall variation with time in its structure. A measure of these 
relative rates of change is the product of the circular frequency w of the current waveform 
and the pseudo-time constant of the arc-tube system, 6 = R2//h. When this product is 
large, implying that either w or B is large, one expects that there is almost no change in the 
arc structure. 

The intuitive argument given above has been verified theoretically. Analyses by von 
Engel and Steenbeck (1932), Weizel and Rompe (1949), Frie (1961) and Uhlenbusch 
(1962 Dissertation) of the linearly modulated d.c. arc all indicate that as the applied 
frequency of the disturbance is increased, the magnitude of the deviations from the d.c. 
state becomes vanishingly small. More important, Frie (1961) indicates that the perturba- 
tion to the conducting boundary position decreases as ( ~ 6 ) - ~ / %  while centre-line temperature 
perturbations die out only as (wB)-l, showing the secondary effect of boundary motion at 
large W O .  One expects to observe the same behaviour for the a.c. arc. 

We conjecture that at a suitably large value of 0 6  one can neglect the influence of the 
moving boundary on the determination of arc structure. It is shown in the sequel how this 
assumption can be substantiated a posteriori and also how a ‘large’ 0 6  can be defined. 

If it is presumed that there is effectively no boundary motion, then dp2/dr = 0, and 
equation (1) becomes 

U%(O, T )  = 0, U(1, T) = 0, plus initial condition (2)  
1 

2ap2E 1 x U ( X ,  T ) d X  = Im COS ( w 6 r )  
0 

where the harmonic current waveform has been specified. Since the boundary motion is 
known, there is no need for either the annular differential equation or the remaining 
boundary and compatibility conditions. 

Assuming a solution for equation (2) of the form 

u ( X ,  T )  = x(X)T(T) 
yields the spatial solution 

One finds that for non-trivial solutions the separation constant ,B must assume the values of 
the zeros of the Bessel function. After some manipulation we find the solution of the 
temporal equation to be 

X(X)  = CJ,(PX). 

For the initial conditions it is convenient to use the properties of a d.c. arc that is carrying 
a current Im, equal to the peak value of the as. current level. In the d.c. arc all time- 
unsteady terms vanish, and it is not difficult to obtain 

ui(x) = UmJo(&x). 

Using the compatibility condition allows one to obtain the solution to the annular equation 
in the form 

Since the initial distribution of heat flux potential is identical to the first eigenfunction of 
the present boundary value problem, the first Fourier coefficient is unity and all others are 
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identically zero. 
and letting 7 + s leads one to the result 

Evaluating the integral in equation (3), applying the initial conditions, 

where tan y = (ue)pz/fll2. 
It was mentioned earlier that the above solution would be expected to apply to the situa- 

tion where the conducting boundary motion is slight and consists of a small oscillation about 
some mean value. One would not expect that mean value to be the d.c. value so the 
solution is not complete until a proper ax.  radius has been defined. For large we, y -+ ~ / 2 ,  
cos y -+ 0, and after referring all quantities to their d.c. counterparts, equation (4) becomes 

One sees that were it not for the difference in conducting radii the heat flux distribntion of 
the high-frequency limit ax.  arc would be the root-mean-squared value of the corresponding 
d.c. column. As it is. by analogy with the d.c. solution. one finds the radii to be related by 

From equation (4) it is possible to obtain the electric field waveforms that correspond to 
this high-frequency arc. Wirh the help of Ohm's law one finds 

is, Cos ( ~ 8 7 )  E = 1 / 2 -  
p {l - cosy cos ( 2 w h  - y)}1/2 

which applies only for the assumed cosine current waveform. Notice that as we becomes 
very large, implying that cos y -+ 0, the voltage waveform precisely follows the current 
input and is directly proportional to it, just as in an ordinary resistor. In figure 5, by 
plotting equation ( 5 )  for values of y from zero to a/2 we show all possible shapes that can 
be assumed by the electric field waveform. 

Fi,w-e 5 .  Electric field aaveforms for a constant radius 2.c. arc. 

Any analysis of the ax. arc column must be capable of predicting two well-known features 
that are characteristic of small values of WO. Shortly after current zero passage a large 
voltage spike appears which is known as the re-ignition peak. The voltage then drops 
sharpiy to a lower value, remains nearly constant for much of the half-cycle, and then rises 
slightly to a second peak before falling to zero at the next current zero passage. This 
second voltage spike is called the extinction peak. In practice, the value of W O  at which 
these features occur is certainly less than 5 and probably close to unity. 

Figure 5 indicates that none of the theoretical, low W O  waveforms bears the proper 
resemblance to reality. The re-ignition peaks are too low relative to the plateau values to 
be realistic and an extinction peak never develops. It would, of course, be quite surprising 
if this analysis agreed ivith experiment because for a thermally-fast arc the effect of the 
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moving boundary must surely be important. In addition, a t  low frequencies a dynamic 
arc can almost follow its corresponding d.c. characteristic and for the present model the d.c. 
electric field is independent of the current. Hence an extinction peak could never develop 
for the constant radius a.c. arc and the re-ignition peak would never have the proper shape. 
Then, as was originally stipulated, the solution can only apply to a thermally-slow or high- 
frequency arc. 

5 2.41 
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Dimensionless time r 

Figure 6. Comparison of centre-line heat 
flux potential behaviour obtained from the 
constant radius model and from numerical 

computation, w 0  = 100. 
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Figure 7. Exact behaviour of the conducting 
zone radius for w 0  = 10 and W O  = 100. 

In figure 6 we compare the variation of centre-line heat flux potential for the 'exact' arc 
and the 'approximate' arc (equation (4)) for w e  = 100 and pdc = 0.80. The exact solution 
to equation (1) was obtained numerically by a method described in the next section. The 
agreement is excellent, indicating that 100 is a 'large' value of the frequency parameter. A 
similar comparison for the same pdc and W O  = 10 indicates the agreement is satisfactory but 
not as good as in the f i s t  case. Figure I shows why there begins to be a discrepancy 
between the two solutions. Plotted there is the variation in p(.), starting from a d.c. state 
and relaxing to a quasi-steady ax. value. For W O  = 100, the radius undergoes only a 4% 
oscillation about its mean value while the central heat flux potential has about a 54% 
variation. For W O  = 10 the oscillations are 7 % and 40 %, respectively, so that the moving 
boundary has more than a second order effect in that case. 

A slightly less general solution to the constant radius a.c. arc problem has been obtained 
by Edels and Fenlon (1965) yielding essentially the same results as the present analysis. 
They have also studied the 'Ned-tube' arc, as they call it, for current waveforms other than 
the harmonic one used here. 

In the next section it is shown how a numerical solution to equation (1) can be obtained so 
that the low values of W O  can be examined. 

4. The numerical solution of the boundary value problem 
4.1. The finite diflerence method 

Except for two or three special cases, it has not been possible to find an analytical solution 
to the boundary value problem given by equation (1). It was decided, therefore, to attempt 
to solve the system of equations numerically for an ax .  positive column which is sustained 
by a sine wave of current. The numerical technique adopted here is closely related to that 
used to obtain solutions to partial differential equations on analogue computers. There, 
one first applies a finite difference scheme to the space-like variables, leaving a series of 
ordinary differential equations to be solved in the usual way on an analogue computer 
(MacKay and Fisher 1962). Fox (1962) also mentions this procedure and suggests that one 
might try solving the resulting ordinary differential equations on a digital rather than 
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acalogue computer by some simple forward integration technique such as the Runge-Kutta 
method. The accuracy is no better than that obtainable with an  analogue solution, but i t  
is usually simpler to implement the digital process. 

By using 
rhe first order central diiference method a rather high degree of accuracy can be obtained 
without the expense of undue mathematical sophistication. This method has been applied 
to equation (l), yielding the results discussed in the next section. 

4.2.  Kumerical results atid discussion 
From the d.c. solution one h d s  that for pdc = 0.8, 1, = 9.4. Depending upon the 

particular type of gas and constrictor size for which one desires physical results, this could 
represent current levels from a few amps to perhaps 100 amps. With this parameter fixed. 
w 8  has been varied beti\een 1 and 100. Three sets of data corresponding to high. 
intermediate and low frequencies are examined. 

The most interesting aspect of the high-frequency co!umn, U P  = 100, is the bchaviour of 
the conducting boundary. This has already been presented in figure 7 .  I t  is not too 
instructive to show the other results for this case because they agree with those found from 
ihe constmt radius analysis cf the previous section. In general, the arc behaves as though 
it were an oidisary resistor. 

Since the thermal 
groperties can follow the externally applied variations more faithfully, there are large 
changes in the heat flux potential, conducting zone radius, and other variables. Due to  
the large non-linear changes in thermal conditions that occur, there no longer exists the 
proportionality between the applied current and the arc ~o l t age  that one finds at higher w6. 

Finite ciiference schemes are discussed in many books on numerical analysis. 

/It l o v w  eKective frequencies the entire character of the arc changes. 

~ , , = 0 . 8  
C a n h c t i n o  z m e  rcCius 09-5 

Figure 8. Theoretical waveforms of conducting zone radius, elxtric field strength and dimension- 
less current for we = 5. 

The electric field and conducting radius waveforms for w 8  = 5 are shown in figure S 
The electric field waveform displays a sharply rising behaviour immediately following the 
current zero passage. Phqsically. this obtains from the arc having lost considerable energ) 
(and having gained resistance) during the interval when the current was low. The small 
time constant indicates that the arc stores energy poorly and rapidly loses the qualities of a 
good conductor of electricity. Since the current is specified: the electric field required to 
produce this electron flux becomes large and remains so until enough energy has been added 
io appreciably increase the column conductance. The strong departure of the E(T) wave- 
Form from a sine curke indicates the presence of harmonics higher than the fundamental. 
This leads to some interesting speculations on the poaer factor of an a.c. arc; a subject 10 be 
discussed later. 
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Here 
= 1.0$ a value close to that typically obtained in the laboratory. One notices immedi- 

ately the broad maximum for p(7). The small value of w 0  used for these calculations 
implies that the d.c. characteristic (the (E,  I )  curve) can nearly be followed. From the d.c. 
solution found in the previolis section one finds that during the high current portion of the 
sine wave input conditions are such that dpjdl is very small. Hence the flat rop for the 
?(.) curve. Near current zero: however. the sratic curve can no longer be followed and the 
sharply rising and falling portions of the radius waveform are dictated by dynamic 
considerations. 

Finally, consider the characteristics of a Iow-frequency arc, as depicted in figure 9. 

Figcre 9. Theoretical waveforms of conducting zone radius, electric field strength and 
dimensionless current for ( ~ i 0  = 1. 

The electric field waveform exhibits an  immense re-ignition transient immediately follow- 
ing the zero current passage. The arc suffers a rapid loss in conductance when it is 
momentarily extinguished so that a large field is required to drive the specified current. 
As the column gains energy again from the Joule heating, the field strength drops to a value 
that is comparable to the d.c. level and remains nearly constant for over 50% of the half- 
cycle. This plateau behaviour is explained by reference to the static characteristic shown in 
figure 10 where we see that a t  high current levels the arc voltage varies only slightly with the 
current. A lowfrequency a.c. arc can closely follow the static characteristic until the tine 
comes for current reversal. At its lowest point the a.c. arc burns with a voltage somewhai 

3 d c .  Character is t ic  

Figure 10. Theoretical dynamic and static 
arc characteristics. 

Dimensionless frequency 06 

Figure 11. Theoreiical power factor plotted 
against 00 for an isolated a.c. arc. 
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below the corresponding d.c. level. This is a dynamic effect due to the a s .  arc actually 
overheating as a result of the initial voltage transient. 

The behaviour of a s .  and d.c. arcs can be clearly shown in a cyclogram or dynamic 
(E,  I )  characteristic. Such a plot appears in figure 10, with only the positive half-cycle of 
the a.c. arcs being shown. At high frequencies the near-ohmic, positive characteristic is in 
evidence, while for W O  = 1 the falling d.c. characteristic is closely approximated. In fact, 
this close adherence to the d.c. curve brings about a voltage rise before current zero passage 
that has been observed expeiimentally, the extinction peak. For the conditions assumed 
in the present numerical calculations, it appears that w6' must be less than 1.5 before an 
extinction peak develops. With an external circuit or different current magnitudes this 
conclusion rlay be altered considerably. 

Compared with the waveform for the high-frequency arc, one notes from figure 9 that the 
character of the electric field waveform has changed from that of a pure sine curve to that of 
nearly a square wave. The arc: being a non-linear element, introduces harmonics into a 
circuit that are not originally there; the current is, after all, a pure waveform. It is interesting 
to examine one of the consequences of the presence of harmonics in a circuit element that 
are higher than fundamental. 

If one retains the usual definition of power factor, one finds that the power factor for an 
a x .  arc carrying a sine wave of current can be significantly different from unity. This 
statement applies for the arc alone, independent of any circuit. For the usual ax. circuit 
with linear elements it is easy to understand a non-unity power factor; some amount of 
energy is always stored in a capacitor or inductor. Here, however, all input energy is 
dissipated in the arc and to understand the existence of a power factor less than one it is 
necessary to re-examine the concept of effective circuit variables. 

I t  is well known that special considerations must be given io the analysis of a circuit that 
contains non-fundamental harmonics. If the average power of a circcit element is defined 
by 

l T  W = -  EZdr TQ 

where T is the fundamental period, one can show that a value of W different from zero is 
obtained only by the combination of a voltage and current component of the same frequency. 
In the present case I (7)  is a pure sine wave so the amplitude of its first and only harmonic 
is simply Zm. The voltage waveform, however, is rich in high harmonics, none of which 
will contribute to the average power. Upon integrating the above expression one obtains 

where Eml is the magnitude of the first voltage harmonic. 
definition of effective voltage requires that 

On the other hand, the usual 

Eefi = h ' 2 ( E q 2  +- Emz' + . . . )W. 

As usual, Zeff = (~'212)Zm and it is easy to see that if the voltage wave has a non-fundamenta 
harmonic of even the most minute magnitude, the power factor of the arc, W/Ze&ff 
cannot be precisely one. Physically, the large arc voltage that is required to overcome the 
high resistance that follows extinction is ineffectively used to produce power. The current 
is very low at this point and the power added to the arc is trivial compared to that potentially 
obtainable from a situation where the voltage and the current have the same harmonic 
content. In figure 11 the variation in arc power factor with the effective frequency W O  is 
shown. When one is trying to dissipate power by means of an a.c. arc it is clear that the 
higher the value of we,  the more efficient is the utilization of the available power supply. 
This non-linear effect is penalizing to the arc heater designer who uses a.c. power. 

To complete this section we show a few heat flux potential and temperature profiles that 
result from the numerical computations. For the high-frequency arc there is virtually no 
deviation from some mean value profile, which in turn closely resembles the d.c. structure. 
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The latter is shown in figure 12 for an initial dimensionless arc radius of 0.8. Also shown 
is an intermediate profile for the W O  = 1 case, as well as the heat flux potential distribution 
at  the lowest point in the cycle. Bessel function profiles, appropriate to d.c. only, are 
included for comparison. It is seen that the dynamic effects of the a.c. arc do not cause a 
significant deviation from these curves. 
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Figure 12. Theoretical heat flux potential Figure 13. Theoretical temperature profiles 
profiles for the electrically conducting region 

of an a.c. arc. 
for a nitrogen a.c. arc. 

In figure 13 temperature profiles for nitrogen, corresponding to the heat flux potential 
curves of figure 12, are shown. One can see the transition from the low current ‘coreless’ 
arc to the temperature distribution that denotes core formation in diatomic gases. This 
well-known feature is a consequence of the dissociation peak in the thermal conductivity 
curve for molecular gases. 

The measurements of the characteristics of a.c. arcs that are reported in the literature have 
all been performed on free burning arcs, where the effects of natural convection are not 
accurately known. A comparison of the present theory with these results would not be 
meaningful. There are, however, measurements of the wall-stabilized a s .  column made by 
the author (Phillips 1964 Dissertation) that can be directly compared with the theoretical 
predictions. The results of this experimental programme will be described in detail in a 
later paper. Here we note that for conditions corresponding to the assumptions made at 
the outset there is excellent agreement between the experimental and theoretical electric 
field waveforms. Not only is the magnitude of the column voltage in good agreement with 
theory but the qualitative change in wave shape with varying wb’ is accurately predicted. 
The conclusions one can draw from this agreement are discussed in the next section. 

5. Summary 
The equations that describe the behaviour of a time-unsteady plasma column have been 

simplified by neglecting energy transfer by radiation and convection. Without the inclusion 
of radiation only low current phenomena can be studied. Furthermore, the thermal 
diffusivity of the plasma was assumed to be constant and a simplified expression for the 
electrical conductivity was adopted. Thus, the energy equation was cast into a universal 
form, requiring the specification of only two parameters to obtain solutions. The governing 
set of equations was solved for a suitable range of these parameters for an ax.  arc that is 
sustained by a sinusoidal current. 

In view of the good agreement between the theoretically derived voltage waveforms and 
those found from a specially designed a.c. cascade, it is concluded that the behaviour of the 
low current a.c. arc can be described by the solution of a non-linear heat conduction problem. 
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Moreover, the solutions of this problem, while complicated, have the advantage over older 
theories (Cassie 1939, ,Mayr i943) that they can be directly related to measurable or 
calculable quantities that characterize a particuiar gas. This correspondence occurs through 
the t i lo parameters W O  and Z,. xhich determine the arc dynamic response and current 
level, iespectively. 

In order to study the properties of dynamic arcs at  higher current levels, several limitations 
of the present analysis must first be removed. The radiative transfer term should be 
included in the energy equation if either higher currents or elevated pressures are to be 
studied. Also, at  some current level the strength of the self-magnetic field will become 
significact and a coupling of the energy equation with Maxwell's equations \vi11 result. 

The single straight line approximation to the electrical conductivity function is not 
suitable for high current levels. Not only will there be a quantitative error in the computed 
arc properties but a fundamental feature of high current tube arcs will not be predicted-the 
minimum point and the rising part of the (E. I )  curve. 

By approximating the (F: S) curve by a single straight line we have assumed a constant 
theima: difiiisivity for the arc gas. Actually. since such extremes of terrpxature exist in 
the arc: there is a l w q s  a variation of X throughout the tube cross section. This variation 
need not produce significant effects (as is apparently the case with argon) but it is known to 
be important for arcs burning in diatomic gases, where a dissociation core is formed 
(Christmann and Hertz 1966, Edeis and Kimbiin 1965). 

Finally, it is not clear that the effects of radial convection in the time-unsteady arc can 
always be ignored. Studies are now under way to examine these effects as well as those 
associated with higher current levels, mentioned above. 
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