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ABSTRACT

An adaptation of Behrensd MEthonZ) to‘the calculation of diffusion
lengths in heterogeneous media is given. In all cases, the diffusion length
in a medium containing absorbing lumps can be related to the self;shielding
factor of the lumps. Calculations are presented only for the simplest case
given but the results display conslderable disagreement with a frequently
used formula. On grounds which are mainly intuitive, it is believed that
this method is more accurate, particularly for large moderator to absorber
ratio. -Final conclusions cannot be drawn, however, untll more experimental
data becomes available. Calculations using some of the corrections and
evaluation of some of the integrals shown here will be given in a future

paper,



' DIFFUSION LENGTHS IN HETECGENEOUS MEDIA

I Introduction

A knowledge of thermal diffusion lengths for nonmhomogeheous
media is of particular importance in survey type criticality and shield-
ing studies for which an accurate estimate of the thermal leakaé@ méy be
required. In cases in which inhomogeneities are not very large compared
to a neutron near-free path the use of the homogereous reactor thgory
with appropriate self-shielded cross sections probably gives reasonable
resulLsA However, in a typical low enrichment reactor, the inhomogenelties
may be large, and some other approach must be sought.

Weinberg and WignerQL) and Russell(g) have defined the diffuy-

sion length, L, as that value which makes the well known formula

1

1,+L2Bg2 (1)

yield the correct thermal leakage, ng being the geometric buckling of
the system. As the leakage is the quantity in which one 1s directly
interested, this is a very convenient means of defining the diffusion
length. By applying diffusion theory to alternating slabs of moder-

ator and fuel, Weinberg and Wigner arrive at the result’

2 2

I =1F-f+1§l(1mf) (2)

2 .2 .
where LF and LM are the diffusion areas for the pure fuel and modera-

tor respectively and f is the thermal utilization, defined conventionally.
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In slightly enriched uranium-water systems, the two terms on the right
hand side of Equation(a are of comparable magnitude, whereas is a
similar homogeneous medium, the second term alone represents the cor-
rect diffusion area. Thus, this method gives I? incorrectly in the
homogeneous limit. The difficutly apparently lies in the application
of diffusion theory to thin regions.

By using a variational principle, Russell arrives at the

result
12 = BT, (3)

where‘ﬁ and E; are the flux-volume averaged diffusion coefficient and
macroscopic absorption cross section, respectively. This method does
not appear to be compleéely satisfactory either., First, the details
of the energy-space distribution of the flux are required for computing
the required averages and second, directional effects are neglected.
In rodded media, one expects a large diffusion length parallel to the
rods than perpendicular to them. This effect has been found to be
significant and is taken into account by the Frenchgé) in the design
of the theirgraphite reactors. By retaining diffusion theory, with
a tensor rather than a scalar diffusion coefficient, one finds the
leakage to be

1

1+ TS
L
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Here I& and B% are the diffusion area and the buckling in the 1
direction, the 1 being the principal axes of the diffusion tensor.
Spinrad(i) and Shevelev(é) are able to predict different 1°
in various directions when anisotropies exist. They define I? in terms
of the asymptotic decay of the neutron flux from a source, and apply
diffusion theory to thin regions. There is some question as to the
validity of this procedure. In fact, Spinrad's method has the wrong
homogeneous limit.

Triflaj — applied a variational principle to the transport
equation and arrived at an expression for the diffusion length, which,
while apparently accurate 1s rather cumbersome. A result amenable to
hand calculation would appear to be more desirable.

In searching %or a new method for calculating diffusion lengths,

(7)

one is struck by the remarkable agreement of Behrens' theory —  with
, .
experimental results\§> for the case of a homogeneous medium contalning

empty holes. The method employed here is in essence an adaptation of

Behrens' method to the more general case of a heterogeneous medium.



IT CAILCULATION OF THE DIFFUSION LENGTH

As a starting point we take the definition of the diffusion
length as one-sixth of the mean square crow flight distance that a
neutron travels from the time it 1s thermalized to the time it is
absorbed. For convenience, we shall deal only with infinite wedia
in which the structure is periodic, so that a unit cell may be studied.

In such a medium the thermal flux shape is also periodic and
it is assumed that this shape can be calculated. First, we seek ﬁz, the
meanssquare distance travelled by neutrons in the ;tationary distribution.
(It is assumed here that the néutrons have the same spatial distribution
after each fight, and t@at the effect of sources and sinks balance so as
to maintain this distribution.) Then, Py, the probability that a
neutron is absorbed in a single flight, is to be calculated. Under the
assumptions made above 22 and Py are identical for each flight made
by a neutron, and one can write

2 ﬁe
L” = 755 (5)

provided that scattering isisotropic, i.e., provided that the direction
of a neutron's travel does not depend on its past history. Equation (5) re-
sults from the fact that under the assumption of a stationary distribution
Py is constant for each flight, and thus l/PA is the average number of
flights made by thermal neutron before being absorbed. The assumption
of a stationary distribution is very nearly fulfilled when a neutron

mekes many collisions before being absorbed.

-l



In calculating £2 and PA’ it will be further assumed that
the lumps are widely separated and thus a neutron has a negligibly small
probability of entering more than one lump of a given flight. (This
restriction may be relaxed in a subsequent paper.) Then contributions
to 4° and Py, come from five sources:

1) Neutrons suffering their ith collisions in the moderator
and their (i+1)st collisions in a lump;

2) DNeutrons suffering their ith collisions in the moderator
which pass through a lump and suffer their (i+l)st collisions in the
moderator;

3) Neutrons which do not enter a lump at all or a given
flight;

4) Neutrons which suffer their ith collisions in a lump,
leave the lump and suffer their (i+l)st collisions in the moderator; and

5) DNeutrons which do not leave the lump at all on a given
flight.

The probabilities of each type of event will be calculated,
and the mean square flight distance and absorption probability will

be averaged over the events to yileld the required value of £2 and PAo

.A{ Isotropic Scattering, Flat Flux

As a first example, the following highly idealized case will
be considered (some of the previous assumptions repeated for clarity):

a) The medium is composed of only two materials, one of
which is highly absorbing;

b) The absorber is in the form of widely separated lumps,

distributed periodically in the moderator;



b

c) Scattering is isotropic (Equation (5) applies);

d) The neutron flux is uniform in the moderator;

e) Neutrons scattered in the absorber have the same ﬁg
and Py as those scattered in the moderator. (Contributions (L)
and (5) above can be neglected, it can be assumed that all neutrons
start in the moderator.)

‘Some of these restrictions will be relaxed later. Macroscopic
cross sections will be denoted by 2. for the heavily absorbing material
and o for the moderating material, both with the conventional sub-
scripts a, s, and tr for ébsorption, scattering, and transport respec-
tively. ILack of a subscript will denote total cross section.

We define the directional chord length distribution W(Rag),m
such that ¥(R,Q)dR is the mumber of chords in the lump with lengths bém
tween R and R+dR in direction &, (see Figure 1). It is related to the
conventional (normalized) chord length distribution ¢(R) defined by

9)

Case, Placzek and DeHoffmann= by:

p(R) == [ ¥(R,0)dQ (6)

=l

where-S is the surface area of a lump; @(R)dR is the relative number of
chords with lengthsbetween R and R+dR in a lump. A volume v of
moderator is associated with each lump. From Figure 1, one sees that
the neutrons which travel a distance between z and z+dz in direction

§ before entering a lump, and then enter the lump such that they travel

along a chord of length between R and R+dR, must have started their
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flights in the element of volume

dv = ¥(R,Q)dRdz

The fraction ofneutrons in volume elements of this type is dv/v, under the
assumption of a flat flux distribution. But these neutrons are attenuated

by a factor e~ %

in travelling to the lump. Therefore, the probability
that a neutron travels a distance between z and z+dz, in direction O, and
then enters the lump along a chord with length between R and R+dR is:

= JZ

a(z,R,0)dRdz = & ¥R Q) argz (7)
v

Since the probebility of travelling a distance between y and y+dy (y<R)
in the lump and then colliding is % e”zydy, the square distance travelled

by those neutrons which meke their next collisions within a lump is:

o0 (o]

* R
[aR[3 4z [ay (y+2)2q (2, R, Q)% e~L¥ | (8)
o ‘4o ©
The z integral is allowed to go to iafinity as a result of the assumed
wide separation of the lumps; the factor Ul is for normalization purposes.

On the other hand, the neutron has probability e“ZR

of going
through the lump and it may then travel a distance between x and x+dx,.
with. probability ce~%%dx, in the moderator after leaving the lump.

These neutrons contribute
o0 0 [00] 2
f%%nggdzgdx(me) q(z,R,0)oe” ™ (9)

to the square distance travelled (42).



Lastly, some of the neutrons may not enter the lump at all on
a given flight. For these neutrons, it does not matter what is in the
lump, Thus, it way thus be assumed to be a vacuum, and we may follow
Behrens' argument to say that the probability of entering the hole for
a neutron which travels total distance between w and w+dw in the
moderator (w = z+x as defined above) in direction £ on a given flight

is given by:

ot W,
P(w,Q)aw = aw [ dR [ 4z | ax q(z,R;0)e”9%0e™ ™ (z+x-w)
o) 0 o
(10)
4]
= owe~ 9 dw [ ¥(R,Q)dR
0
a result derived by Behrens'. Then the contribution to 2 of neutrons
which do not enter the lump is:
a 2
J T [ v [1-P(w,Q)] oe™ Mdw (11)
Lo

It may be noted that the probabilities of the three processes described
above add to unity.

The integrals may be carried out and expressed in terms of
the escape probability (self-shielding factor) of the lumps. The re-

sult, obtained by adding expressions (8), (9), and (11), is:

£ -S0g) p o - )+ SEOLL - 11+ 2 (1)
o= 200 T 20 T B VY 2 52 £
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where the function g 1is defined by:

g = % i _@Qfme“ZRw(R,g)dR =1 - <BR2P, (13)

Here, Py is the usual escape probability and is tabulated for spheres,
slabs and cylinders in Reference(ﬂ. The average chord length <R> is
simply the surface area of a lump, S, divided by four times the volume,
V, of the lump.

To obtain the diffusion length, one needs only to calculate the
probgbility that a neutron is absorbed on a given flight, PAn From
previous arguments, the probability that a neutron in the assumed flat

distribution outside the lump will suffer its next collision in a

lump is given by Expression (8) with the (y+z)2 term deleted from the integrand:

P, = % [ as {,de oy a(z,8,0)% ¢ (1-g) (14)

-5

0 bvo
It would be unreasonable to assume that all of these neutrons are absorbed,
especially since the absorption and scattering cross sections are
approximately equal for low enrichment uranium. A better approximation
is to assume that only Za/Z of them are absorbed. This explains why
assumption (e) gbove was invoked. Neutrons do scatter from the lumps,
but if they have the same £ and EA as neutrons scattered from the
moderator, their effect on I? can be neglected. When the ratio of
moderator to absorber is high, relatively few neytrons are scattered
from the moderator and these neutrons can.be safely ignored. This is

clearly a poor approximation for small moderator to absorber ratios but
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but 1s an excellant approximation for very hesvily absorbing materials,
eg. highly enriched uranium.
Neutrons which collide in the moderator have probability qa/c
of being absorbed, so the absorption probability becomes:
Pag =(ZA/ZJEE +(oa/c,(l~PC)
(15)

S os S
— (1. = [12(1-
AVG,( g) + - [ l+W( g)]

eie

By inserting Equations‘lQ)anq‘lj into Equation(S% one obtains a formula
for the diffusion length.

In addition to the neglect of scattering from the lump, there
is another major flaw in the argument. All of the integrals within the
moderator have been extended to infinity as & consequence of the assumed
wide separation of the lumps. Again, this breaks down if the moderator
to absorber ratio (M/A) is smalil. Means of avoiding these difficulties
will be given in section C.

In the limit of small lump dimensions, for constant moderator
to fuel ratio, the result should go to the homogeneous diffusion length.
One can show that this is so, provided that (M/A) is sufficiently large.
For small lumps, the simplified case Zg =0, 0y = 0 ylelds:

2 —t ,-Aéiéi—¥15 (16)
© 3ac _
which, for large (M/A), goes to the result (52%2%)_1, which is correct
for isotropicscattering in a weakly absorbing homogeneous medium., The
validity, of course, depends on the cross sections to some extent

through the ratio (Xa/c).
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B. Anisotropic Scattering

If anisotropic scattering is present Equation (5) is invalid
since the direction of the (n+l)st flight depends on the direction of
the nth flight. The method employed in the previous section is essenti-
ally a random walk technique. Generalization of this problem to aniso-
tropic scattering if very difficult if a solution is to be obtained
in closed form. Instead we have done the random walk problem for =

homogeneous medium and obtained the not unexpected result:

2 1 1

I = = = = (17)
5za<z%' zb“) Loty

where | is the average cosine of the laboratory scattering angle. For

the same problem with isotropic scattering using the notation of section

A, we have:

]

P = 2/%°

¥
gﬂ

Py

From which one obtains the well known result

12 = (30a) "t (18)

Comparing (17) and (18), one sees that (17) is derived from (18) by
replacing the total cross section by the transport cross section,

Ztr = Z% - Zgﬁn From this it was assumed that for anisotropic scatter-
ing one need only replace the total cross section in the moderator by

the transport cross section.
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The derivation of Equation(lﬁ is of some interest. Let P(£i>
be the probability that the ith neutron flight be represented by the
vector I Then the mean square distance travelled by a neutron in
exactly n flights is

<r2>n =[ [ . (x+ I, + oann)EP(El)oauuP(r

ry T In -0

Jar,..dx,  (19)

Now, the PQ{i) can be decomposed into the product of the probability
P(r;) that r; have length r; and the probability P(0;) that it have
direction Qia For integration purposes, it 1s convenient to use Qiml
as the polar axis of the coordinates. Terms of the following type

arise from Equation 19.

(o]

gdrl., ngrnfds_zl. Ay (ry -x ) P(r)P(Q1) . P(ri)P(Q;). .

(20)

P(r;)B(8,). -P(r,)P(8,)

NOW(EiﬂEJ depends only on the Xengths of r; and‘Ej and the scattering
angles for collisions i+ 1, 1+ 2 .. j. When the various probabilities
P(r,) and P(Q) are properly normalized, all of the integrals over r
for k+i,j and all of integrals over () for k<i and k>j may be carried

out to yield unity. Then Equation(EO)reduces to:

Q.) (1)

0 [v4)
griP(ri)drifo rjP(rj)drjfd§i+ln .. Jagy (giogj}1=(s_zi+l)° QP(_J

(20) FE

Honeck has shown that

Ja0g1. a0, (8- 05)P(0y,)- () = @ (22)

s
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a result that has been verified by using the properties of rotation

groups. Finally, since

P(l"l) = Zﬂmzml

expression (21) becomes (including the case i = j):

1+D s s e
g?]l <>’ (23)

Now, collecting terms and noting that there all n terms of

the type ri.ri, n-1 of the type TiTip1o etc. we have:
2 -
<;r”‘2>n = [n+(nml)"ﬁ + (n(=2)p, + ..+ ‘ﬁn l] “ig (2&)

The probability that a neutron will make exactly n collisions is:
n-1

Pn = (Ef) (zr) (25)

2
and, finally, L is given by

@ 62 =T B P> - (i)i(zij;; Lo nmlg w o (26)
IR T AT Y wm

The double sum may be carried out in closed form by rearranging

{
the geries and yields‘lY)n

¢, Small Moderator to Absorber Ratio

It was shown that the method of section A 1s best for large

(M/A) and it was pointed out that themethod has at least two difficulties:

1) That integrals in the moderator extend to infinity and
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2) that scattering from the lump is treated in a very
approximate manner.

The first of these difficulties 1g overcome by cutting the
integrals off at some limit point Q. The determination of Q is rather
difficult and it would be best to obtain it, or at least verify any
guess at it, by comparison with experiment. As experimental data
were lacking at the writing of this paper, no authoritiative value
can be given. A reasonable just guess might be SO/MV where SO and v are
the surface area and volume of a cell. By allowing the integrals
in the moderator to range only from zero to Q one obtains the

correction:

Il

2 S -C
o =L (1g)e @ (03 - 2 4 g [3*; 2 2.

o
S dg -oq 2, 2 s P
+ TS 2 + = -] - 59 -oq dg :
by A2 € [ Q y Gg UZ] Ly e (27)
eR (P2 )
o e
which is to be added to Equation (12) and give a corrected ﬂio The
probability of collision in the lump now becomes
P, =S (1-g) (1-e"99) (28)
¢ lyo ‘

which should be used in place of (14) in computing P,
0

The second difficulty mentioned, that of treating scattering

in the lumps, may be handled as follows: on each flight a fraction PE

of the neutrons which started outside the lump suffer thelr next
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collisions within the lump. Of these, (Z%/Zt)PC = tl are scattered and

we assume that they have probability (l-PO) of having their next collision
withiﬁ the lump. This 1s equivalent to assuming that the entering neu-
trons have a uniform collision density in the lump. Then

(Z%/Z%)(I-Po)tl = toty of the neutrons in the moderator are twice
scattered in the lump. Continuing in this manner, always assuming a

flat distribution, we find:

2 1 (
tl(l+t2+t2 +)=-I—:=—Jc—é~ \28)

as the‘ratio of the number of neutrons scattering in the lump to those
scattering outside. -The mean square distance travelled by a neutron starting
in the lump may then be ?alculafed by arguments similar to those used in
section A,

Consider the neutrons originating in the volume element ¢(Raﬂ)dRS;

in the lump (see Figure 2), travelling in 4ag about §i. They are

(R, 0)dRg dQ
v

volume of the lump, again assuming uniform collision density and iso-

of the total neutrons scattering in the lump, V being the

tropic scattering. Those which do not leave the lump on a single flight

contribute

s e

oo @ R Rs
f’i%]% ,2 dRof aR, {) dx x° Ze“zxxp(R,a) (29)
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to the mean square length travelled. Those that do leave contribute:

o0 R Q - . }
f%%é@gd%gayms+w%ewvﬁﬂ>e&s (30)

Adding these up we have:

S - -0Q | 2,29 2 . Q 1 2
P =2 .l 2 o R
1" % 'wr \B & 2 { PR @+ﬂ
S d, -
Y T

As the square distance travelled in one flight by neutrons originating in

the lump. ILastly, PA for neutrons originating in the lump is needed.
Since the collision density in the lump is assumed uniform,

the probability of the next collision being in the lump is just (lmPo)

and the probability of absorptionfor newtronsscattered .from the lump is:

™) $

To obtain an I? for all neutrons, it seems more reasonable to
average /° and Py individually rather than averaging I?O This results
from an argument that a neutron generally spends part of its life in the
moderator and part of its life in the full and is subject to mean square

flights of ﬂg and £§ and absorption probabilities PA and PA , and
o)
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not‘I?y on each: flight., The fraction of neutrons scattering in the

fuel is:

t1/1-tp t1

h 1$El71-t2\= 1+t -to (33)

while the fraction of neutrons scattering in the moderator 1s:

tq 1-tp

le—=r = (34
1+tq-tp 1+ t1-tp )
Thus, the proper values of z2 and Pj should be:
p_p L 2 4 (35)
T 70 1+t-top 71 THti-te
t
1-to 1 .
Py = (36)

P, ——— + Py, T

where the value of ﬁg is to be obtained from (12) and (27), P, is given
, o
by (28) and (15), ﬂi may be taken from (31) and P, from (%2).
1

D. Anisotropy Factors:

Barlier in the paper it was stated that neutrons generally
travel further in some directions than others when the diffusing medium
is anisotropic. A tensor diffusion coefficient is then required and
Equation(ﬂ is used to describe the leakage from such a system. The
method proposed here may be used to obtain the diagonal elements of
this tensor, which, if the coordinate system is aligned with the prin-

cipal axes, are the only necessary elements. The I?iof Equationlq are
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the projections of 1? onto the three principal axes of the diffusion
tensor,

Then, all one need do 1s to calculate the projections of I?o
This is readily accomplished by multiplying the integrands used to ob-
tain £2 by (Q-i)g, where 1 is a unit vector in the direction in which

the diffusion length is required. Thus as an example, {(9) would read:

0°1)2 (2+R+x)2q (2, R, @) o™ (37)

ag H T "
fxﬁéngdzgdx(_d
as ohe contribution to ﬂg projected on the i direction. Of course, Py
will also vary with direction, but one may follow a suggestion of Beeleréll}
and determine a projected PA by multiplying the integrands of the integrals
for Py by Q-1.

The integrals obtained in this manner are related to g but

have not been tabulated. In a subsequent paper these integrals will be

developed and a comparison of the results with those of Beeler will be

given.

E. Flux Depression

In all of the previous discussion, the effect of flux shape
has been ignored. This is particularly important in the case of widely
separated black lumps; the neutrons tend to distribute themselves away
from black lumps, resulting in a decrease in the pfobability of enter-
ing the lumps, and hence decreasing PAo A smaller effect on ﬁg’ is

also introduced.
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In general, the previous calculations become very difficult for
a neutron denSity which is not uniform. As a first attempt, one might_
use a diffusion theory flux and obtain values of £2 and PAo Even this
appears to be a rather formidable task. It is possible to carry out the
integrals in glébgeometry. This has been done, assuming alternate

layers of absorber and moderator, using a flux calcualted from an albedo

boundary condition:

J+
T =B (38)

at the moderator-fuel interfaces. The ‘methpd 'follows @ the method pre-
viously used except that the probability that a neutron is found in the

volume element V(R,Q)dRdz is:

@(;)W(R;Q)dR@Z (39)

where the integral extends over the moderator associated with one lump.
It is difficult to apply these calculations to more complicated
geometry. It does not appear that a reasonable attempt could be made

until more data are available.



ITI RESULTS

The results obtained from the method of section II-A are
plotted as 12 vs M/A, and I vs rod radius for UGy and uranium
metal containing natural and enriched uranium in both HxO and D0
moderator (see Figures 3-14). Extension of the 1 vs rod radius

plots to zero rod radius should give the I? values for a homogeneous

\\
mixture. The comparison of the extrapolated homogeneous diffusion

length (I? against the calculated homogeneous diffusion length

ex)
(I? ) provides a check 6n the validity of the results. For example,

for the case of 1.0 percent enriched uranium in pure D0, I?m

cal

is,

on the average, about 3.5 percent lower than I?C but for light water

281’
the difference is somewhat larger.

At low M/A, as discussed in section II-C the I? cbtained
by the methods of section II-A are incorrect, and are, in fact, below
the homogeneous values. Physically, one expects self-shielding effects
to increase I? in a heterogeneous media. Corrections could be made
using the methods of section II-C and would be in the right direction.
These calculations have not been made as yet but will be reported on
in a subsequent paper.

For purposes of comparison, I? was calculated using
Equation (2). To obtain f, the thermal utilization, we used the
following method.

The disadvantage factor G, the ratio of flux at the surface

of the element in the mean flux in the element, was calculated using

12
the method by P. Lehamann, et ala(“—> and Amouyal, Benoist, and

PP
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(13)

Horowitz ‘==‘:

2a Vs Vs, 2
=l A [ Bag 4P (’ig) ] (ko)

T
The coefficients A, «, and B are functions of the parameter azt (where

{
a is the rod radius) In turn, the thermal utilization is given by‘éé):

Tol13E O (51)
Use of these formulas in Equation(2)yie1ds the values of I?
shown in Figure 15. As M/A increases, I? drops below the value for a
homogeneous mixture.,
Sher and Kouts(l&) used Equation(Q)with measured values of
f and obtained the valués shown in Figure 15. These results appear
more reasonable but the above mentioned discrepancy is observed if
the graphs are extrapolated. The difference between our results and
those of Kouts and Sher may be due to a different cheice of nuclear

constants.



IV CONCLUSIONS

The results given by the method proposed here appears to be
more satisfactory than those obtained by the alder method, Equation (2)
(see Figure 15). The major effect of the heterogeneity of the system
on I? is due to a decrease in Py which is, in turn, due to self=-shielding
and flux depression. Thus, one expects that for a heterogeneous medium,
the diffusion length will be greater than for a homogeneous medium with
the same (M/A)a As can be seen in Figure 15, Equation (2) predicts I?
which are sometimes lower than the homogeneous L2a For this reason it
is believed that the present calculation represents a better approxi-
mation of I?D

No calculations have been made using the corrections derived
in sections II-B through II-E. As experimental data are not as yet
available, it was impossible to determine which of these corrections
is necessary and we have therefore decided to delay further calculations
until such time as it will be possible to compare results with
experiments .

From Figure 15, it is seen that the results of section II-A
are too small for low M/A. This is as anticipated but detailed calcula-
tions have not been carried out for this case. Sample calculations
indicate that the corrections are in the right direction and yield

reasonable results.

) I
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NUCLEAR CONSTANTS USED

28
Enrichment NUOQ N25 N
20
Natural (10g/cc) 2.23x10 20 oo
1.0 % ‘ 4.971x10 40752x1022
1.15% 5.,540x10°0 4, 7%1x10
1.3 % 6.288x10°0 4,719x10°2
Element Microscopic Cross Sections (barns)
Total Absorption Scattering
U205 475 465 10
238 10.7h 2 L4k 8.3
U(Natural) 14,05 6.76 8.3
0 ~0 .2
D50 13.55 ~0 13.55
D L.o1 0 h.o1
H,0 90.5
22.08 6.66 15.42
H 31 292 30.71
lOg/cc
Natural Enriched Uranium
HpO D50 U0o 1.0% 1.15% 1.%%
15 8.31 10k 5.40 1.300 1.165 1.020
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Figure 13. 1.00% Enriched Uranium in Pure D50
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