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Abstract. We calculate the magnetirarion as a function of field for an Anderson impurily 
model for which the lowest configurations are f' and f2, using the leading order I / N  expansion 
(where N is the orbiral degeneracy). For most values of the valenee. except those near two, we 
find a two-stage m s o v e r  in M ( H ) .  This is due to an unbinding of the many-body singlet, first 
to a paniaUy scmned magnetic state and then to the full P m o m r  At small fieids there is a 
positive deviation from linearity in M ( H )  near the integer valent limits which is char?cterirtic 
of degenerate &f' models. This upturn disappears for intermediate values of the valence. 

The problem of a magnetic impurity embedded in a metal has occupied the anention 
of experimental and theoretical physicists for several decades [I]. In recent years the 
problem has attracted most attention in the context of dilute rare-earth and actinide systems, 
particularly~those that show heavy-electron behaviour [2]. whilst the cerium impurity model 
has attracted most attention and has Seen considerable progress, the problem of dilute rare- 
earIh and actinide systkms where both of the two lowest atomic configurations are degenerate 
has, until recently, received comparatively little attention. 

The recent interest in this problem has focussed on the 'non-Fermi liquid' behaviour 
expected when impurity states couple to electronic states of different degeneracy, such 
as when the local moment has quadrupolar character [3] or when additional long-range 
interactions 141 are included. Apaa from the well known example of high-T, systems in their 
normal state, non-Fermi liquid behaviour is also seen, for example, in UI,Pd3YX [5]. For 
these model systems, exact numerical renormalization group (RG) and mappings onto Bethe 
nnratz soluble models confirm the overcompensated non-Fermi liquid of the ground state. 
Similarly for undercompensated models, such as when the number of electronic channels is 
insufficient to screen the impurity, RG and Bethe m a t z  results are also available [6]. 

The case where the f' and d states couple to electronic states of the same symmetry 
17-14] has been studied in a number of works. Few exact results exist, except for a recently 
reported numerical renormalization group, treatment on a (j =.2) f1 state mixing with a 
( j  = 3/2) P state [13]. The ground state for such a model is a many-body singlet, in 
agreement withthe results of earlier variational [7,9, IO], 1/N expansion [8, 10, 141, and 
NCA [ l l ]  approaches. For the €'-p model with j - j  coupling the present authors recently 
calculated the valence photoemission spectra [14] and found the persistence of a Kondo- 
lie peak for all valences which contained a substantial fraction of the total weight in the 
intermediate valence regime. The upshot of all. these studies is that a small Kondo-like 
energy scale characterizes the formation of the many-body singlet even when the valence 
fluctuations are strongest. Less explored is the stability of this many-body singlet under 
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changes in temperature and field The numerical RG study [13] showed that the susceptibility 
as a function of temperature crosses over from Pauli-lie behaviour at low temperature to 
full local moment behaviour at high temperature, for values of the valence close to two. For 
intermediate valence, however, a two-stage crossover to the full f moment was obtained, 
which was interpreted as a partial unbinding of the many-body singlet. For valences close 
to one, the two-stage effect again took place, but over a much larger temperature region. 

In magnetic impurity problems a correspondence holds between magnetic field and 
temperature-both are effective in driving the system through the crossover region. One 
would then naturally expect the features found in the temperature dependence in the 
RG calculation 1131 to be repeated in the zero-temperature fielddependent magnetization. 
Although from an experimental point of view one expects only the small-field region to 
be accessible, one knows from experience with the P-f' problem that, even for the small- 
field region, qualitatively different behaviour is seen depending on the impurity degeneracy. 
For spins less than j = 3/2 the exact solution of the CoqblinSchrieffer model shows 
a downward curvature in the magnetic isotherms whereas for spins equal to or greater 
than 3/2 the curvature is positive 1151. Such an upward curvature, for j = 7/2, fits the 
experimental measurements on YbCuAl [16]. For this reason a knowledge of the field- 
dependent magnetization of the fl-f model would be of considerable importance. 

For the P-f problem where no exact solution is available the only readily implementable 
trealment (short of an RG one) is with the aid of the 1/N or variational ground-state 
method [7, 8, 9, IO] which can be straightforwady extended to finite field in order to 
investigate the questions mentioned above. From experience with the fo-f' problem it is 
known that the finite-field large-N problem exhibits some unphysical features [17]: slave- 
boson methods obtain a second-order phase transition in the auxiliary boson field, which 
in the magnetization is reflected in a discontinuity of slope at the crossover field. Subtle 
generalizations of the Zeeman spliuing scheme have to be invoked if one is to avoid this 
transition [le]. However, the large4 limit for the p-f' model does obtain the qualitative 
features at low field correctly, namely an upturn in the magnetic isotherm 1171, while above 
the critical crossover field the magnetization takes on its full moment value. 

For the above reason we shall use the large4 variational wavefunction for the f'-f 
problem at large but finite N. This has the effect of smoothing out the singlet magnetic state 
crossover while at the same time determining the overall physics of the crossover correctly. 
We will show that the crossover to magnetic behaviour can be correctly described with 
the same variational wavefunction that yields a singlet at low fields. While the large-N 
calculation is no substitute for an exact calculation, we do, on the basis of experience with 
the P-f' problem, expect the qualitative features mentioned earlier to be reproduced. We 
shall be particularly interested in how these features, namely, the nature of the crossover 
and the law-field behaviour, depend on the impurity valence. 

We examine an N-fold degenerate f'-f Anderson model to leading order in the 1/N 
expansion. For our purposes, P and P character states are assumed to have very high 
energies and are projected out. Both the Pauli paramagnetism of the conduction band 
and the contribution of the magnetic impurities will determine the magnetization of such 
a system. As we are interested in the magnetic effects of the impurities, we take the 
conduction elecfron g-factor to be zero. The starting point then is the Hamiltonian: 
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where cxa represent creation operators for electron states with momentum k and angular 
momentum p. fi represent local state operators with angular momentum p, and E [  and E2 

represent the zero-field bare atomic state energies for one and two f electrons respectively, 
g is the f electron g-factor, p~ is the Bohr magneton, and H is the applied field. The 
hybridization matrix element V is taken to be momentum independent and we assume a 
flat density of states p cut off at bandwidth f D .  The hybridization between local and band 
states only occurs for states of the same symmetry with hybridization width r = @ V 2 N .  

To leading order in 1 / N  each f electron is screened by a hole in the conduction band 
with the same angular momentum, and particle-hole pair states are ignored. In the restricted 
basis that results, the ground-state wavefunction may be written 

t 

W O )  = ~ a p ( E ) c e p f , i , l o )  + c B p p G  E ’ ) c < p f ~ c < a f ~ r l o )  (2) 
C.P f .d 

PCP’ 

where the E summations are cut off at the Fermi energy. Despite the fact that this ground 
state is necessarily an angular momentum singlet, it may carry a magnetic moment because 
only the f-electron states couple to the magnetic field. The amplitudes aP(c) and , S P P , ( ~ ,  6’) 

are then obtained by applying the time-independent Schrodinger equation ‘HI*) = EolY). 
This leads, after some algebra, to the following integral equations for a,,(€) and ppw, (e, e’): 

Here, the separation E21 = E2 - El is taken as a model parameter and the ground-state 
energy E m  is determined by the first of these equations. 

The integral equations (3) and (4) are in fact a set of N coupled integral equations. 
They may be solved by observing that if we solve the single-integral equation 

where 

then by using the substitution 

f f ~ ( 6 )  = - gpBHP) (6) 

we note that equation (3) is satisfied apart from corrections of order r / N ,  which represent 
the effect of the Pauli exclusion principle in the P state. 

Typically when working withii the 1 / N  expansion at leading order, one takes an infinite 
f-level degeneracy and considers the results of the theory to be exact for this unphysical 
model. Presently, however, it is more convenient to hold N finite, and treat the leading 
order in 1 / N  as an approximation to the exact result. It is possible to write this theory for 
N + 60 by taking g + 0 such that A = g p B H N  remains finite. Then we may write 
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equation (3) in terms of integrations over spin indices. Unfortunately, such a treatment 
fails for even moderate fields because the change of variables (6) leads to a Jacobian which 
has zero weight at x = 0, while the wavefunction &"(x) has nearly all of its weight in 
the lowest-energy spin channel and hence near x = 0. In order to correctly handle this 
effect, one would have to handle the lowest-energy channel separately-in which case the 
substitution (6) would no longer be valid. We consider, instead, the case of finite f-electron 
degeneracy. 

We solve equation (5) using a method by which we guess a solution and iteratively 
improve the guess until we obtain consistent results for Ezo and 2(e) 18, 91. The 
magnetization is obtained by directly calculating the occupancy of each atomic channel: 

(7) 

Altematively it may be noted that the above expression is nothing other than 

M = ('4'01 - a'HfaHIY0) = -8EofaH = aEm/aH.  (8) 

It is also possible to calculate the energies of states for which the atomic moments are 
unscreened or only partially screened. For the case of unscreened states (analogous to the 
'no-hole triplet' of [9]) the wavefunction is, 

I'4'w.LL,) = f;f;m (9) 

which has an energy ELL.@, = E2 - g p B H ( p  + p'). 
For the case of partially screened stam (analogous to the 'doublets' of V ,  9, IO]) 

the derivation of the wavefunction proceeds analogously to that of the ground state. The 
wavefunction for the partially screened state is written 

I q m )  = ~ ~ L I o )  + CB~,(~)G,~,$~~IO) 
f ,P' 

which leads to transcendental equations for the magnetic state energies: 

where E;", (E%) is the separation of the partially screened magnetic state energy and the 
bare f' (f2) state. These magnetic states are significant for two reasons. When no magnetic 
field is applied. the energy separation between the magnetic and ground state represents a 
spin fluctuation energy scale which controls the magnitude of the magnetic susceptibility. 
Secondly, as the magnetic field is applied the energy separation between the ground state (2) 
and magnetic state (I 1) becomes very small. Therefore, by equation (8). the magnetization 
of the ground state closely follows that of the magnetic state. 

This second result may be understood by considering equation (3) for large magnetic 
fields compared with the singlet-magnetic separation at zero field. In this case, only the 
occupation of the lowestenergy spin channel is significant and the sum on the right-hand 
side is restricted to a single term. The equation is then identical to that of the magnetic 
state, apart from a r / N  correction, so that the singlet-magnetic separation remains extremely 
small. This point emerges quite clearly in the numerical solutions, as we shall see later. 
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Figure 1. The magnetization as a function of applied field in unib of the hybridization width 
for E a  = 0 (solid line), E a  = -I (long dashes), E x  = -2 ( s h a  dashes), E21 = -3 (dots). 
E x  = -4 (dash-dot). &I = -5 (dash-dotdot). Here the bandwidth, D, is lor, and the orbital 
degeneracy, N, is 14. 

Tumimg to the numerical results for the magnetization (7) we show in figure 1 the full 
magnetic-field dependence (on a scale given by the hybridization width r) of this quantity, 
for a set of values of the bare atomic splitting E21 with a value of the bandwidth equal 
to lor and an f-level degeneracy of 14. In all cases we see the initial linear dependence 
eventually saturate. In the region where the valence is close to two (nf = 1.91 for Ell = -5 
and nf = 1.83 for &I = -4) there is a single crossover to a saturated value equal to the 
full moment (in this case 1 3 g p ~ ) .  As the valence moves to smaller values (nr = 1.71 for 
Ezl = -3) a shoulder begins to appear in the crossover region which tums into a distinct 
plateau as the valence moves towards the f1 region. For the lowest value shown (nf = 1.34 
for E21 = 0) this plateau region holds for a considerable field region roughly proportional 
to the energy separation between the bare P state and the magnetic state (1 1) (or, just as 
accurately in this region, the ground state (2)). 

In figure 2 we show the valence as a function of applied field. In all cases the valence 
tends towards two for large magnetic fields. In the region of small zero-field valence there is 
a small, but sharp reduction in valence at a field a few times the singlet-magnetic separation 
6. 

One may consider the role of hybridization in this model in two steps. First the 
hybridization between the fl and f* states leads to an energy reduction of the paaially 
screened magnetic states as compared to their bare atomic energies. Secondly, the 
hybridization between various spin channels (of the f’ states) further reduces the energy 
of the singlet beyond that of the partially screened magnetics states. The energy scale 
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Figure 2. The valence as a function of applied field in units of the hybridization width for 
Em = 0 (solid line), E n  = -1 (long dashes), E21 = -2 (shoe dashes), E21 = -3 (dots), 
E n  = -4 (dashdot), El i  = -5 (dash-dot-dot). Here the bandwidth is lor and Ihe orbital 
degeneracy is 14. 

associated with the first process is E; and that of the second process is 8, the singlet- 
magnetic separation. 

This leads to a simple description of the two-stage effect of the magnetization with 
field- well as the behaviour of the valence. When the field is applied it lowers the 
energy of certain magnetic states. When the field is large enough so that this energy, 
gpLgHj % gg&’N/2, is greater than 6, the ground state will become polarized, so that 
only the lowest magnetic channels are substantially occupied. In this case there will be 
very little overlap between different f1 channels and the energy of the ground state will 
be very near that of the partially scnened magnetic states. So far we have neglected the 
ability of the singlet state to minimize its energy by a combination of hybridization and 
polarization. From our numerical results we see that this leads to a slightly higher crossover 
field g p B N H  % 46. Even though the ground state is still an angular momentum singlet, the 
magnetization (M = aE&H) and valence (nr = aEzo/aE21) follow that of the partially 
screened magnetic state, and we may consider the singlet state ‘unbound‘. We can see this 
very clearly for the magnetization in figure 3 where, after the field reaches gpBH % 46/N, 
the magnetization of the polarized singlet state is very near that of the magnetization of the 
partially screened magnetic states. This also accounts for the sharp valence reduction of the 
singlet state with magnetic field for the E21 = 0 and E21 = -1 curves because the valence, 
in absence of field, of the partially screened magnetic states is slightly smaller than that of 
the singlet state. 

In the Same manner, when the energy gained by the completely unscreened fL states as 
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Fwre 3. The magnetization as a function of applied field in uiits of 6. the zero-field singlel- 
magnetic separation for &ZI = 0, S = 0.Wr (solid line). Em = -2.6 = 0.108r (long dashes), 
EX = -3. S = 0.103r Won dashes), Ezl = -5, 6 = 0.042r (dashdot). Also plotted is the 
magnetization of the partially screened magnetic states (dots) for the same parameters. Note 
that Ihe magnetization of the ground smte follows that of the magnetic states very closely for 
fields geearer than gF8 H Eii &/N. The bandwidlh is lor. and lhe orbital degeneracy is 14. 

compared to that of the partially screened states is comparable to the energy saved by the 
hybnduation between the f' and P states E;, then the amplitude of the ground state in 
the f' part of the wavefunction will be negligible. Then the overlap between the f' and P 
states is negligible and the energy, and hence magnetization and valence, will cross over to 
that of the totally unscreened magnetic states (M = 13, ny = 2 in the present case). This 
occurs at fields g p s N H  = 2E20. 

Thus, we have demonstrated an almost complete qualitative correspondence between the 
behaviour of ~(7') in the renormalization group calculation 1131 with M ( H )  in the present 
calculation. The physics of the problem is then most readily understood as a two-stage 
unbinding of the Kondo-like bound state. For valences close to two the separation is hardy 
visible because the energy scales 6 and E$ are the same in this m e  (though the E21 = -4 
curve in figure 1 could be said to show a slight feature). The present calculation, together 
with [13], and that of [IO], where the dynamic susceptibility is found to have a two-peak 
structure, shows that the physics of the f"-f"+' Anderson model is richer in structure than 
would be expected on the basis of the results of the p-fl model. 

Experimentally, the most interesting region is the small-field part of the magnetic 
isotherm. In figure 4 this is shown for the above set of bare atomic splittings as a function 
of field (in units of 8, the singlet-magnetic splitting in the absence of a field). Plotting the 
curves in this way shows how the product of the susceptibility with the singlet-magnetic 
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Figure 4. The magnetization for small fields as a fuundon of the applied field in units of S, 
the zem-field singlet-magnetic separation, for E21 = 0. S = 0.064r (solid line), E21 = -1, 
6 = 0.091r Oong dashes). E21 = -2, 6 = 0.108r (shon dashes), = -3, 6 = 0.103r 
(dots). E21 = -4, 6 = 0.075r (dash-dot). EX = -5. S = 0.042r (dash-dot-dot). Here the 
bandwidth is IOr and the orbital degeneracy is 14. 

splitting increases monotonically with valence. More important, however, is the behaviour 
of the curves beyond the linear region. A distinct upward curvature exists €or values of 
the valence close to the integer valent limits. This is consistent with expectations based 
on experience with the integer valence limits of the Coqblin-Schrieffer model, both from 
exact [16] and large-N [15] treatments. However the upward curvature is no longer evident 
for values of the valence in the middle of the valence regime. In figure 5 we show a more 
careful analysis of the departure of M from XH as a function of HIS.  Clearly the upward 
curvature disappears in the middle of the valence regime. 

The implications for actinide impurity systems are that they will not show the uptum 
found in degenerate Kondo systems such as YbCuAl [U, 161. Since large-N treatments are 
known to exaggerate the extent of the uptum in M(H) for the f'-f' model, as compared 
with exact finite4 results [17], we may expect that for practical values of the degeneracy 
in the valence fluctuation regime, M(H)  might show downward curvature. It is certainly 
the case for the light heavy-fermion compound UAlz [19] that the magnetization is almost 
linear in H up to 40 T and shows a slight downtum at the lowest temperatures. Moreover, 
we may expect, on the basis of the close analogy between field and temperature that a 
downward curvature in M ( H )  will be accompanied by a negative T 3  term in the specific 
heat, C(T) ,  at low temperatures (as in the CoqblinSchrieffer model Ill). The negative 
T 3  term in C ( T )  has been recognized for actinide heavy-fermion systems for some time, 
notably in UBe,, [ZO], UIDB:! [Zl], and has been regarded [22] as an indication of the 
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Figure 5. The deviation from lineadty of the magnefization as a function of applied field in 
u n h  of 6, the zero-field singlet-magnetic separation. for E21 = 0 (solid line), E x  = -1 (long 
dashes), Em = -2 (short dashes), E21 = -3 (dots). E21 = -4 (dash-dot), E21 = -5 (dash- 
dol-dol). Note that in the integer valet  limits there is a positive deviation for small fields 
which disappears in the intermediate valence region. Here rhe bandwidth is lor, and the orbital 
degeneracy is 14. 

inapplicability of degenerate impurity models to actinide heavy-fermion compounds. 
In conclusion, we have calculated the magnetization as a function of field for the f'-P 

Anderson model with j - j  coupling for large degeneracies. The overall behaviour shows, 
for valences away from the P limit, a two-stage crossover as a function of field, due to the 
partial unbinding of the many-body singlet state. At low fields, the magnetization shows 
upward curvature only for valences close to the integral values, while for the intermediate 
valent regime the upward curvature is destroyed. It would be of interest to see to what 
extent curvature. (or its absence) in M ( H )  can be found in dilute uranium alloys, where the 
lattice metamagnetic effects should no longer be present. 
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