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Abstract
We present a theoretical framework based on a higher order density correlation
function, analogous to that used to investigate spin glasses, to describe
dynamical heterogeneities in simulated glass-forming liquids. These higher
order correlation functions are a four-point, time-dependent density correlation
function g4(r, t) and a corresponding ‘structure factor’ S4(q, t) which measure
the spatial correlations between the local liquid density at two points in
space, each at two different times. g4(r, t) and S4(q, t) were extensively
studied via molecular dynamics simulations of a binary Lennard-Jones mixture
approaching the mode coupling temperature from above in Franz et al
(1999 Phil. Mag. B 79 1827), Donati et al (2002 J. Non-Cryst. Solids 307 215),
Glotzer et al (2000 J. Chem. Phys. 112 509), Lačević et al (2002 Phys.
Rev. E 66 030101), Lačević et al (2003 J. Chem. Phys. submitted) and Lačević
(2003 Dissertation The Johns Hopkins University). Here, we examine the
contribution to g4(r, t), S4(q, t) and the corresponding dynamical correlation
length, as well as the corresponding order parameter Q(t) and generalized
susceptibility χ4(t), from localized particles. We show that the dynamical
correlation length ξSS

4 (t) of localized particles has a maximum as a function
of time t , and the value of the maximum of ξSS

4 (t) increases steadily in the
temperature range approaching the mode coupling temperature from above.

1. Introduction

One of the most challenging problems in condensed matter physics is understanding the
dynamics and thermodynamics of glass formation [6]. On cooling from high temperature,
liquids may crystallize at Tm, or if a liquid is cooled so that crystallization is avoided, it may
become supercooled. As a supercooled liquid is further cooled, the particles move more and
more slowly, and their motion is slowed down so drastically that, at some low T , particles will
not be able to rearrange. This rearrangement is necessary for a liquid to find its equilibrium,
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and at this temperature particles in a liquid appear to be ‘frozen’ or ‘jammed’, at least for the
timescale of an experiment. At Tg the supercooled liquid is no longer in equilibrium. This is
called a glass transition, and the temperature at which this occurs is called the glass transition
temperature Tg. An extensive treatment of the dynamics and thermodynamics of supercooled
liquids can be found in the textbooks by Debenedetti [7], Harrison [8] and Knight [9]. There
are many conference proceedings [10–15] on experimental developments, theoretical advances
and the role of computer simulation in the search for a universal theory of supercooled liquids
and the glass transition.

We are still left with unanswered questions about the dramatic slowing down in the
molecular motion as the temperature is lowered to Tg, which would not be surprising alone, but
this process is accompanied with no significant change in the long-range structure. How is it
possible that dynamics changes so dramatically while the structure, as measured by traditional
static two-point correlation functions, remains almost unchanged, and what type of transition
is the glass transition are some of the crucial questions in the field of glass transition research.
To be able to answer those questions, we must fully understand the dynamics of particles at the
microscopic level, i.e. search for the patterns in particle motion and relate them to a mechanism
for slowing down.

The prominent features of supercooled liquids are the non-Arrhenius temperature
dependence of the viscosity and structural relaxation time [16], non-exponential character of the
structural relaxation time [17], absence of changes in static structural two point quantities [18–
21] and decoupling of the transport coefficients [22–25]. In particular, the non-exponential
character of the relaxation of density correlation functions and decoupling of the transport
coefficients can be rationalized with the existence of spatially heterogeneous dynamics (SHD)
or ‘dynamical heterogeneity’ now well established in experiment and computer simulation [26–
30]. Therefore, understanding of the origin of dynamical heterogeneity is directly related
to understanding the origin of the glass transition. We refer to a system as dynamically
heterogeneous if it is possible to select a dynamically distinguishable subset of particles by
experiment or computer simulation [31]. From the theoretical point of view, the question
‘what is dynamical heterogeneity?’ still has different answers depending on the theoretical
framework used to describe it. Recently, a new theoretical approach to the problem of
cooperativity demonstrated how SHD can arise in simple systems with cooperative dynamics.
This theory predicts a growing correlation length on decreasing T [32]. Here we use a
four-point, time-dependent, density correlation function formalism to select a dynamically
distinguishable subset of particles [1–5]. In particular, we investigate the properties of those
particles deemed to be localized.

2. Method and model

The simulation method we use to generate data for our analyses is molecular dynamics (MD).
This is a widely used method in the investigation of supercooled liquids and glasses that
provides static and dynamic properties for a collection of particles. The code we use in
our simulations is LAMMPS1, a parallel MD code based on a spatial decomposition parallel
technique.

We study a 50/50 binary mixture of particle types ‘A’ and ‘B’ that interact via the Lennard-
Jones potential

Vαβ(r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6]
. (1)
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This system has been previously studied by Wahnstrom [33] and Schrøder [34]. Following
these authors, we use length parameters σAA = 1, σB B = 5/6 and σAB = (σAA + σB B)/2,
and energy parameters εAA = εB B = εAB = 1. The masses of the particles are chosen to be
m A = 2 and m B = 1. We shift the potential and truncate it so it vanishes at r = 2.5σAB .

We simulate a system of N = 8000 particles using periodic boundary conditions in a cubic
box of length L = 18.334 in units of σAA, which yields a density of ρ = N/L3 = 1.296 for
all state points. We report time in units of τ = (m Bσ 2

AA/48εAA)1/2, length in units of σAA and
temperature, T , in units of εAA/kB, where kB is Boltzmann’s constant. We simulate eight state
points at temperatures ranging from T = 2.0 to 0.59, following a path similar to that followed
in [2, 34–36]. The simulations are performed in the NV E ensemble. We estimate the mode
coupling temperature TMCT = 0.57 ± 0.01 (the glass transition temperature Tg is typically in
the range 0.6TMCT < Tg < 0.9TMCT [37]) and the Kauzmann temperature T0, which can be
considered a lower bound for the glass transition temperature Tg, T0 = 0.48 ± 0.02. How we
estimate these temperatures and other simulation details can be found in [4, 5].

3. Background

In this section, we briefly review the theoretical framework of the four-point, spatiotemporal
density correlation function and corresponding structure factor. Detailed derivation of these
quantities can be found in [1–5].

We consider a liquid of N particles occupying a volume V with density ρ(r, t) =∑
δ(r − ri (t)), and investigate a quantity

Q(t) =
∫

dr1 dr2 ρ(r1, 0)ρ(r2, t)w(|r1 − r2|) =
N∑

i=1

N∑
j=1

w(|ri (0) − r j (t)|), (2)

which measures the number of particles that, in time t , either remain within a distance a of
their original position, or are replaced by another particle (‘overlapping particles’). The reason
for introducing an ‘overlap’ function w is to eliminate weakly correlated vibrational motion
of the particles (for more details see e.g. [4]). The fluctuation in Q(t) may be defined as

χ4(t) = βV

N2
[〈Q(t)2〉 − 〈Q(t)〉2]. (3)

Expressing χ4(t) in terms of the four-point correlation function G4(r1, r2, r3, r4, t), we obtain

χ4(t) = βV

N2

∫
dr1 dr2 dr3 dr4 G4(r1, r2, r3, r4, t), (4)

where

G4(r1, r2, r3, r4, t) = 〈ρ(r1, 0)ρ(r2, t)w(|r1 − r2|)ρ(r3, 0)ρ(r4, t)w(|r3 − r4|)〉
− 〈ρ(r1, 0)ρ(r2, t)w(|r1 − r2|)〉〈ρ(r3, 0)ρ(r4, t)w(|r3 − r4|)〉. (5)

Note that in the case of both the mean-field, p-spin model and a liquid in the hypernetted
chain approximation [38–41], the time dependence of χ4(t) was calculated numerically from
an analytic expression in [1]. Those calculations provide the first analytical prediction of the
growth of a generalized dynamical susceptibility and, by inference, a corresponding dynamical
correlation length ξ4(t) in a model glass-forming system.

We wish to radially average the four-point correlation function in equation (5) to obtain a
function g4(r, t) that depends only on the magnitude r of the distance between two particles
at time t = 0. We start from the requirement that

χ4(t) = β

∫
dr g4(r, t), (6)
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and obtain

g4(r, t) = 1

Nρ

〈∑
i jkl

δ(r − rk(0) + ri (0))w(|ri(0) − r j (t)|)w(|rk(0) − rl(t)|)
〉
−

〈
Q(t)

N

〉2

.

(7)

Assuming an isotropic, homogeneous system, g4(r, t) is a function of r = |r| (i.e. g4(r, t)).
Details of the above derivation can be found in [4, 5]. g4(r, t) describes spatial correlations
between overlapping particles separated by a distance r at the initial time (using information at
time t to label the overlapping particles). The first term in g4(r, t) is a pair correlation function
restricted to the subset of overlapping particles. The second term represents the probability of
any two randomly chosen particles overlapping at times 0 and t . The structure factor S4(q, t)
that corresponds to g4(r, t) is its Fourier transform

S4(q, t) =
∫

g4(r, t) exp[−iq · r] dr. (8)

Equation (8) implies that

lim
q→0

S4(q, t) = χ4(t)

β
. (9)

Equation (8) is analogous to the static structure factor S(q), but ‘scatters’ off overlapping
particles using information on overlapping particles at time t to label particles at time 0.

3.1. Self and distinct contributions to Q(t), χ4(t), g4(r, t) and S4(q, t)

The contribution of a given particle i to Q(t) is a result of three possible events: (i) particle
i remains within a distance a of its original position; (ii) particle i moves and is replaced
(within a distance a) by another particle; or (iii) particle i moves a distance greater than a and
is not replaced by another particle. Case (iii) does not count as an overlap, and thus does not
contribute to Q(t). Cases (i) and (ii) count as overlaps and contribute to the value of Q(t).
Cases (ii) and (iii) belong to the set of delocalized particles. However, cases (i) and (ii) clearly
represent two very different physical situations. To elucidate the various contributions to the
four-point correlation function, we separate Q into self and distinct components,

Q(t) = QS(t) + QD(t) =
N∑

i=1

w(|ri (t) − ri (0)|) +
N∑

i=1

N∑
i �= j

w(|ri (0) − r j(t)|). (10)

The self part, QS(t), measures the number of particles that move less than a distance a in a time
interval t; we call these ‘localized’ particles. The distinct part, QD(t), measures the number
of particles replaced within a radius a by another particle in time t ; we call these ‘replaced’
particles.

Following the scheme of decomposing Q(t), χ4(t) can be decomposed into self
χSS(t), distinct χDD(t), and cross χSD(t) terms: χ4(t) = χSS(t) + χDD(t) + χSD(t), where
χSS(t) ∝ 〈Q2

S(t)〉 − 〈QS(t)〉2, χDD(t) ∝ 〈Q2
D(t)〉 − 〈QD(t)〉2 and χSD(t) ∝ 〈QS(t)QD(t)〉 −

〈QS(t)〉〈QD(t)〉. Thus χSS(t) is the susceptibility arising from fluctuations in the number
of localized particles, χDD(t) is the susceptibility arising from fluctuations in the number of
particles that are replaced by a neighbouring particle, and χSD(t) represents cross fluctuations
between the number of localized and replaced particles.

We also consider ‘delocalized’ particles, that is particles that in a time t are more than a
distance a from their original location. As was pointed out in [2], substituting 1 − w for w

in equation (2) gives the delocalized order parameter QDL(t) = N − QS(t), and as a result,
χDL(t) ≡ χSS(t).
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Figure 1. Temperature and time dependence of 〈Q(t)/N〉, 〈QS(t)/N〉, 〈QD(t)/N〉, 〈QDL(t)/N〉,
χ4(t), χSS(t), χDD(t) and χDL(t) ≡ χSS(t).

Likewise, we can find terms in g4(r, t) and S4(q, t) that correspond to localized, replaced
and delocalized particles, e.g. g4(r, t) and S4(q, t) of localized particles correspond to gSS

4 (r, t)
and SSS

4 (q, t) and for i = j and l = k in equations (7) and (8), respectively. In the next section
we present numerical results for SSS

4 (q, t) and the corresponding correlation length ξSS
4 (t).

4. Results

Figure 1 shows the time and temperature dependence of Q(t) and χ4(t) and their terms
described in section 3. The figure shows that for all sufficiently low T , 〈Q(t)/N〉 and
〈QS(t)/N〉 are characterized by a two-step relaxation, commonly observed in the intermediate
scattering function [26], as a result of the transient caging of particles. 〈QDL(t)/N〉 has the
opposite time dependence from 〈QS(t)/N〉 due to the fact that it measures the number of
particles that moved a distance greater than a. The same applies to 〈QD(t)/N〉 since those
particles constitute the subset of delocalized particles. At short times, particles oscillate in
a region smaller than the overlap radius a, and so 〈Q(t)/N〉 = 1 and 〈QS(t)/N〉 = 1. We
observe a short, initial relaxation of Q(t) and QS(t), and a longer, secondary relaxation. χ4(t),
χSS(t) and χDL(t) are zero at short time, attain a maximum at some intermediate time tmax

4 ,
and decay at long time to zero in the thermodynamic limit.

χ4(t) and its terms measure the correlated motion between pairs of particles, calculated
equivalently from fluctuations in the number of localized, replaced and delocalized particles or
from the corresponding four-point correlation functions. The behaviour of χ4(t) demonstrates
that correlations are time dependent, with a maximum at a time tmax

4 . Similar behaviour was
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Figure 2. Time dependence of χSS
4 (t) at T = 0.62. Times that are encircled and labelled with an

appropriate fraction of tmax
4 correspond to the snapshots in figure 3.

reported for the same and other model liquids in [2, 42, 43] for a generalized susceptibility
related to a displacement–displacement correlation function χU(t), which measures the
correlations between displacements of particles as a function of time. In these works, SHD
was observed to be most pronounced in the late β/early α-relaxation regime. We find that the
correlations measured by χ4(t) are most pronounced in the α-relaxation regime (see e.g. [4]).

Figure 2 shows the time dependence of χSS(t) at T = 0.62. There are nine points marked
as open circles that correspond to the times at which we show localized and delocalized particles
in figure 3.

The four-point structure factor of localized particles SSS
4 (q, t) calculated from equation (8)

is plotted versus q in figure 4, at T = 0.60. We also find that at very early times (when
〈Q(t)/N〉 = 1), SSS

4 (q, t) = S(q). We find that while S(q) shows no change at small q
(see e.g. the static structure factor in [3]), SSS

4 (q, t) develops a peak at small q which grows
(figure 4(a)) and decays in time (figure 4(b)), indicating the presence of long-range correlations
in the locations of overlapping particles.

Inspired by the Ornstein–Zernike theory (OZT) [44],which describes, for example, density
fluctuations near a liquid–gas transition, we use the following function

SSS
4 (q, t) = SSS

4 (0, t)

[1 + (qξSS
4 (t))2]

, (11)

where SSS
4 (0, t) and ξSS

4 (t) are fitting parameters. The fitting was performed using an interior-
reflective Newton method in MATLAB, and setting the termination tolerance of the function
value to 0.1. We find a good fit to the data in the q range from q = 0.34 to 1.9, for each T and
time. The observed narrowing of the peak directly reveals the growing range of gSS

4 (r, t) with
decreasing T .

The time and temperature dependence of ξSS
4 (t) obtained from this fit is plotted for several

state points in figure 5. We see that the qualitative behaviour of ξSS
4 (t) is similar to that of
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Figure 3. Localized (light grey) and delocalized (dark grey) particles at times 0.007tmax
4 , 0.04tmax

4 ,
0.2tmax

4 , 0.5tmax
4 , tmax

4 , 1.6tmax
4 , 3.3tmax

4 , 6.3tmax
4 and 10.2tmax

4 .

χSS
4 (t): ξSS

4 (t) has a maximum in time that coincides with the maximum in χSS
4 (t), and as T

decreases, the amplitude and time of this maximum increase. The highest values of ξSS
4 (t) for

T = 0.60 exceed half the simulation box size. The fit at these points depends strongly on the
number of points used, initial parameter guesses and other details, and can yield large values
(e.g. >40) depending on these details. Since these values greatly exceed the range over which
we can meaningfully interpret the resulting correlation length, we make no attempt to define
rigorously the upper error bounds at these points, but the data are well bounded from below.
The fits at all other points and temperatures are well constrained. The length scale ξSS

4 (t)
characterizes the typical distance over which localized particles are spatially correlated.

5. Discussion

In this paper, we have focused on a four-point, time-dependent density correlation function
gSS

4 (r, t) and corresponding time-dependent structure factor SSS
4 (q, t), and demonstrated that

these functions are sensitive to dynamical heterogeneity in a model glass-forming liquid. As
derived in previous works [1–3, 45, 46], this correlation function is related to an order parameter
Q(t) corresponding to the number of ‘overlapping’ particles in a time window t , where the
term ‘overlap’ is used to denote a particle that was either localized or replaced in a time t .

We calculated the correlation length of localized particles ξSS
4 (t), characterizing the

range of gSS
4 (r, t), and showed that it depends on time and attains its maximum value in the



S2444 N Lačević and S C Glotzer

2

4

6

8

10

12

S
4SS

(q
,t)

0.007t
4

max

0.04t
4

max

0.2t
4

max

0.5t
4

max

t
4

max

q

2

4

6

8

10

S
4SS

(q
,t)

t
4

max

1.6t
4

max

3.3t
4

max

6.3t
4

max

10.2t
4

max

correlations are growing in time

correlations are decaying in time

(a)

(b)

Figure 4. Time dependence of SSS
4 (q, t) at T = 0.62. SSS
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those shown for g4(r, t) in figure 2. Note that the height of the first diffraction peak in SSS
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particles, which also decreases monotonically in time (see figure 1).
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Figure 5. Time and temperature dependence of ξSS
4 (t) obtained from the fits to equation (11).

The data shown are smoothed over successive groups of five points.

α-relaxation regime. We also showed that this maximum grows to exceed half of the simulation
box size, close to TMCT. This length scale characterizes the typical size of dynamically localized
domains.
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The characteristic length scale calculated here is related to length scales calculated from
the displacement–displacement correlation function [43], cluster size [47] and other measures
of correlated particle motion and dynamical heterogeneity [48–50]. ξSS

4 (t) is essentially the
same as that obtained by considering the delocalized particles (the set of particles that in
any time window t moves beyond a distance a) due to the mathematical identity between
χ4 for localized and delocalized particles. This suggests a picture of fluctuating domains of
temporarily localized and delocalized particles, perhaps similar to that proposed by Stillinger
and Hodgdon [24].

Finally, we note that all quantities presented here can be measured in dense colloidal
suspensions using confocal microscopy studies [51, 52].
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[5] Lačević N 2003 Dissertation The Johns Hopkins University
[6] Weintraub H et al 1995 Science 267 1609
[7] Debenenedetti P G 1996 Metastable Liquids: Concepts and Principles (Princeton, NJ: Princeton University

Press)
[8] Harrison G 1976 Dynamics Properties of Supercooled Liquids (London: Academic)
[9] Knight C 1967 The Freezing of Supercooled Liquids (Princeton, NJ: Van Nostrand Reinhold) (Published for the

Commission on College Physics by Van Nostrand)
[10] Fourkas J T (ed) Supercooled Liquids: Advances and Novel Applications (ACS Symp. Ser. 0097-6156)

(Washington, DC: American Chemical Society) p 676
[11] Glotzer S C (ed) 1995 Comput. Mater. Sci. 4
[12] Franz S, Glotzer S C and Sastry S (ed) 2000 ICTP-NIS Conf. on Unifying Concepts in Glass Physics; J. Phys.:

Condens. Matter 12 (special issue)
[13] Giordano M, Leporini D and Tosi M P (ed) 1996 Non Equilibrium Phenomena in Supercooled Fluids, Glasses

and Amorphous Materials (Singapore: World Scientific)
[14] Strandburg K J (ed) 1992 Bond-Orientational Order in Condensed Matter Systems (New York: Springer)

(foreword by D R Nelson)
[15] Liu A J and Nagel S R (ed) 2001 Jamming and Rheology: Constrained Dynamics on Microscopic and

Macroscopic Scales (New York: Taylor and Francis)
[16] Ferry D J 1980 Viscoelastic Properties of Polymers (New York: Wiley)
[17] Dixon P K et al 1990 Phys. Rev. Lett. 65 1108
[18] Tolle A et al 1997 Phys. Rev. E 56 809
[19] Frick B, Richter D and Ritter C 1989 Europhys. Lett. 9 557
[20] Kartini E et al 1996 Phys. Rev. B 54 6292
[21] Leheny R L et al 1996 J. Chem. Phys. 105 7783
[22] Deppe D D, Miller R D and Torkelson J M 1996 J. Polym. Sci. B 34 2987
[23] Hall D B, Dhinojwala A and Torkelson J M 1997 Phys. Rev. Lett. 79 103
[24] Hodgdon J A and Stillinger F H 1993 Phys. Rev. E 48 207
[25] Stillinger F H and Hodgdon J A 1994 Phys. Rev. E 50 2064
[26] Sillescu H 1999 J. Non-Cryst. Solids 243 81
[27] Glotzer S C 2000 J. Non-Cryst. Solids 274 342
[28] Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99
[29] Bohmer R 1998 Curr. Opin. Solid State Mater. Sci. 3 378
[30] Richert R 2002 J. Phys.: Condens. Matter 14 R703
[31] Bohmer R et al 1998 J. Non-Cryst. Solids 235 1
[32] Garrahan J P and Chandler D 2002 Phys. Rev. Lett. 89 03570
[33] Wahnstrom G 1991 Phys. Rev. A 44 3752
[34] Schrøder T B 2000 Preprint cond-mat/0005127
[35] Schrøder T B et al 2000 J. Chem. Phys. 112 9834
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