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Abstract
We review the sequences of structural states that can be induced in colloidal
suspensions by the application of flow. Structure formation during flow
is strongly affected by the delicate balance among interparticle forces,
Brownian motion and hydrodynamic interactions. The resulting non-
equilibrium microstructure is in turn a principal determinant of the suspension
rheology. Colloidal suspensions with near hard-sphere interactions develop an
anisotropic, amorphous structure at low dimensionless shear rates. At high
rates, clustering due to strong hydrodynamic forces leads to shear thickening
rheology. Application of steady-shear flow to suspensions with repulsive
interactions induces a rich sequence of transitions to one-, two-and three-
dimensional order. Oscillatory-shear flow generates metastable ordering in
suspensions with equilibrium liquid structure. On the other hand, short-
range attractive interactions can lead to a fluid-to-gel transition under quiescent
suspensions. Application of flow leads to orientation, breakup, densification
and spatial reorganization of aggregates. Using a non-Newtonian suspending
medium leads to additional possibilities for organization. We examine the
extent to which theory and simulation have yielded mechanistic understanding
of the microstructural transitions that have been observed.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Colloidal dispersions are encountered in many consumer products, including paints, inks,
cosmetics, pharmaceuticals and food (Hiemenz and Rajagopalan 1997). Colloid science
and technology also play a key role in emerging technologies such as, for example, tissue
engineering scaffolding (Irvine et al 2003), photonic crystals (Vlasov et al 1999), 3D ink-jet
technology (Gratson et al 2004), advanced ceramics processing (Lewis 2000), microfluidics
(Terray et al 2002) and nano-composites (Vaia and Giannelis 2001, Solomon et al 2001).
The macroscopic properties of suspensions are determined by the spatial organization of the
particles, usually referred to as the microstructure. In the absence of flow, a wide range of
colloidal organizations can be encountered in different materials, depending on the relative
values of Brownian, repulsive and attractive forces (Russel et al 1989, Gast and Russel 1998,
Larson 1999, Lowen 2004). When Brownian forces dominate and the volume fraction is below
the fluid–solid threshold, the particles organize as in a disordered liquid. When the repulsive
forces dominate, ordered crystalline structures can be obtained. At low volume fractions,
when the attractive forces dominate, the particles aggregate or gel into scale invariant, self-
similar clusters with fractal structure (Russel et al 1989, Carpineti and Giglio 1992). At high
volume fractions, gels exhibit long-range heterogeneous void structure (Varadan and Solomon
2003a, 2003b, Shah et al 2003). For quiescent suspensions, equilibrium phase behaviour can
be predicted by the application of statistical thermodynamics theory and simulation (Russel
et al 1989). Although still incomplete, understanding of the quiescent gelation transition has
received considerable attention recently (Pham et al 2002, Dawson 2002).

For suspensions subjected to flow, gelation and phase boundaries may depend on the
strength of the flow. More importantly, the microstructure rearranges to accommodate
the applied hydrodynamic and the colloidal forces. At sufficiently high volume fractions,
and when the interactions between colloids are comparable to the forces induced by the
hydrodynamics, most types of suspensions display an anisotropic organization when subjected
to shear flow (Dhont 1996). The anisotropic microstructure will, in turn, affect the rheological
properties, thereby possibly altering the flow profile itself of non-homogeneous fields. Hence
understanding the intimate coupling between the flow and the microstructure during flow
motivates the work addressed in the present review. The relevance lies in the central role of the
microstructure in determining the end-use properties in the above-mentioned application areas,
as well as for the understanding and controlling of the processing behaviour of suspensions.
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Figure 1. Typical relative configurations of the shear flow device and scattering geometry for
interrogation of shear-induced changes in the structures in colloidal suspensions. (a) Shear flow
and definitions of flow (v), velocity gradient (∇v) and vorticity (ω) direction. The scattering
vector is observed in the ex , ey plane, the incident radiation being along the ez direction. Typical
configurations for a Couette geometry: in (b) scattering vectors with q∇ = 0 are probed (∇v–
ω plane), whereas in (c) off-axis incident propagation yields a non-zero component of q∇ ; for
(d) propagation along the vorticity axis yields a projection of the structure in the v–∇v plane, and
scattering vectors with qω = 0.

In order to investigate these problems, time resolved, in situ experimental techniques have
been developed to interrogate the structure in both real and reciprocal space. Microscopy
techniques combined with quantitative image analysis directly probe the organization of the
colloids in space. Here the two-body structure can be represented by the pair distribution
function g(r) (Russel et al 1989). Reciprocal-space techniques typically rely on measuring
changes in 2D scattering patterns, using various sources of electromagnetic radiation, i.e. light
and x-rays or neutron scattering. Generally the scattered intensity depends on the angle
between the incoming ray and the scattered ray, as specified by the scattering vector, q.
By probing the directional dependency of the scattered radiation the structure factor S(q)

can be measured. S(q) is related to the real-space information g(r) by means of a Fourier
transform. Figure 1, after Chen et al (1994a), depicts the relationship between coordinate
systems describing the scattering geometry (ex, ey, ez) and the shear flow (ev, e∇ , eω) for the
particular case of rotational Couette flow. In a small-angle limit the two-dimensional detector
probes scattering vectors, q, that reside in the x–y plane. For incident radiation propagating
along the centreline of the shear cell (figure 1(b)), this corresponds to measurements with
component of the scattering vector in the gradient direction, q∇ , of zero magnitude; hence
the structure factor is projected in the v–ω plane. For incident radiation travelling along the
flow direction, as in figure 1(c), this corresponds to measurements with component of the
scattering vector in the velocity direction, qv, of zero magnitude. In figure 1(d) the radiation is
sent down along the vorticity direction. Scattering measurements using this set-up allow both
deformation and reorientation of the structure to be monitored. Measurements of the S(q)

projected in the v–∇v plane are most relevant for understanding the link with the shear and
time-dependent viscosity, yet they are the most difficult to perform.

Apart from experimental work, both theoretical and numerical approaches have been
used. The major difficulty is to account correctly for the hydrodynamic interactions (see
for example Russel et al (1989), Dhont (1996) for an overview of analytical theories). To
correctly account for multibody hydrodynamic interactions, an important tool in this respect
is the Stokesian dynamics technique, which correctly accounts for hydrodynamic interaction
of particles in close contact (Brady and Bossis 1988, Ball and Melrose 1995, Foss and Brady
2000, Banchio and Brady 2003).
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This review is organized as follows. First we start with a brief review of the effects of flow
on amorphous suspensions, a subject in which a rather complete understanding of the effects
of flow has been achieved. Three sections deal with more recent work, concerning the effects
of flow on ordering suspensions, gelling suspensions and suspensions in viscoelastic media.

2. Effect of flow on amorphous dispersions with near hard-sphere interactions

2.1. Introduction

Below a critical volume fraction, dispersions of Brownian particles with near hard-sphere
interactions display a liquid-like structure at equilibrium. When the convective forces
associated with for example shear flow dominate the forces associated with Brownian motion,
the microstructure is distorted and the asymmetry of the flow field is reflected in the suspension
microstructure. Distortion of the microstructure will occur when the timescale associated with
flow is smaller than the timescale associated with local scale diffusion, i.e. when the reciprocal
of the shear rate is smaller than the time for diffusion (γ̇ −1 < td). Using the Stokes–Einstein
relation for the diffusivity, this constraint leads to the well-known dimensionless Péclet number
(see for example Krieger and Choi 1982, Russel et al 1989) scaling for the onset of structural
distortion:

Pe = ηma3γ̇

kBT
. (1)

Here a is the particle radius, kB is Boltzman’s constant, T is the temperature, γ̇ is the shear
rate and ηm is the medium viscosity. When the volume fraction increases, an effective,
suspension viscosity better replaces the medium viscosity, because it is the ‘effective’ medium
that on average affects the particle motion. Hence a dimensionless shear stress is appropriate
to separate weak and strong flow regimes in concentrated suspensions (Choi and Krieger
1986). At Pe > 1, a distortion of the liquid-like structure can be expected. Experimental and
theoretical work has aimed to determine the link between the distortion of the microstructure
and the stress tensor, as discussed below. Theoretical work in conjunction with computer
simulations have also yielded detailed results about how the hydrodynamic forces influence
the suspension microstructure and in turn determine the macroscopic behaviour, especially
with respect to the so-called shear-thickening behaviour which occurs in suspensions.

2.2. Flow distorted microstructure

The Péclet number (or the dimensionless stress) determines a number of structural transitions.
At low Pe numbers (Pe � 1), the microstructure is isotropic, and light scattering experiments,
for example, reveal a ring-like (Debye–Scherrer) pattern (Ackerson and Clark 1984, Ackerson
1990, Wagner and Russel 1990). As the Péclet number is increased, the microstructure
becomes distorted, as particles are pushed together along the compression axis of the flow
field, while being further separated along the extensional axis, as is schematically depicted in
figure 2 for the structure in reciprocal space. The shear deformation of the colloidal liquid
structure is a smooth process with no long-range string or layer ordering (Wagner and Russel
1990, Yan and Dhont 1993). The distortion of the microstructure is directly related to the
changes in the macroscopic properties. A non-equilibrium statistical mechanical analysis of
the microstructure in weak flows has been used to derive rheological predictions (Russel and
Gast 1986, Wagner and Russel 1990, Adriani and Gast 1989, Dhont 1989). As for molecular
fluids (Hess and Hanley 1983a, 1983b), an expansion of the non-equilibrium structure factor in
spherical harmonics establishes formal relationships between the structure factor, stress tensor,
optical dichroism and birefringence (Wagner and Ackerson 1992). Likewise, the scattering
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Figure 2. Schematic of the changes in the suspension
microstructure as characterized by an FFT of an initially
disordered suspension in the v–∇v plane at high Pe number.
The arrows on the FFT indicate the compressional axis and
the extensional axis of the flow field; the velocity vectors are
drawn as well.

Figure 3. Scattering dichroism (�), total shear stress (�) and calculated thermodynamic stress (◦)
for a suspension (d = 180 nm) of polymer-stabilized silica spheres dispersed in THF (reprinted
from Bender and Wagner (1995), © (1995), with permission).

dichroism arises as a consequence of the distortion of the structure factor (Wagner et al 1988).
Bender and Wagner have derived a stress optical relation between the scattering dichroism
and the thermodynamic component of the stress tensor (Bender and Wagner 1995). Figure 3
compares the −45◦ dichroism component with the total and thermodynamic component of
the shear stress component for a suspension of 180 nm diameter silica spheres coated with
3(-trimethoxysilylpropyl)methylacrylate dispersed in tetrahydrofurfural (Bender and Wagner
1995).
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Figure 4. Suspension microstructure in the v–∇v plane with (Stokesian Dynamic, SD) and without
(Brownian Dynamics, BD) hydrodynamic interactions for three vales of the Pe number (0.1, 10,
1000) (reprinted from Brady (2001), © (2001), with permission).

At high Pe numbers, the presence of shear thickening arises because of subtle changes
in the distorted microstructure. Scattering dichroism and the colloidal stress–optical relation
have been extremely useful in elucidating the microstructural origins of this transition. Shear
thickening refers to an increase of the viscosity with increasing stress or Péclet number.
Measurement of scattering dichroism (D’Haene et al 1993, Bender and Wagner 1996) and
small angle neutron scattering (Maranzano and Wagner 2002) revealed cluster formation
induced by hydrodynamic interactions. Maranzano and Wagner (2002) explicitly demonstrated
the connection between the distorted microstructure and rheology with their ‘stress-SANS’
coefficient. More detailed information on the development of these hydroclusters was obtained
from computer simulations (Brady and Bossis 1988, Brady 1996, Foss and Brady 2000,
Catherall et al 2000, Brady 2001). In computer simulations of the shear-induced microstructure
at high Pe numbers, for example in the shear thickening regime, the incorporation of
hydrodynamic interactions is crucial. Figure 4 shows a comparison between simulations
without hydrodynamics by the Brownian dynamics method (BD) and with hydrodynamics by
Stokes dynamics (SD) for a hard-sphere suspension at � = 0.45 for Pe numbers equal to 0.1,
10 and 1000 (from Brady 2001). At the highest Péclet numbers the microstructures with and
without hydrodynamics are radically different. With hydrodynamics, a distorted liquid-like
structure is obtained. Without hydrodynamic interactions the particles arrange into strings
along the flow direction, and the strings themselves are arranged in a hexagonal pattern. The
BD method only predicts a shear thinning viscosity, whereas the SD method also accurately
captures the shear thickening transition (Brady 2001). The transition arises as a consequence of
the pronounced sharpening of the first nearest-neighbour peak in probability density along the
compressive axes of the flow as is shown in figure 4. This sharpening implies that particles are
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squeezed together until only a thin liquid layer separates them. This causes large hydrodynamic
lubrication forces in the contact zone between particles. These forces actually diverge when
the interparticle distance tends to zero; however, in experiments, short-range details such as
surface roughness or stabilizing layer characteristics will intervene to modulate the divergence.
The detailed physical mechanism of the shear thickening is somewhat subtler, and especially
the role of Brownian motion as discussed by Bergenholtz et al (2002) for the case of binary
collisions, but this discussion lies beyond the scope of the present review.

2.3. Future prospects

For the case of suspensions with an amorphous microstructure, the flow-induced changes
in the microstructure are now well understood. A clear, even quantitative, link between
the microstructure and non-equilibrium macroscopic properties has been established. Some
challenges lie ahead in the high Péclet regime, where due to the extreme sensitivity of the
lubrication forces to interparticle distance the details of interparticle potential (e.g. deformation
of the polymer brush) or particle roughness on microstructure development need to be further
understood (Mewis and Biebaut 2001, Wilson and Davis 2000, Melrose and Ball 2004).

3. Effect of flow on the ordering of colloidal suspensions

3.1. Introduction

Equilibrium colloidal suspensions adopt long-range order under certain conditions of
interaction potential and volume fraction. Hoffman (1972) reported the first evidence that
colloidal order can be manipulated by the application of shear flow. Other external fields will
also shift ordering transitions (Hoffmann and Lowen 2001). In this section of the review, we
first summarize the equilibrium phase behaviour of colloidal suspensions with hard-sphere
and repulsive interactions. We then review the ordered structures that form upon application
of flow. We describe how they are affected by shear rate and strain. Additional effects of
colloidal volume fraction, interaction potential and particle polydispersity relevant to flow-
induced ordering are identified. We examine molecular, Brownian dynamics and Stokesian
dynamics simulations of order–disorder transitions in flow, and discuss the correspondence
between simulation and experiment. Unresolved questions that warrant additional study are
identified. Our discussion is restricted to suspensions of colloidal spheres.

As discussed in the introduction, the coupling between structural ordering and the non-
equilibrium process of flow is of broad, fundamental interest in the fields of statistical
mechanics and rheology. Suspensions of colloidal particles are a good model system for
these studies because their interparticle structure occurs on scales that may be interrogated
by light, x-ray and neutron scattering. Direct visualization techniques such as optical and
confocal microscopy may also be applied. In addition to this fundamental science motivation,
the application of flow to assist colloidal crystallization also has technological implications.
For example, the development of large, defect-free ordered colloidal structures is a first step
in bottom-up methods for assembly of materials such as synthetic opals for photonic band gap
applications. Recent reports have applied shear flow in pursuit of this aim (Amos et al 2000,
Sawada et al 2001). Fundamental studies of shear-induced ordering can inform the selection
of the velocity profile. In addition, practical understanding of the behaviour in these simple
flows can be used to engineer ordering in the more complex processes (such as evaporation
(Jiang et al 1999)) that are of direct interest to the assembly of photonic band gap materials.
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3.2. Phase transitions and equilibrium structure

Suspensions of Brownian hard spheres undergo an equilibrium liquid–solid transition governed
by the colloid volume fraction, φ. The lowest free energy state is face centred cubic
(fcc) (Woodcock 1997, Bolhuis et al 1997) and the coexistence region exists for volume
fractions 0.494 < φ < 0.545. Poly(methyl methacrylate) colloids with polyhydroxystearic
acid stabilizing chains dispersed in refractive index matching solvents are thought to closely
approximate the hard-sphere interaction, although reports of subtle charge effects have recently
appeared (Yethiraj and van Blaaderen 2003). These colloids have consequently been widely
used as model systems. Scattering and visualization experiments with such materials have
identified a coexistence region in good agreement with the predicted range (Pusey and van
Megen 1986); however, the observed structure consists of close-packed layers with stacking
registry that on average is intermediate between the fcc and hexagonal close-packed (hcp)
structures (Pusey et al 1989, Zhu et al 1997). Charge interactions (Yethiraj and van Blaaderen
2003), sedimentation (Zhu et al 1997), finite size effects (Pronk and Frenkel 1999) and
polydispersity (Auer and Frenkel 2001) may affect the degree of layer registry observed in
the experimental systems that model the crystallization of hard spheres at equilibrium. In
addition to these nonidealities, colloidal crystals often contain defects and grain boundaries.
Co-existence of stacking faults and fcc twins has been observed (Kegel and Dhont 2000, Elliot
et al 1997, Hoogenboom et al 2002). Finally, the growth of crystallites of hard spheres is
retarded above the glass transition volume fraction (φ ∼ 0.58).

Further experiments have quantified the homogeneous nucleation kinetics and structure
of hard-sphere crystallization (Harland and van Megen 1997, Gasser et al 2001). Recent
simulations have suggested that hard-sphere crystallization may occur by heterogeneous
nucleation of a close-packed layer at a plane wall in preference to homogeneous nucleation
(Auer and Frenkel 2003). The nucleated close-packed layer is then available to template bulk
crystallization (Heni and Löwen 2000, van Blaaderen et al 1997).

Charged colloids that interact through screened Coulombic forces also crystallize;
however, because of the repulsive Coulombic interaction, the transition to a colloidal crystal
can occur even at dilute volume fractions if the screening (Debye) length is sufficiently large
relative to the colloid size. Theory (Kremer et al 1986) and experiment (Sirota et al 1989)
show that the phase diagram comprises both body centred cubic (bcc) and fcc structures. The
bcc structure is found at low volume fraction and ion strength.

Polydispersity effects on crystallization structure and kinetics are difficult to quantify
experimentally. Suspensions of polydisperse hard spheres are predicted to crystallize if the
standard deviation in the size distribution (relative to colloid size) is below a maximum of
10% (Arora and Tata 1998). Experimentally, the constraint on polydispersity might be even
more severe since the crystallization kinetics retard dramatically as this theoretical limit is
approached (Auer and Frenkel 2001). As opposed to atomic systems, nominally monodisperse
colloid samples synthesized through special methods still commonly have relative standard
deviations in size of a few per cent.

3.3. Shear-induced structure in suspensions with hard-sphere and repulsive interactions

Since Hoffman’s (1972) pioneering work, the relationship among flow, ordered structures
and shear stress has received extensive attention. Experimentally, light, neutron and x-ray
scattering has been applied to measure the Bragg structure in a range of flow geometries and
conditions. Interparticle interactions and colloid volume fractions have been systematically
manipulated. The scattering of hypothetical real-space structures has been computed and
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Figure 5. SANS scattering observed
for a charge-stabilized suspension
(φ = 0.33) in the configuration
of figure 1(b) (v–ω-plane). The
shear rates at which these steady-
state structures were observed are:
(a) at rest; (b) 0.008 s−1; (c) 0.02 s−1;
(d) 0.15 s−1; (e) 0.3 s−1; (f) 1.5 s−1;
(g) 15 s−1; (h) 100 s−1; (i) 11 000 s−1

(reprinted from Chen et al (1994a,
1994b), © (1994), with permission).

compared to experiments. More recently, computer simulation and microscopic visualization
have become complementary methods for structural investigations.

Most experiments have been conducted in either steady-shear or oscillatory-shear flow.
Small-gap Taylor–Couette, capillary slit and parallel plates geometries have been common
geometries. In simple shear flow, the deformation is specified by the shear rate, γ̇ , and
the strain, γ . We divide our treatment into a discussion of structures in steady-shear and
oscillatory-shear flow.

3.3.1. Effect of the steady-shear rate on ordered colloidal structures. The structure of charge-
stabilized latex suspensions subjected to steady-shear flow has been investigated by small-angle
neutron (SANS) and synchrotron x-ray scattering. The steady-shear flow has typically been
generated in rotational Couette flow or parallel plate flow. The correspondence between the
observed structural states and shear-rate dependent rheology has also been investigated.

With the incident radiation propagating along the centreline of the shear cell (figure 1(b)),
for a system with only two-dimensional order, the diffraction patterns in the v–ω plane would
persist as tubes of intensity upon shifting q into the gradient direction (q∇ �= 0) (Guinier 1963,
Loose and Ackerson 1994). Three-dimensional order leads to intensity modulation in the
gradient direction, and perfect three-dimensional order causes the tubes of intensity to break
up into nodes in three-dimensional q-space. Measurements of scattering intensity at non-zero
q∇ are accomplished, for example, by shifting the shear cell relative to the incident source,
as was shown in figure 1(c). In other flows, such as parallel plate flows, rotation of the flow
about an axis accomplishes a similar translation in q∇ (Dux et al 1998, Versmold et al 2001).
Analysis of scattering data for close-packed planes with layer ordering may be accomplished
by methods described in Loose and Ackerson (1994) and Guinier (1963).

To qualitatively demonstrate the effect of shear rate, SANS data (from Chen et al 1994a)
collected in the figure 1(a) configuration, are reproduced in figure 5. The volume fraction of
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Figure 6. Diffraction pattern for an ideal 2D
hcp structure. The lattice basis vectors ka

and kb are shown (reprinted from Loose and
Ackerson (1994), © (1994) with permission).

this charge-stabilized colloidal suspension is φ = 0.33. The rest structure, shown in figure 5(a),
is consistent with order with hexagonal structure in the plane parallel to the shearing surface.
The close-packed layers have registry intermediate between hcp and fcc. That is, the layer
registry includes examples of the fcc twin structures (ABCA, ACBA) and the hcp structure
(ABAB). Here the alphabetic indexing notation identifies the stacking of close-packed layers.

As the shear rate is increased, the charge-stabilized suspension shows three regimes of
behaviour. At low shear rates (γ̇ � 0.02 s−1), the six-fold symmetry of the diffraction
pattering persists but the intensities of the two inner nodes on the vorticity axis reportedly
decrease relative to the quiescent measurement. For 0.15 s−1 � γ̇ � 15 s−1, scattering in the
flow–vorticity plane appears as concentric rings of intensity (with some azimuthal modulation
in intensity). The rings are reminiscent of a powder diffraction pattern. Inner diffraction nodes
with six-fold symmetry reappear for measurements at γ̇ = 100 s−1 and persist to the highest
shear rate studied (11 000 s−1).

The observations of six-fold symmetry in the scattering patterns for q∇ = 0 are consistent
with close-packed structure in the flow–vorticity plane. Additional information about ordering
along the gradient direction is available from diffraction measurements at q∇ �= 0 (accessed by
means of the configuration of figure 1(b) for example) (Ackerson et al 1986, Clarke et al 1997,
Dux et al 1998, Versmold et al 2001). If the registry of the close-packed layers is random,
then the nodes observed at q∇ = 0 will extend as tubes of uniform scattering intensity in a
direction parallel to the gradient axis. Ordering in the gradient direction causes modulation of
intensity along the tubes. Here we limit our discussion to the inner diffraction nodes because
form factor effects often attenuate the higher-order reflections.

For diffraction from close-packed layers with incomplete registry, the scattering vector,
q, may be conveniently described as

q = hqa + kqb + lqc. (2)

Here, as shown in figure 6 (Loose and Ackerson 1994), the basis vectors qa and qb describe a
2D close-packed structure oriented perpendicular to the gradient direction. qc is oriented along
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Figure 7. Variation of I (l) at a diffraction
node of the inner ring of a 2D hcp structure
for various values of the stacking probability,
a. The curves quantify the modulation in
diffraction intensity along tubes parallel to the
gradient direction (reprinted from Loose and
Ackerson (1994), © (1994) with permission).

the gradient direction with characteristic magnitude d
√

2/3, the distance between close-packed
fcc layers. Here d is the nearest-neighbour distance. The diffraction intensity is non-zero for
integer values of the index (h, k). If the close-packed layers are not in perfect registry, the
diffraction intensity, I (l) varies continuously in the gradient direction.

I (l) differs for nodes with indices that satisfy either h + k = 3n or 3n ± 1, where n an
integer. The stacking probability, a, specifies the propensity for fcc (a = 1 is fcc) versus
hcp (a = 0 is hcp) order of the close-packed layers. a = 1/2 is the special case of random
registered stacking. Figure 7 (Loose and Ackerson 1994) shows the theoretical effect of a
on I (l) for a tube with h + k = 3n ± 1. Figure 8 shows analogous measurements by Dux
et al (1998) for a charge-stabilized suspension after shearing at φ = 0.13, 0.18 and 0.31.
Comparisons between theory and experiment for the h + k = 3n rods are also available (Dux
et al 1998, Chen et al 1994a, Ackerson et al 1986, Versmold et al 2001).

Hypothetical real-space structures have been evaluated against both measurements of the
diffraction intensity at q∇ = 0 (such as figure 5) and the intensity modulation along particular
tubes in the gradient direction (such as figure 8). Two such candidate real-space structures,
after Loose and Ackerson (1994), are shown in figure 9. In figure 9(a), relative deformation
of layers is accomplished by the mechanism of a strained crystal. In figure 9(b), motion by
sliding layers is shown. The low-shear rate scattering regime is consistent with the strained
crystal structure (e.g. figures 5(b) and (c)). At high shear rates the data are well described by
the sliding layer mechanism (e.g. figures 5(h) and (i)). These structures are closely related to
trajectory paths that accommodate the imposed strain field with the minimal energetic penalty
and structural distortion.

The behaviour at intermediate shear rates (e.g. figures 5(d)–(g)), where the diffraction
resembles a powder pattern, has been alternatively described as consistent with polycrystallinity
(Chen et al 1994a) or orientationally disordered layers (Versmold et al 2001). Small ordered
regions have been observed in this regime by photographic visualization of the bulk flow (Chen
et al 1992, 1994b). This regime is also associated with discontinuous and hysteretic rheology
(Chen et al 1992, 1994a). A recent direct visualization study of rotating domains in a 2D
colloidal crystal sheds light on one possible mechanism of behaviour in this regime (Stancik
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(a)

(b)

(c)

Figure 8. Experimental measurements
of the variation in tube intensity
parallel to the gradient direction for
conditions analogous to figure 5 or
sheared charge-stabilized suspensions
of volume fraction = 0.13, 0.18
and 0.31. The curves are fits of the
stacking parameter a. The structures
are intermediate between random layer
registry (a = 0.5) and fcc order (a =
1.0) (reprinted from Dux et al (1998),
© (1998) with permission).

et al 2004). Stokesian dynamics simulation of non-Brownian, electrostatically stabilized
particles has characterized the pathways that particles track as close-packed layers undergo
relative translation due to shear flow. The sequence of trajectories evolves from the zig-
zag motion characteristic of the strained crystal to the rectilinear motion of the sliding layer
mechanism. Interestingly, when the crystal orientation is constrained so that the [211] direction
of a (111) close-packed plane is oriented in the flow direction, large jumps in viscosity and
hysteresis occur in constant shear rate Stokesian dynamics simulations (Gray and Bonnecaze
1998). (Note that the [211] direction is perpendicular to the close-packed direction of the
(111) plane.) Differences between the Stokesian dynamics study and earlier simulations
(Stevens and Robbins 1993) that did not incorporate hydrodynamic interactions suggest that
the discontinuous behaviour is a sensitive function of the balance between electrostatic forces
and hydrodynamic interactions.



Topical Review R199

(a) (b)

Figure 9. Proposed mechanisms for relative displacement of close-packed layers oriented normal
to the gradient direction. A strained crystal in which layers undergo zig-zag motion is shown in
(a). In (b), the sliding layer configuration is shown. The flow direction is horizontal. After Loose
and Ackerson (1994).

The sequence of transitions described above is neither complete nor universal. For
example, the intermediate, orientationally disordered, regime is not reported in all cases.
Moreover, an initially crystalline colloidal suspension with weakly repulsive interactions
exhibited a regime of one-dimensional string-like motion (strings oriented in the flow direction
in real space) at high shear rates (Yan and Dhont 1993). Bundle ordering (Vermant et al 1999)
(in the flow direction) is also found at high shear rates. As the shear rate is further increased,
shear melting occurs (Ackerson and Clark 1981, Ashdown et al 1990, Yan and Dhont 1993).
Finally, also at high shear rates, a nearly disordered charge-stabilized suspension has been
observed to relax upon flow cessation into a metastable configuration of randomly stacked hcp
planes (Butera et al 1996).

Modern non-equilibrium molecular and Brownian dynamics simulations have been
applied to evaluate the conditions necessary to induce ordered structures in shear flow. Such
work is also critical because it sheds light on the mechanistic origins. In addition, simulations
can efficiently study the dependence of a transition critical stress (or Péclet number) on
material parameters such as volume fraction and degree of repulsive interaction. Mitchell
et al (1995) performed Brownian dynamics simulations of near hard spheres with initially
disordered structure subjected to steady-shear flow. A Péclet number dependent transition
to an ordered structure of particle strings aligned in the flow direction was observed. At
high Péclet number the strings further organize in a hexagonal structure. This transition was
observed at volume fractions as low as φ = 0.31. Simulations of charge-stabilized colloids
(φ = 0.267) in large systems (N = 43 000) also show string formation (Rastogi et al 1996a).
In this case, the hexagonal ordering observed at Pe = 15 is already quite complete. Brownian
dynamics simulations of this kind neglect the coupling between hydrodynamic interactions
and structure that can become important at high volume fraction and Péclet number (see
section 2.2). However, flow-aligned strings with hexagonal organization in the gradient–
vorticity plane are still observed above the equilibrium hard-sphere coexistence boundary
when hydrodynamic interactions are included (Sierou and Brady 2002). This observation
was made by means of accelerated Stokesian dynamics simulation for the particular case of
non-Brownian suspensions.

The aforementioned discussion concerned close-packed structures. At low volume
fraction and ionic strengths where the equilibrium structure is bcc, Ackerson and Clark (1984)
observed shear-induced structural modifications. In this case, shear flow orients the bcc crystal
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Figure 10. Three-fold inner ring diffraction pattern (q∇ = 0, plane: v–ω) for a φ = 0.485
suspension of near hard spheres observed during oscillatory shear. The two patterns are consistent
with fcc twins. The structure alternates between twin structures during each cycle of the oscillation
(reprinted from Ackerson (1990), © (1990) with permission).

so that a (110) plane is perpendicular to the gradient direction. A [111] direction of the unit
cell is aligned in the flow direction. This configuration admits twin structures. As the shear
rate is increased, the bcc structure in the (110) plane is progressively strained to resemble
a distorted close-packed hcp structure. At higher shear rates the distorted 2D hcp planes
slide relative to each other as discussed above. In the non-equilibrium molecular Brownian
dynamics simulation, the observed orientation at low shear rates is found to persist after the
application of flow. Other initial configurations are destroyed by the shearing action (Butler
and Harrowell 1995).

For charge-stabilized suspensions, steady-shear flow may induce layer order in
suspensions with liquid structure at rest (Ashdown et al 1990, Laun et al 1992). Such field-
assisted self-assembly is of technological interest (van Blaaderen 2004). The measurements
are also relevant to the theory of non-equilibrium phase transitions (Butler and Harrowell
2002). However, for suspensions with hard-sphere-like interactions at volume fractions below
the coexistence region, only string-like (Ackerson 1990) order has been observed. In contrast
to simulation results, there have been no experimental reports of close-packed layer ordering
or string organization below the coexistence volume fraction for hard spheres; however, in the
two-phase region layer ordering has been reported (Ackerson 1990).

Most shear-induced ordering experiments have been conducted with nearly monodisperse
suspensions (standard deviation in particle size <5% of the mean is typical). Such
tight constraints on size distribution are consistent with end-use applications involving
self-assembly. Earlier we noted that, at equilibrium, polydispersity dramatically affects
the crystallization boundaries and kinetics. Brownian dynamics simulations suggest that
polydispersity similarly inhibits the production of ordered phases in steady-shear flow (Rastogi
et al 1996b).

3.3.2. Structural ordering induced by oscillatory-shear flow. Early oscillatory-shear studies
demonstrated the remarkable fact that crystal order can be induced in suspensions of
spheres with near hard-sphere interactions even when the equilibrium structure is liquid-like
(Ackerson and Pusey 1988). The model system consisted of sterically stabilized poly(methyl
methacrylate) spheres suspended in approximately refractive index and density matched
solvents. Figure 10 reports, from Ackerson (1990), two flow–vorticity plane (q∇ = 0)
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diffraction patterns (oscillatory frequency = 3.3 Hz and φ = 0.485). The two patterns were
acquired, approximately, at the minimum and maximum displacement of the oscillation. Each
three-fold pattern is consistent with a single twin fcc structure with a close-packed (111) plane
oriented parallel to the shearing surface. Physically, the three peaks correspond to diffraction
from the other three sets of (111) planes of the fcc crystal. Interestingly, here the close-packed
direction in the (111) plane is oriented in the vorticity direction (perpendicular to its orientation
in steady-shear flow) (Ackerson and Pusey 1988, Ackerson 1990, Yan and Dhont 1993). Direct
visualization studies (Haw et al 1998) have suggested that a distribution of orientations of fcc
crystal grains about the vorticity direction accounts for the observed diffuse intensity (see
figure 5) in the azimuthal direction about the expected fcc diffraction peak.

Ackerson and Pusey (1988) hypothesized that the observed orientation of the close-
packed direction facilitates easy translation between the two fcc twin structures at strains
of approximately one. (Note that here γ is defined on a peak to peak basis, consistent with
the literature on this topic; thus, strain amplitudes quoted are twice those based on the usual
definition in rheology.) At higher strain amplitudes, the fcc structure persists but with the
close-packed direction now oriented in the flow direction (Ackerson 1990). The sequence of
structural transitions as the strain amplitude is stepped up is rich. Observations have been
summarized by Ackerson (1990) at a constant deformation rate (Pe > 24) for a hard-sphere
suspension with liquid-like order at equilibrium. Regimes of one-, two-and three-dimensional
order are all observed, as well as the existence of hysteresis.

For experiments at Pe > 1 and γ ∼ 1, it appears that structure is built up by
successive interactions between neighbouring particles; steady-state crystallinity is achieved
after hundreds to thousands of cycles. If the volume fraction is below coexistence, the ordered
structure is metastable upon cessation of flow (Ackerson and Pusey 1988). For example,
structural decay occurred after about ∼30 min for one study at φ ∼ 0.48. Suspensions with
weak repulsive interactions order similarly when oscillatory shear is applied (Yan and Dhont
1993). The kinetics of order formation under oscillatory shear has recently been studied for
an aqueous sterically stabilized suspension (Panine et al 2002).

3.4. Unresolved issues and future prospects

Our review has demonstrated that, since the appearance of the first report more than thirty
years ago, remarkable progress has been made in characterizing the nature of flow-induced
ordering in colloidal suspensions. The ordering is surprisingly widespread—it has been
observed for a host of equilibrium structures over a broad range of deformation rates. The
phenomenology is also almost bewilderingly rich—a complex sequence of morphological
transitions governing the organization of close-packed layers in steady-shear and oscillatory-
shear deformation have been described. Progress in evaluating the consistency of simple
structural models with the intricate diffraction patterns observed by scattering may be judged
to have been broadly successful. A next step, detailed comparison between experiment
and direct simulation, is beginning to bear fruit. Trends toward simulation of large system
sizes and inclusion of hydrodynamic interactions will certainly enrich the opportunity for
deep mechanistic understanding of shear-induced ordering in systems with hard-sphere and
repulsive interactions. Such work with model colloidal particle suspensions has implications
for the behaviour of other types of complex fluids with particle-like constituents such as block
copolymers (Eiser et al 2000).

It is clear that definitive identification of the shear-induced crystal structure from scattering
requires experimental configurations in which the relative orientation of the scattering and
flow coordinate frames may be manipulated. These configurations are challenging to realize.
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Moreover, form factor effects complicate the quantification of diffraction peak intensity and
hinder resolution of higher-order reflections helpful for unambiguous indexing. In addition,
some scattering studies have found mixed or coexisting morphologies, and the real-space
structure leading to a particular scattering pattern has not been definitively resolved in all
cases. Because they interrogate the time-averaged structure over a scattering volume that
is macroscopically large, scattering measurements distinguish between spatial and temporal
structural fluctuations only with difficulty. Inhomogeneous strain of the sample, especially
at the shear flow boundaries, is also difficult to resolve by means of scattering. Finally,
the dynamical role of microscopic vacancies, amorphous disorder and grain boundaries in
generating morphology and mediating structural transitions can typically only be inferred
from scattering studies.

Attention to these issues would facilitate further characterization of ordering mechanisms
and more detailed comparison between experiment and simulation. Direct visualization
studies by optical and confocal microscopy can contribute useful information about local
structure and dynamics. For example, confocal microscopy has already resolved new aspects
of crystallization in equilibrium and sedimenting systems (Yethiraj and van Blaaderen 2003,
Hoogenboom et al 2002, Gasser et al 2001). 2D visualization of flow-induced structure has
been accomplished by means of phase contrast microscopy (Haw et al 1998) or by visualizing
2D suspensions (Stancik et al 2003, 2004). Using the latter systems the effects of extensional
flows on colloidal crystals have also been explored (Stancik et al 2002). Recent reports of the
execution of confocal microscopy in conjunction with an applied flow (Varadan and Solomon
2003b, Biehl and Palberg 2004, van Blaaderen 2004) suggest that 3D direct visualization
methods may be fruitfully applied to further advance the study of flow-induced order in colloidal
suspensions.

4. Gelling suspensions

4.1. Introduction and relevance

Suspensions that undergo a fluid-to-gel transition are of enormous technological significance,
partly because the gel microstructure and mechanical properties can be controlled. In addition,
gelation is a common, but unwelcome, outcome of attempts at field-assisted colloidal assembly.
In the absence of external fields, attractive colloidal particles at low volume fraction organize
themselves as fractal aggregates. At sufficient volume fraction, the aggregates form a space-
filling gel. The resulting clusters or flocs possess a hierarchy of self-similar structures; over
a wide range of length scales the microstructure can be characterized by a single fractal
dimension (n ∼ rdf ) (Schaefer et al 1984). The fractal dimensions, df , range from 1.75 for
diffusion limited cluster aggregation (DLCA) to 2.1 for reaction limited cluster aggregation
(RLCA) (Bushell et al 2002). Fractal dimensions can fall outside this range when internal
restructuring is possible due, for example, to Brownian motion or flow. Typical values for
thermoreversible aggregation are close to 2.4 (Rueb and Zukoski 1997, Varadan and Solomon
2001). Thermoreversible gelation of adhesive spheres is thought to involve the development
of a short-range attractive interaction between particles due to temperature-induced changes
in steric layer conformation at the surface of adhesive spheres (Grant and Russel 1993).

As the colloidal volume fraction is increased above about 10%, structural models based
on fractal self-similarity increasingly can fail because the tenuous open fractal structure is
inconsistent with a high particle loading. At high particle loading, reversible gelation instead
leads to local voids and long length scale fluctuations in particle number density (Varadan
and Solomon 2003a, Shah et al 2003). Irreversible, reaction limited colloidal aggregation
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in concentrated dispersions on the other hand leads to dense, fractal structures around the
gel point that can be detected quantitatively by both rheological and dynamic light scattering
methods (Elliott et al 2003).

The fractal–cluster structure also controls the linear viscoelastic rheological properties of
aggregated dispersions (Shih et al 1990, Trappe and Weitz 2000). A low-frequency plateau
of the storage modulus occurs and the effects of particle size and colloidal interactions have
been elucidated (Buscall et al 1987, 1988, Sonntag and Russel 1987, Chen and Russel 1991,
Vanderaerschot and Mewis 1992, Rueb and Zukoski 1997). Some of the nonlinear rheological
properties, such as the yield stress, correlate well with the evolution of the linear viscoelastic
ones (Shih et al 1990, Rueb and Zukoski 1997). Recent scaling arguments suggest univer-
sality in terms of a jamming phase diagram, unifying the behaviour of many systems as a
function of the particle volume fraction, the energy of interparticle attractions, and the applied
stress (Prasad et al 2003). Whereas some success has been achieved using a microstructural
approach based on fractal concepts to predict the zero-shear viscosity (Potanin et al 1995), it
cannot model the strong shear-rate dependence of the viscosity (Woutersen and Dekruif 1991,
Vanderaerschot and Mewis 1992) or the general features of the thixotropy (time dependence)
(Mewis 1979, Barnes 1997). For systems at low volume fractions, containing individual aggre-
gates, simulations by Doi and Chen have elucidated the dependence of viscosity on aggregate
geometry (Chen and Doi 1999). As in sections 2 and 3, Stokesian and Brownian dynamic
simulations have been used as an approach for more concentrated suspensions. Brownian
dynamics simulations were used to assess the linear viscoelastic rheological properties of the
particulate network (Dickinson 2000). Stokesian dynamics simulations for attractive colloids
suggest that the nonlinear rheological properties are dominated by stress-bearing structures
building up during the flow (Silbert and Melrose 1999, Silbert et al 1999b, 1999a). The under-
standing of the flow-induced structures is, however, not yet as complete compared to the stable
suspensions (sections 2 and 3). Therefore, in the next section, we will review the experimental
work on the flow-induced changes in sheared aggregated colloidal dispersions in more detail.

4.2. Flow-induced structure in aggregated systems

Flow will affect the size, density and structural organization of the flocs. Vandeven and Mason
(1977a, 1977b) were the first to systematically study the effects of flow on the distribution
of the particles over singlets, doublets, and triplets (and higher) at the entrance and the exit
of a capillary tube, for different shear rates in the high Péclet number regime. In addition to
changes in size, flow will also lead to a densification of individual aggregates (Torres et al
1991, Hoekstra et al 2003). Since the aggregate size is set by a competition between the
attractive colloidal forces and the disrupting hydrodynamic forces, it has been suggested that a
fractal aggregate concept can be used to explain the observed tendencies (Tolpekin et al 2004).
The situation becomes more complex as the volume fraction is increased. Size reduction
and flow densification are still observed (Rueb and Zukoski 1997, Varadan and Solomon 2001,
Hoekstra et al 2003), but the self-similarity of the structure breaks down during shear flow as the
microstructure becomes anisotropic. Small-angle light scattering experiments on aggregated
suspensions using a set-up as in figure 1(b) reveal a characteristic two-lobe ‘butterfly’ scattering
pattern (DeGroot et al 1994, Verduin et al 1996, Pignon et al 1997, Varadan and Solomon
2001, Vermant 2001, Hoekstra et al 2003), an example of which is shown in figure 11. The
long axis of the scattering pattern is oriented in the flow (v) direction.

Significantly, butterfly scattering patterns are quite common in sheared complex fluids.
Bastide et al (1990) were the first to observe them using SANS from deformed (stretched)
swollen gels. In the case of deformed gels, the patterns arise as a consequence of a flow-
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Figure 11. Isointensity contours showing the evolution of the anisotropy in the v–ω plane at high
shear rates for organophilic silica-hexadecane gels at φ = 0.1. The line crossing the images is due
to a wire that contains the beamstop (reprinted with permission from Varadan and Solomon (2001),
© (2001) American Chemical Society).

enhancement of local scale in homogeneities. Apart from the weakly aggregated sticky
sphere dispersions, the patterns are displayed in SALS experiments from a variety of complex
fluids subjected to shear flow. Examples include semi-dilute polymer solutions (Hashimoto
and Kume 1992, Van Egmond et al 1992, Moses et al 1994, Boue and Lindner 1994, Van
Egmond 1997), polymer blends with a viscoelastic asymmetry (Hobbie and Migler 1999,
Hobbie et al 2002), polymer microgels (Stieger and Richtering 2003), micellar wormlike
surfactants (Wheeler et al 1996, Kadoma and van Egmond 1997, Schubert et al 2004), different
polymer–colloid mixtures such as nanocomposites (Lin-Gibson et al 2004) and mixtures of
associative polymers and latex particles (Belzung et al 2000). In the latter case, no evidence
of particle aggregation was observed in the rheological behaviour. In the case of associative
polymer/particle mixtures and for semi-dilute polymer solutions, a clear maximum in the
scattering curves is present, which evolves from large to small q as time evolves. This
maximum and the corresponding time evolution are not observed for suspensions of weakly
aggregated suspensions. For viscoelastic polymer solutions, scattering anisotropy of the kind
described above has been understood to be the consequence of shear-induced enhancement of
concentration fluctuations (Helfland and Fredrickson 1989, Fuller 1995).
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Figure 12. (a) Microphotographs of a depletion flocculated water–oil emulsion (φ = 0:58)
stabilized under simple shear for gap thickness 12 µm. The plane of observation is the v–ω

plane. (b) Schematic representation of the proposed roll-cell mechanism and conformation of
cylindrical flocs (reprinted with permission of Montesi et al (2004), © (2004) by the American
Physical Society).

The microscopic picture underlying the butterfly scattering pattern in flowing suspensions
has been discussed by DeGroot et al (1994), who compared their SALS observations on
agglomerated silica particles in PDMS liquids with video microscopy showing the presence
of roller-like structures. They hypothesized that aggregates wrap around themselves. This
organization causes them to contract in the flow direction and extend along the vorticity axis.
This structure is consistent with enhanced concentration fluctuations in the flow direction and
thus the observed butterfly scattering. Similar roller-like structures have been observed by
microscopy in weakly attractive emulsions as is shown in figure 12 (Montesi et al 2004) and in
flows of nanotube suspensions in confined geometries (Lin-Gibson et al 2004). For the latter
two systems it has been suggested that cylindrical flocs form, align along the vorticity axis,
and undergo a log-rolling movement. It is thought that this structure is associated with large
negative first normal stress differences; however, for the case of aggregated suspensions this
implication of the structure has not been reported.

The butterfly light scattering patterns observed in shear flow of aggregated colloidal
dispersions are indicative of structure anisotropy on dimensions much larger than the primary
particle size. There is some experimental evidence that shear can also render the local
microstructure anisotropic. For example, neutron scattering patterns of sheared sticky
(adhesive) sphere dispersions were anisotropic at high shear rates; an example is shown in
figure 13 (Woutersen et al 1993). Neutron scattering experiments on the thixotropic clay
dispersions on the other hand displayed no small length scale anisotropy (Pignon et al 1997).

The number of simulation studies on aggregated colloidal dispersions in shear flow is
limited. Calculated structure factors for flowing concentrated attractive spheres projected in
the velocity–vorticity plane reveal a distortion at large values of the scattering vector (Silbert
and Melrose 1999). In this case the anisotropy is related to string formation of particles. This
simulation implies that on local length scales (comparable to the particle size) anisotropic
particle organization can be obtained in these systems, as previously observed by Woutersen
et al (1993). Comparing the experiments (figure 13) and the simulations, however, reveals
important differences. Whereas the SANS results show a two-lobe pattern comparable with
light scattering results on aggregated suspensions, the simulations predict arrays of Bragg-like
peaks, oriented in the vorticity direction, slicing through an otherwise liquid-like structure
factor.
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ω Figure 13. (a) Neutron scattering pattern at high shear rate for a
sticky sphere dispersion of silica particles in benzene at a volume
fraction of 0.38 in the v–ω plane (reprinted with permission from
Woutersen et al (1993), © (1993) the Society of Rheology).

Figure 14. Comparison of the
evolution of S(q) at low q with
the stress evolution of organophilic
silica-hexadecane at φ = 0.035
at 3 s−1 (reprinted with permission
from Varadan and Solomon (2001),
© (2001) American Chemcial Soci-
ety).

For experiments with thixotropic clay dispersions using both neutron and light scattering,
it was concluded that the larger length scales are the pertinent ones for rheological
properties (Pignon et al 1997). Experiments on better defined model colloids consisting
of thermoreversible adhesive spheres, where gelation can be induced by variation of the
temperature, also reveal a pronounced butterfly pattern that progressively develops as the
material is subjected to flow (Verduin et al 1996, Varadan and Solomon 2001). Figure 14 gives
a comparison of the time evolution of the enhancement of S(q) at low q with the stress evolution
(Varadan and Solomon 2001), demonstrating the link between anisotropy development and the
evolution of the stress.

Video microscopy experiments of 2D particulate monolayers were used to gain insight into
the mechanism of the butterfly scattering patterns and the associated microstructural anisotropy
(Hoekstra et al 2003). The 2D experiments provide access to the shear-induced microstructure
in the v–∇v plane. Examples of the flow-induced microstructure and its FFT image are shown
in figure 15. Anisotropy was shown to exist on both large and local scales, in line with the
SALS and SANS results on 3D systems discussed above.
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Figure 15. (a) Microscopy image (snapshot) and (b) isocontour plot of a 2D FFT (averaged over 25
microscopic images) as observed during steady-state flow of micrometre-sized polystyrene spheres
at a surface coverage of 0.33, a shear rate of 0.098 s−1, and a sodiumdodecylsulphate concentration
of 1 mM. The arrow indicates the velocity direction (reprinted with permission from Hoekstra et al
(2003), © (2003) American Chemical Society).

To summarize the previous paragraphs, we note the following general features of long
length scale scattering anisotropy in colloidal suspensions with attractive interactions.

(1) In many kinds of aggregated suspensions, above a critical shear rate and at sufficiently low
scattering vectors, butterfly patterns in the flow–vorticity scattering plane develop with
orientation in the flow direction.

(2) The observed scattering is broadly consistent with the physical picture of flocs oriented
along the vorticity axis. Spatial reorganization leading to an enhanced separation of these
flocs in the flow direction leads to concentration fluctuation enhancement along this axis.

(3) Although the butterfly anisotropic scattering is observed at small scattering vector,
additional internal anisotropy of the flocs is also observed at high q in some cases.

(4) The kinetics of the scattering does not reveal transient evolution of a characteristic
wavevector of the structure.

(5) There appears to be a correlation between the anisotropic scattering and the rheological
response of the suspensions, as is shown in figure 14.

The 2D video microscopy measurements by Hoekstra et al (2003) also provide insight into
the mechanism by which these general features develop. The experiments show a directional
dependence to break-up and aggregation phenomena during shear flow as shown in figure 16(a);
larger objects are mainly formed along the compressional axis of the flow field. When two
smaller flocs interlock, they obtain a common rotation speed. These larger flocs remain stable
as long as their major axis is oriented in the quadrants following the compressional axis.
Only upon reaching the extensional axis do flocs break up again. Because of the rotational
component of the shear flow, these break-up and aggregation phenomena occur continually.
Together, they yield an anisotropic microstructure. This qualitative mechanism is corroborated
by the absence of anisotropy in irrotational extensional flow (Hoekstra et al 2003). It is also
in agreement with a gradual enhancement of the local scale inhomogeneity, as exemplified,
for example, by a gradual appearance of the butterfly scattering pattern observed in transient
studies (Varadan and Solomon 2001) rather than a growth of the scattering pattern from large
to small scattering vectors as was the case in phase separating polymer solutions.
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Figure 16. Comparison of the different mechanisms suggested explaining anisotropy development
in 2D suspensions and vorticity orientation in 3D systems. (a) Apparatus and the flow field showing
the compressional (C) and extensional (E) axis of the flow field; and a sequence of flow aggregation
(B–D), rotation (E–F) and break-up (G–H). All images refer to a 2D suspension with surface
coverage of 0.33 and 0.4M CaCl2 added to the aqueous phase (reprinted with permission from
Hoekstra et al (2003), © (2003) American Chemical Society). (b) Cartoon depicting the shear
response of the compressible clusters, where internal streamlines are in tension due to elastic
forces (reprinted with permission of Lin-Gibson et al (2004), © (2004) by the American Physical
Society).
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Alternatively, Hobbie et al (2004a) argue that a wide range of butterfly scattering patterns
(from emulsions to physical gels of nanoclays in polymer solutions) arise as a consequence
of an elastic instability. They suggest that the roller-like organization underlying the butterfly
pattern is a characteristic of all soft viscoelastic fluids, dispersed in a less viscoelastic fluid
at significant volume fraction. In Montesi et al (2004), confinement effects are an important
consideration. The sketch in figure 16(b) depicts the proposed mechanism: internal viscoelastic
forces related to the first normal stress differences create ‘hoop’ stresses, which lead to objects
elongated in the vorticity direction. It is not clear at present how this mechanism would apply
to essentially inelastic aggregates present in weakly aggregated suspensions, although bending
moments known to exist in fractal clusters could play a role.

Although the qualitative mechanisms for anisotropy development of Hoekstra et al (2003)
and Lin-Gibson et al (2004) are not mutually exclusive, they differ in several aspects, which
should motivate further work. First, comparison of scattering data from multiple systems in
the v–∇v plane is warranted. Second, the sequence of break-up and aggregation processes
discovered by Hoekstra et al in 2D suspensions should be sought in other systems. Third, the
relationship between anisotropic butterfly scattering and negative first normal stress differences
should be more clearly elucidated. Finally, the effect of confinement on large-scale anisotropic
structures of aggregated colloidal particles should be compared to results available for nanotube
suspensions and attractive emulsions.

4.3. Unresolved issues and challenges

A full microstructural picture of flowing weakly aggregated suspensions is slowly emerging.
Although mechanisms for the development of large-scale inhomogeneity have been suggested,
a full microstructural hierarchy of the structure factor in all directions is lacking. Most
scattering observations have focused on probing the structure in the v–ω plane, whereas
the structure in the v–∇v plane is needed to obtain a full microstructural understanding.
Experiments on 2D suspensions have been carried out in that respect (Hoekstra et al2003), but it
remains to be verified how the observed phenomena can be extrapolated to 3D systems. CSLM
measurements on flowing systems (Varadan and Solomon 2003b) are a promising alternative to
SALS measurements from the vorticity plane. More complex flow situations, such as squeeze
flow, can result in the formation of voids (at phi = 0.26) and cracks (at phi = 0.40) that are
both macroscopic in size and characteristic of inhomogeneous strain (Varadan and Solomon
2003b). Toward this end, the possibility of shear-banding or locally inhomogeneous flow in
relation to microstructure development needs to be addressed (Vermant 2001, Salmon et al
2003).

A major future challenge is to incorporate the microstructural features discussed here
into constitutive descriptions of colloidal gel rheology, which can also predict the nonlinear
rheology relevant to processing operations involving colloids. Currently, the link between gel
microstructure and rheology has only been described in qualitative terms. The use of optical
tweezers to establish the link between micro-mechanical properties and aggregate structure
has been suggested as an innovative approach to this problem (Furst 2003, Pantina and Furst
2004).

5. Suspensions of particles dispersed in viscoelastic media

5.1. Introduction and relevance

In many industrial operations the processed materials consist of particles dispersed in
rheologically complex fluids. Common examples are coating and printing operations, as
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Figure 17. Alignment and segregation effects in suspensions of spheres suspended in a viscoelastic
polyacrylamide solution displaying a pronounced alignment and segregation according to particle
size when observed in the v–ω plane (adapted from Giesekus (1978)). The arrow indicates the flow
direction.

well as the processing of filled polymers in general and of nanocomposites in particular (Vaia
and Giannelis 2001). Adding particles to a nonlinear viscoelastic fluid, such as a polymer,
can considerably increase the rheological complexity of the system (Metzner 1985, Ohl and
Gleissle 1993). The spatial distribution of particles plays a dominant role in this respect,
as exemplified by particle aggregation or especially flow-induced alignment, which is even
observed in dilute suspensions. There is no indication that the same phenomenon occurs for
particles dispersed in Newtonian fluids.

5.2. Effects of flow on particles dispersed in viscoelastic liquids

Michele et al (1977) subjected dilute suspensions of macroscopic (60 µm) glass spheres
in a highly viscoelastic polymer solution to rapid oscillatory shearing flows. The resulting
microstructures in experiments on polydisperse spheres by Giesekus (1978) are shown
in figure 17. Necklaces of particles can clearly be observed. Giesekus (1978) further
demonstrated that size segregation effects could be imparted to a bimodal suspension. Recently,
Lyon et al (2001) verified the earlier results on dilute suspensions and also reported the
formation of particle strings in steady-shear flow for moderately concentrated suspensions
with a corresponding quantitative reduction in the shear stress. This study thus confirmed
the relevance of the microstructural changes for the rheological properties of suspensions in
polymer systems. The physical origin of the particle alignment is associated with normal
stress effects (Giesekus 1978). It has even been proposed that a suspending fluid Weissenberg
number (here taken as the ratio of the first normal stress difference over the shear stress) of
ten for the suspending fluid is necessary for the onset of the necklace formation (Michele
et al 1977, Lyon et al 2001). Recently, Scirocco et al (2004) have further investigated the
effect of the suspending fluid on the flow-induced alignment. The alignment was studied by
means of video microscopy and SALS. Although alignment was observed, the onset of string
formation was shown not to be governed by a critical Weissenberg number as assumed earlier.
Interestingly, no alignment could be induced in constant viscosity, high elasticity Boger fluids
even for a Weissenberg number of 260. A wide range of Weissenberg numbers for the onset
of alignment was observed for shear-thinning viscoelastic fluids.
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Figure 18. SALS pattern observed under steady
state for a suspension of 0.8% (v/v) polystrene in
a viscoelastic solution of hydroxypropylcellulose in
water sheared at 50 s−1 for 3600 s, corresponding
to an aligned array of particles with well-defined
interparticle spacings. The arrow indicates the flow
direction; v–ω plane (reprinted from Scirocco et al
(2004), © (2004) with permission from Elsevier).

For a system with pronounced alignment, SALS measurements showed very regular
interparticle spacing, as shown in figure 18. The interparticle distance can be estimated from
Bragg’s law, and it was found to be of the order of 1 µm for 3 µm spheres. SALS results
were also used to demonstrate that the string formation could be very slow, and seems to be,
to a first approximation, strain controlled (Scirocco et al 2004). The alignment phenomena
are produced at very low volume fractions. This suggests that the hydrodynamic interactions
are amplified in viscoelastic fluids, in agreement with recent simulation results (Hwang et al
2004). Dispersing particles into viscoelastic fluids hence might provide an alternative method
to produce very ordered structures at low volume fractions. The detailed mechanisms are,
however, not yet completely understood.

6. Conclusions and outlook

Research focused on understanding the intimate coupling between the flow and the
microstructure during the flow of suspensions has greatly advanced through a combination
of experimental techniques, theoretical developments and numerical simulations. For fluid-
like and ordered suspensions, the effects of flow have been fairly well understood, and
even quantitative, predictive links between microstructure and macroscopic properties have
been established. For weakly aggregated suspensions and for suspensions of particles in
rheologically more complex fluids,more work is needed to develop mechanistic understanding.
Possibly, new experimental methods such as in situ CSLM microscopy (Varadan and Solomon
2003a, 2003b, Tolpekin et al 2004) and measurements on two-dimensional model suspensions
(Stancik et al 2002, 2003, Hoekstra et al 2003) can considerably contribute to this development.
For numerical simulations, Brady and co-workers (see for example Brady 2001) have shown
that inclusion of hydrodynamic interactions results in a powerful technique that both helps
develop understanding of the physical mechanisms involved and leads to first principles
prediction of macroscopic properties. The developments of simulation methods that can
accommodate either the non-ergodicity of aggregated suspensions or the non-Newtonian nature
of the suspending media are difficult but necessary next steps. In the latter case, promising
results are already appearing (Hwang et al 2004).
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