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Abstract
Magnetism in iron plays a central role in understanding the physical properties
of its polymorphs, including the close-packed high pressure phases. We
explore the rich and complex magnetic structures of these phases in two
ways. We use a first-principles based, magnetic tight-binding total energy
model to study non-collinear magnetic structures, and an all-electron method
to study the collinear state in hcp iron that we predict in the hcp iron stability
range. For the non-collinear study we compute the magnetization energy
and moments for various non-collinear ordered spin configurations. For fcc
iron we find non-collinear structures with a wavevector (0, 0, q) with q close
to 0.5 to be energetically stable, in agreement with previous first-principles
calculations. In the high pressure stability field of hcp iron we find a stable
collinear antiferromagnetic structure (afmII), previously predicted with an all-
electron method. We further investigate the afmII structure,computing physical
properties from first principles that support the notion of antiferromagnetic
correlations in hcp iron. We show that a recently observed anomalous splitting
in Raman spectra of hcp iron under compression can be quantitatively explained
by spin–phonon interactions. To address the absence of Mössbauer splitting in
experiments on hcp iron we have also calculated the hyperfine field of afmII
iron and find it to be so small that the predicted splitting would be smaller than
the resolution limit of experiments.

1. Introduction

Magnetism plays an important role in understanding the phase equilibria and physical
properties of the iron polymorphs. The phase at ambient conditions, body centred cubic
(bcc), is stabilized by the presence of ferromagnetic moments, as has been shown from density
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Table 1. Comparison of the equation of state for hcp iron. Parameters are the zero pressure
volume (V0), zero pressure bulk modulus (K0), and its pressure derivatives K ′

0. Experimental data
are from [45], and the LAPW results are from [10].

hcp iron (GGA) V0 (bohr3) K0 (GPa) K ′
0

Experiment 75.4 165 5.3

LAPW non-magnetic 69.0 292 4.4
LAPW afmII 71.2 209 5.2

TB non-magnetic 68.8 297 4.6
TB afmII 70.4 213 6.1
TB non-collinear 70.5 203 6.3

functional theory (DFT) based computations [1]. The high temperature phase, cubic close
packed (fcc), has no ordered magnetic structure in its stability field, but magnetic correlations
are responsible for the anti-Invar effect (large thermal expansivity) in this phase [2] and
anomalous phonon dispersion [3].

Pressure has a large effect on the magnetic structure through the delicate balance between
potential and kinetic energy that governs magnetism [4], resulting in a decrease of magnetic
moments under compression, making the question of magnetism in iron under pressure of
general interest. As magnetism has a strong influence on material properties, the magnetic
structure of the high pressure phase of iron, hexagonal close packed (hcp), is of special interest
in high pressure material research, for the study of impact phenomena in iron and steel [5]
and for geophysics, as Earth’s inner core is most likely composed of hcp iron [6]. Hcp iron is
not quenchable to zero pressure, so magnetism must be studied in situ at high pressure. The
absence of observable splitting in in situ Mössbauer experiments to low temperatures [7–9]
places an upper limit of the hyperfine field (HFF) of only 5 kG [9], leading to the conclusion that
no significant magnetic moments are present. However, using collinear magnetic DFT based
methods a stable antiferromagnetic (afm) state of hcp iron has been predicted [10],a finding that
is robust within DFT computations using both local density (LDA) and generalized gradient
approximation (GGA) to the exchange–correlation potentials [10–12], as well as magnetic
tight-binding models with a Stoner-like exchange energy [13]. This structure (afmII, figure 1)
is characterized by alternating spin up and down planes perpendicular to one of the basal planes
in the hcp cell. The afmII phase has been predicted to be stable up to 60 GPa, and taking
the afmII structure into account improves the agreement of the computed and experimental
equation of state for hcp iron significantly (figure 2 and table 1) [10].

Recent experimental observations, including anomalous splitting of the Raman mode in
hcp iron [14, 15], focus attention on this apparent discrepancy between theory and experiment.
The Raman active phonon mode in a monatomic hcp system is the doubly degenerate transverse
optical (TO) mode. Consequently, only one peak is expected in Raman spectra of hcp
iron. However, experiments using low fluorescence synthetic diamonds show two peaks up
to pressures of 40 GPa [14, 15] suggesting a symmetry lower than the atomic arrangement
determined to be hcp by in situ x-ray diffraction [16].

When magnetic moments are collinear, electrons can be considered to be ‘spin-up’ or
‘spin-down’ in a global sense, i.e. there is a global magnetic quantization direction. This means
that one can solve for the spin-up and spin-down electrons separately, and then combine the
results to compute the total charge density. When moments are oblique to each other, the
spin state is termed ‘non-collinear’. In this case the problem does not factorize, and one must
diagonalize a Hamiltonian of twice the order of the collinear system. A system can be non-
collinear either in response to chemical or thermal disorder, or in order to minimize frustration.
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Figure 1. Some of the magnetic structures for hcp iron considered. Atoms at z = 1/4 are
shown with open symbols, and for z = 3/4 with filled symbols; the orthorhombic unit cells of the
structures are outlined (dashed lines), with the two planar basis vectors a and b given in (a). The
arrows indicate spin-up and spin-down atoms. In (a) the previously found collinear state (afmII)
is shown. Also indicated (in grey) are the two eigendirections for the transverse optical phonon
modes. In (b) the non-collinear structure ncl (for α = 90) is shown. For α = 0 another collinear
structure is obtained as shown in (c). A different type of non-collinear structure is shown in (d).

Both hcp and fcc lattices are frustrated with respect to antiferromagnetism, in that one cannot
order these lattices antiferromagnetically so that all neighbours have opposite spins. This is
known to lead to spin-waves and non-collinear magnetism in fcc iron, for which it is now
understood that the magnetic ground state is a incommensurate spin-density wave, both from
DFT calculations [17, 18] and studies of fcc iron precipitates [19].

Here we further explore magnetism in hcp iron in two ways. First, we go beyond the
collinear antiferromagnetic state and self-consistently relax the magnetic structures using a
non-empirical tight-binding model with a Stoner-like exchange energy [13, 20]. Second, we
further explore the consequences of afm correlations by studying the influence of the afmII
structure on physical observables. Using all-electron DFT we compute the phonon frequencies
of the two TO phonon modes in afmII and compare them to the experimental measurements
of the splitting in the Raman experiment. We also calculate the HFF to address the Mössbauer
experiments. The use of the afmII structure in this context is motivated for two reasons. First,
in the stability field of hcp iron (above 13 GPa) the non-collinear study did not yield a more
stable structure than afmII. Second, the collinear afmII structure corresponds to a collective
mode excitation of afm correlations on the hcp lattice, predicted to be stable at some finite
temperature for the nearest-neighbour Heisenberg model of antiferromagnetism [21].
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Figure 2. The equation of state for hcp iron. Panel (a) shows the magnetic moments (left-hand set
of curves) and magnetization energies (right-hand set of curves) for the ncl (α = 90) (solid curves)
and afmII (dashed curves) from the tight-binding calculations. Panel (b) compares experimental
measurements of the equation of state from [16] and [45] with results for non-magnetic (dotted
curve) and the antiferromagnetic calculations (solid curve). The afmII and ncl equations of state
are identical on the scale of the figure.

2. Method

To study non-collinear magnetism in Fe, a first-principles based non-magnetic tight-binding
model [22] is combined with a model for magnetism [23] that is described in detail
elsewhere [13]. Similar models have been used previously for incorporating magnetism within
a tight-binding approach [20, 23–26], but a first-principles tight-binding model has previously
not been developed that includes constraining fields or that properly treats non-orthogonal
tight-binding.

The model differs from the conventional Stoner model [27], in which a ferromagnetic
instability is predicted by the inequality I N(0) > 1, where N(0) is the non-magnetic density
of states at the Fermi level, and the extended Stoner model [28], in which N is replaced by the
effective density of states Ñ (M) = M/δε, where δε is the exchange splitting, in that our model
allows for different hybridization depending on the magnetic state, accounting thereby for the
actual magnetic structure, i.e. whether the system will be ferromagnetic, antiferromagnetic, or
non-collinear.

We explore the influence of the afmII ordering on physical properties over the compression
range where finite moments are predicted (>60 bohr3/atom) by means of the spin-
polarized fully relativistic all-electron linearized-augmentedplane-wave method (LAPW) with
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GGA [29]. We treat 3s, 3p, 3d, 4s, and 4p states as valence electrons for all volumes and use
RMT = 2.0 bohr for the muffin tin radii, RMT Kmax = 9.0, a 12 × 6 × 12 special k-point mesh,
and a temperature broadening of 5 mRyd. s- and p-states are treated with local orbitals. Tests
with higher k-point sampling and smaller temperature broadening show that our results are
well converged in terms of magnetic moments (within 0.05 µB) and magnetization energies
(0.02 mRyd/atom). We calculate the TO mode frequencies by the frozen phonon method:
energy changes are evaluated in response to small displacements along the phonon eigenvector,
with the second-order term yielding the frequency. The HFF is computed self-consistently from
the spin-up and spin-down charge density at the nucleus averaged about the Thompson sphere,
generalizing the Fermi contact interaction to the relativistic case [30]. The use of GGA is of
critical importance for the magnetization energies in iron [1, 31] as well as for the HFF in the
3d transition metals [32].

To efficiently perform the calculations we fix the free parameter in the hcp structure, the
axial ratio, to c/a = 1.6, close to the experimentally [16] and computationally [10] determined
equilibrium value. Tests showed that c/a does not vary significantly (<0.005). For the tight-
binding calculations on eight-atom orthorhombic cells for hexagonal symmetry (see below) a
k-point mesh of 12 × 12 × 12 is used. For the eight-atom tetragonal supercells of the fcc
structure, dense 12 × 12 × 4 k-points are used.

3. Results

3.1. Non-collinear studies

The method employed in the study of non-collinear magnetism yields results that are in good
agreement with previous self-consistent calculations for bcc iron, especially when a volume-
dependent Stoner parameter I is used [20]. The lowest energy state for α-Fe for the model at
ambient and at higher pressures is ferromagnetic, in agreement with the first-principles LAPW
self-consistent calculations [31].

Spin states in fcc iron have been studied extensively (for a review, see [18]), showing
a great richness in non-collinear magnetic structures on the frustrated cubic lattice as the
volume is varied. Here we determine the energies and moments for fcc iron with spiral
spins along (001) and θ = π/2 using eight-atom supercells, allowing calculations for (00q)

with q = 0, π/4, π/2, 3π/4, and π . The complex behaviour of magnetism with increasing
pressures and varying spiral spin density wave states is qualitatively reproduced by the model
(figure 3), compared with self-consistent calculations [17, 18, 33]. Quantitatively the results
are sensitive to the value of I . In any case, there is some variation in self-consistent results
for fcc iron, due to the extreme sensitivity of the magnetic structure to the basis set, k-point
sampling, etc, as a result of the small energy scale. Furthermore, the magnetic ground state in
fcc iron is sensitive to the atomic moment approximation [33] in the tight-binding model. In a
spin density wave the moment is rather a field that varies with position in the crystal, and is not
constant on each atom. Within the atomic moment approximation our results are reasonably
consistent with the self-consistent results.

Like the fcc structure, the hcp lattice is geometrically frustrated in that it is not possible
to have perfect collinear antiferromagnetic order on it: in the afmII structure, for example,
each atom has four like spin (ferromagnetic) and eight unlike spin (afm) nearest neighbours
(figure 1), maximizing the antiferromagnetic order. In the case of a nearest-neighbour (nn)
Heisenberg model with energy E = J1

∑
nn �mi · �m j , the energy is independent of the angle

between the moments of one antiferromagnetic pair and another (figure 4) [21]. If non-
nn interactions are important, or if the Heisenberg model does not completely describe the
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Figure 3. Variation of magnetization energy (a) and magnetic moments (b) versus wavevector
(0, 0, q) for fcc iron with q in units of 2π/a, where a is the lattice constant. Lines for various unit
cell volumes are given (see the legend in (a)). Wavevectors q = 0 and 1 correspond to ferromagnetic
and antiferromagnetic structures. q = 0.5 is a non-collinear structure with an angle of π/2 between
neighbouring spins.

energetics, the energy might be further lowered if the afm pairs are oblique or perpendicular
to each other (i.e. α �= 0). The energy does depend on which pairs are chosen to be
antiferromagnetic (i.e. how the tetrahedra of figure 4 are connected), giving rise to different
possible magnetic structures (figure 1). The collinear afmII structure has four atoms per unit
cell in space group Pmma [10]. If we tile the lattice with the pattern shown in figure 4, cells
with eight atoms are obtained (figure 1); there the collinear state has the space group Pmmn
(α = 0).

The energy of the ncl structure changes as a function of the angle α for different volumes
for the ncl structure (figure 5). In all cases the energy decreases when α is varied from zero.
Nevertheless, for volumes less than or equal to about 70 bohr3 (∼2 GPa), the afmII structure
is more stable than the ncl structure for any angle; therefore the afmII structure remains the

α

Figure 4. The motif for antiferromagnetic interactions on the hcp lattice (tetrahedron representation
with open symbols at z = 1/4 and filled symbol at z = 3/4). One pair of antiferromagnetic iron
atoms is at an angle α to the other. Collinear structures with space group symmetry Pmma (afmII)
and Pmmn (afmIII) are represented by α = 0. See also figure 1.
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Figure 5. Energy as a function of angle α (see figure 4). The energy is given relative to the afmII
structure (zero line), so that negative values show structures that are energetically favoured over
afmII. The dotted, dashed, and solid lines are curves for volume/atom of 80, 75, and 70 bohr3.

lowest energy structure we were able to find in the stability range of hcp iron, above 13 GPa.
The equation of state of hcp iron changes little from afmII to ncl with α = 90◦ (figure 2 and
table 1).

3.2. Collinear structure

Aside from being the lowest energy state, the afmII structure is also predicted to become stable
at finite temperature in the nn Heisenberg afm model discussed above, through collective
mode excitations [21], an entropic effect known as ordering by disorder [34], adding a second
motivation to consider the afmII structure.

The Raman active TO phonon modes in the afmII structure are characterized by
displacements of the close-packed planes with respect to each other, with the eigenvectors
for the two modes along the orthorhombic axes (figure 1). Inspection of the structure reveals
that fundamentally different spin interactions are involved in the two modes (figure 1). For
displacements along the orthorhombic a-axis (TOa), atoms approach nearest neighbours with
unlike spin, corresponding to afm correlations. For displacements along the orthorhombic
b-axis (TOb), atoms alternately move towards or away from a nearest neighbour with like spin,
corresponding to ferromagnetic correlations. The resulting potentials reflect the symmetry of
the interaction: while for the TOb mode we see considerable anharmonicity,there is none for the
TOa and the non-magnetic TO modes. We find that the TOa mode frequency agrees well with
that of the lower frequency, higher amplitude peak found in the Raman experiments [14, 15],
and that the TOb mode frequency corresponds to the experimentally observed satellite peak
at higher frequency (figure 6). The magnitude of the predicted TO mode splitting decreases
as the afm moment is reduced by compression, in excellent agreement with the observation
in the Raman experiments (figure 6). The systematic offset of the calculated frequencies by
approximately 20 cm−1 (<10 %) is typical for a comparison of computed and measured phonon
frequencies [35].
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Figure 6. Transverse optical phonon modes for hexagonal iron. Panel (a) shows calculated
frequencies (filled symbols) for TOa (triangles up) and TOa (triangles down) in the afmII structure
in comparison to the Raman measurements [14, 15] (open symbols). Here the main peak (triangles
up) and satellite peaks (triangles down) are distinguished. The dashed curves are polynomial fits
in V −2/3 to the results. Panel (b) compares the difference between TOb and TOa (filled symbols;
the line is to guide the eye) and the experimental main and satellite peaks.

To address the Mössbauer experiments we have calculated the HFF for afmII iron, and
find it to be only a few kG over its stability field (table 2). This is two orders of magnitude
smaller than the HFF for fm bcc iron. For bcc iron we find 323 kG at an atomic volume
(V = 80 bohr3) close to the experimental zero pressure volume, in good agreement with the
experimental saturation value (339 kG), and obtain a slight decrease of the HHF as a function
of compression (table 2). The separation of the outermost peaks in the Mössbauer spectrum
(L1 and L6) is diagnostic of the HFF, and a typical value of 4 kG for afmII would result in a
separation of less than 0.2 mm s−1, within the width of the central Mössbauer peak. The small
HFF for afmII results from the core and valence contributions having opposite sign and almost
cancelling (table 2).

4. Discussion

The magnitude of TO mode splitting predicted here is related to the afmII magnetic structure,
but any afm correlation will lead to the same effect. Above we have associated the major peak
in the Raman spectrum with TOa , or afm nearest-neighbour correlations, and the satellite peak
with TOb, or fm nearest-neighbour correlations. If the general character of a more complex
magnetic state is indeed afm, a signal dominated by the afm peak (TOa in afmII) can be
expected: in the case of a non-collinear spin state the satellite peak may even vanish, while the
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Table 2. Hyperfine field in bcc and afmII hcp iron under compression. Given are atomic volumes
V , the corresponding pressure P from the respective computational equation of state [10, 31], and
the magnetic moment M for the unit cell and inside the muffin tin sphere (in brackets) in Bohr
magnetons. The total HFF B and its contributions due to core Bc and valence electrons Bv follow.
For afmII, M and B for the spin-up atoms are given. For comparison a previous calculation [32]
for bcc iron is included. The calculations of the HFF were performed with the WIEN2k LAPW
package. We find that including spin–orbit coupling has negligible effect on the HFF.

V P M B Bc Bv

(bohr3) (GPa) (µB) (kG) (kG) (kG)

bcc Fe

Exp 79 0 2.13 −339
Reference [32] 81 2.46 −316 −280 −36

80 −7 2.22 (2.28) −329 −286 −43
75 6 2.14 (2.18) −309 −279 −31
70 23 2.06 (2.09) −287 −266 −21
65 48 1.90 (1.92) −261 −249 −12
60 86 1.75 (1.77) −226 −227 1

afmII Fe

75 −12 0 (1.40) 3 −170 173
70 2 0 (1.10) 4 −132 136
65 22 0 (0.69) 4 −85 89
60 56 0 (0.20) 2 −31 33

major peak still exhibits an afm signature through a shift in frequency relative to a hypothetical
non-magnetic structure. Spin–phonon interactions have been found to have a strong effect
on Raman scattering in a number of systems, including cupric oxide [36] and the copper–
ruthenium oxide RuSr2GdCu2O8 [37]. The general character of the effect of spin–phonon
interaction on the Raman spectra in these materials is consistent with the observations for hcp
iron: broad, low amplitude, satellite peaks appear when the sample is below the Curie or Néel
temperature.

Other experimental investigations of possible magnetic states in hcp iron have been
inconclusive. Magnetism in hcp iron exists at over-expanded volumes in epitaxially grown
multilayers on a ruthenium substrate [38]. Nuclear x-ray absorption experiments [39] show
significant loss of moment across the phase transition from bcc to hcp iron, but cannot
unambiguously be interpreted as the absence of moments in the high pressure polymorph: the
change in absorption spectra is due to changes in the density of states as well as to spin-related
satellites. It is worth noting that in the presence of an external field large internal magnetic
fields develop in hcp iron [8], supporting our interpretation of hidden magnetic correlations in
hcp iron.

Long thought to be antithetical, superconductivity and magnetism are simultaneously
observed in an increasing number of systems. Among these ZrZn2 is of particular interest:
superconductivity and magnetism appear to be directly coupled, as evidenced by the loss of
superconductivity and magnetism at the same pressure [40]. A similar connection between
magnetism and superconductivity in hcp iron, which has only been observed recently [41], has
now been investigated. While different in detail, two computational studies [11, 12] suggest
that the rapid disappearance of superconductivity in hcp iron at about 30 GPa is unconventional
and is related to spin fluctuations.

In addition to the optical phonons, acoustic modes can also be influenced by spin–phonon
interactions, as is evidenced by anomalous dispersion for the transverse acoustic phonon in
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fcc iron near the zone centre [3]. Indeed we find that, in addition to the bulk modulus, through
the equation of state (figure 2 and table 1), the afmII ordering also influences the shear elastic
properties of hcp iron: we find closer agreement for the shear modulus of afmII [42] with
recent experimental estimates from ultrasonic measurements [43] and the phonon density of
states [44].

5. Conclusions

Using a first-principles based magnetic tight-binding total energy model we have explored
non-collinear magnetic structures in fcc and hcp iron. We find good qualitative agreement
with previous first-principles results for spin density waves in the fcc structure. In hcp iron,
in contrast, we find non-collinear solutions more stable over an orthorhombic collinear state
(afmII) only at volumes close to and larger than the zero pressure volume. In the pressure
stability range of hcp iron, above 13 GPa, however, the afmII structure is the lowest energy
state found, predicting antiferromagnetic correlations up to 50 GPa.

Further investigating the collinear afmII structure, we have shown strong evidence for
magnetic correlations in hcp iron in its stability field. We have calculated from first principles
the effect of spin–phonon coupling on the zone centre TO mode frequency, and find good
agreement with a recently observed unexpected splitting in the Raman frequencies of hcp iron
under pressure. We have further calculated the hyperfine field of the afmII structure and obtain
values of a few kG only, within the resolution limit of Mössbauer experiments. Combined
with a considerably better agreement of structural and elastic properties between experiments
on hcp iron and the afmII structure, as compared to non-magnetic calculations, this suggests
that magnetic correlations do play an important role in understanding the physical properties
of iron under pressure.
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[18] Mryasov O, Gubanov V and Liechtenstein A 1992 Phys. Rev. B 45 12330
[19] Tsunoda Y, Nishioka Y and Nicklow R 1991 J. Magn. Magn. Mater. 128 133
[20] Mukherjee S and Cohen R E 2001 J. Comput.-Aided Mater. Des. 8 107
[21] Diep H T 1992 Phys. Rev. B 45 2863
[22] Cohen R E, Mehl M J and Papaconstantopoulos D A 1994 Phys. Rev. B 50 14694
[23] Pickett W E 1996 Korean Phys. Soc. 29 S70
[24] You M V and Heine V 1982 J. Phys. F: Met. Phys. 12 177
[25] Freyss M, Stoeffler D and Dreysse H 1997 Phys. Rev. B 56 6047
[26] Mehl M J, Papaconstantopoulos D A, Mazin I I, Bacalis N and Pickett W E 2001 J. Appl. Phys. 89 6880
[27] Stoner E C 1938 Proc. R. Soc. A 169 339
[28] Krasko G L 1987 Phys. Rev. B 36 8565
[29] Perdew J, Burke K and Ernzhofer M 1996 Phys. Rev. Lett. 77 3865

Perdew J, Burke K and Ernzhofer M 1996 Phys. Rev. Lett. 78 1396 (correction)
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