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Abstract
A method for computer simulation of time-resolved x-ray diffraction (TRXD)
in asymmetric Laue (transmission) geometry with an arbitrary propagating
strain perpendicular to the crystal surface is presented. We present two case
studies for possible strain generation by short-pulse laser irradiation: (i) a
thermoelastic-like analytical model; (ii) a numerical model including the effects
of electron–hole diffusion, Auger recombination, deformation potential and
thermal diffusion. A comparison with recent experimental results is also
presented.

1. Introduction

When a semiconductor crystal is irradiated by photons of above band-gap energy, electrons are
excited from the valence band to the conduction band. If the light source is a subpicosecond
laser, the electron–hole plasma density can easily reach 1020 cm−3—enough for the lattice
spacing changes due to the deformation potential to be significant and for the fast diffusion of
the electron–hole plasma into the crystal bulk to be appreciable. The timescale of the fastest
energy transfer processes from the electrons to the lattice is of the order of picoseconds or
less, which is significantly shorter than the hydrodynamic response time of the crystal. The
resultant stress is therefore relieved by surface expansion and, by Newton’s third law, a bipolar
compression wave propagating into the crystal. These effects have been studied by optical
methods [1–4] and, more recently, as test-cases for the field of time-resolved x-ray diffraction
(TRXD) in Bragg (reflection) geometry [5–11]. However, although x-ray diffraction in Bragg
geometry allows the direct study of the structural changes to the lattice—as opposed to the
electronic effects in optical studies—the very nature of Bragg geometry x-ray diffraction with
perfect crystals only allows the study of the surface region of the crystal. By utilizing the
anomalous absorption effect in Laue (transmission) geometry, recent experiments [12, 13] have
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enabled the probing of structural changes throughout the bulk of the crystal on a subnanosecond
timescale, giving a much clearer picture of the phenomena under consideration.

In Bragg geometry it is only possible to study the structural changes of crystalline matter
in a layer with thickness comparable to the shorter of the x-ray extinction depth (∼ μm) for
strong diffraction or the absorption depth for weak diffraction [11]. In Laue geometry it is
possible to study the whole bulk of the crystal due to anomalous absorption, known as the
Borrmann effect. In dynamical diffraction theory, the x-ray electromagnetic field inside the
crystal is resolved into two independent eigensolutions—one with nodes on the lattice planes,
and the other with anti-nodes. This creates one solution with reduced absorption and another
with enhanced absorption. These are known respectively as the α and β branches. It is the
α branch solution that can propagate for many extinction depths without significant loss—
probing the entire depth of the crystal [14]. A disturbance in the crystal lattice causes energy
to be transferred between the two branches, an effect known as inter-branch scattering [15].
When the x-ray beam exits the crystal, it is again expressed as the free-space solutions: the 0
(forward-diffracted) and h (deflected-diffracted) beams, which are linear combinations of the
α and β branches. If the ratio and/or relative phases of the branches has changed, the energy
partitioning between the beams will be affected, often to a significant degree [13].

Using this method it is possible to study the mechanism of energy transfer when a single
crystal target is irradiated by a femtosecond laser pulse. We will show that it is possible to
distinguish between a model which assumes an instantaneous energy transfer into the lattice
and one which models thermal diffusion, electron–hole plasma diffusion, the effect of the
deformation potential, and energy transfer to the lattice via Auger recombination.

2. Theory

The fundamental assumption in this method of diffraction simulation is that the strain field
in the crystal is one-dimensional, parallel to the surface normal, and can be approximated
by a constant strain in many laminae, each one parallel to the surface of the crystal. The
degree to which this represents the experimental situation is discussed in section 3. The electric
displacement field amplitude is then calculated as it passes through these laminae, taking into
account the effect of the strain in each.

2.1. Dynamical diffraction theory

By solving the wave equation

curl curl
[
(1 − χ)D(r)

] = 4π2k2D(r) (1)

in a medium with a periodic susceptibility

χ(r) =
∑

h

χhe−2π ih·r,

using a displacement field

D(r) =
∑

h

Dhe−2π ikh ·r,

where kh = k0 + h is the wavevector of the hth component inside the crystal and both are
summed over Fourier components in the reciprocal lattice vectors h, we obtain the fundamental
equations of dynamical theory [16]

∑

h′
χh−h′

[
(kh · Dh′)kh − k2

hDh′
] = (k2 − k2

h)Dh . (2)
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These can be further simplified by the assumption that there are only two strong x-ray wave-
fields (incident and diffracted: D(r) = D0e−2π ik0·r + Dhe−2π ikh ·r), leading to the two-beam
dispersion relation

χh̄

[
(k0 · Dh)k0 − k2

0Dh
] = [

k2 − k2
0(1 − χ0)

]
D0, (3a)

χh
[
(kh · D0)kh − k2

hD0
] = [

k2 − k2
h(1 − χ0)

]
Dh, (3b)

where h̄ indicates the direction inverse to h. These vector equations relate the physically
realizable values of D0,h and can be solved for the incident and diffracted beam amplitude
as a function of depth into a crystal layer giving equations of the form (for σ -polarization)

(
D0

Dh

)
=

(
e−2π ikα·r e−2π ikβ ·r

ξαe−2π ikα·r ξβe−2π ikβ ·r

) (
Dα

Dβ

)
, (4)

where

kα
def= kδ′

0n̂
γ0

, kβ
def= kδ′′

0 n̂
γ0

, (5)

are the wavevector shifts of the α and β branches, Dα and Dβ are the amplitudes of the α and
β branches,

δ′
0

δ′′
0

}
= 1

2

[
χ0 − z ±

√
q + z2

]
, (6)

ξα

ξβ

}
= −z ± √

q + z2

χh̄
, (7)

z
def= 1 − b

2
χ0 − b
θ sin 2θB, q

def= bχhχh̄, (8)

b ≈ γ0

γh
, 
θ = θ − θB, (9)

where γ0, γh are the direction cosines of the incoming and outgoing beams, respectively, in
relation to the surface normal of the crystal n̂; ξα,β are the amplitude ratios Dh/D0; θ is the
actual glancing angle of incidence relative to the diffracting planes; and θB is the Bragg glancing
angle [16]. One can also define a dimensionless deviation parameter η, defined as

η = 
θ − 
θos

δos
(10)

where 
θos is the refraction shift of the diffraction peak and 2δos is the Darwin width [15].
This can be shown to be equal to − z√

q in terms of the quantities shown above. The deviation
parameter can also be expressed as a function of wavelength separation from the Bragg
wavelegth 
λ = λ − λB, using the relation 
λ = (λB cot θB)
θ derived from Bragg’s law.
This is the form that will be used for analysing the experimental data. However, it is easier to
visualize the effects of strain (see the following section) when it is considered as a function of
angle.

Equation (4) can be solved at the boundary between two layers (n̂ · r = 0) to find Dα and
Dβ as functions of D0 and Dh in the previous layer:

(
Dα

Dβ

)(i+1)

= 1

ξβ − ξα

(
ξβ −1

−ξα 1

) (
D0

Dh

)(i)

, (11)

where the superscripts indicate the layer in question. These layers are illustrated in figure 1.
In order to propagate the x-rays through the crystal, equation (11) is evaluated at the layer
boundaries, and the D0 and Dh amplitudes at the end of the layer are calculated using
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(2)

(1)
Layer (i)

Layer (i+1)

Figure 1. Layer approximation. (1) At the boundaries between layers, the α and β branches are
calculated (equation (11)). (2) The beam is then propagated through the layer (equation (4)).
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Figure 2. Strained crystals. Strain (ε⊥ = δy
y ) alters the rotation (δφ) and the separation (δd) of

lattice planes in the crystal. Note that there are two possible orientations for the x-ray beams.

equation (4). It should be noted that kα,β and ξα,β are all functions of η, and it is through
this parameter that the strain is incorporated. Therefore, in equation (11), care must be taken
that the ξα,β are evaluated in the correct layer. We may do so by considering each layer as a
separate crystal, with the beams D(i)

0,h exiting crystal (i) and then entering crystal (i +1) without
change. It is then easy to see that the correct layer in which to evaluate these quantities is layer
(i + 1).

2.2. Incorporating strain

Strain is incorporated into the model through the deviation parameter η (or more specifically,
its real part ηr), which can be expressed as a function of the angular deviation from the Bragg
angle 
θ (equation (10)). Strain affects this angular deviation in two ways: (i) rotating the
planes (changing θ ) and (ii) altering the separation (changing θB). The method presented here
is similar to that of earlier work in Bragg geometry [17–19], but is now presented for the Laue
geometry case.

From figure 2 we can formulate the following relations by taking differentials of the
relationships between d , x , y and φ:

δφ = −ε⊥ sin φ cos φ, (12)
δd

d
= ε⊥ sin2 φ, (13)

where ε⊥ = δy
y is the strain perpendicular to the surface.

The change in diffraction angle δθ is equal to ±δφ depending on the orientation of the
incoming and outgoing beams (θ1 or θ2 in figure 2 for positive and negative φ, respectively).
The change in diffraction angle due to the planar rotation is therefore

δθ = ∓ε⊥ sin φ cos φ. (14)
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The change in the Bragg angle can be calculated using the differential form of Bragg’s law,

δθB = δd

d
tan θB,

combined with equation (13), giving

−δθB = ε⊥ sin2 φ tan θB. (15)

We can now include both of these effects in the angular deviation from the Bragg angle to
give the ‘effective misorientation’

(θ − θB) → (θ − θB) + (sin2 φ tan θB ∓ sin φ cos φ)ε⊥. (16)

This can be used in every lamina, with the appropriate strain, in order to calculate the time-
resolved rocking curves from the strained crystal. In order for this lamellar approximation to
be considered accurate, each lamina must be sufficiently thin that the change in the effective
misorientation is small within it. In practice this can be achieved by using a variable layer
thickness, with a maximum allowed strain change across a layer. The maximum strain change
within a layer can then be reduced until the results obtained remain constant. This was
achieved with a maximum strain change of 1 × 10−8 within any layer, for the geometry under
consideration in this paper.

3. Strain models

As an example of this technique, we use the case of a germanium single crystal irradiated by
a femtosecond pulse of near infra-red laser radiation. Experiments using Laue geometry time-
resolved x-ray diffraction on such a sample have recently been carried out [12]. This case has
also been studied experimentally using ultrafast reflectivity [1–4] and x-ray Bragg scattering
techniques [5–11].

In this experimental set-up, the short laser pulse quickly heats the surface at constant
volume, generating a thermal stress. This causes the surface to expand and, by Newton’s third
law, launches an acoustic pulse into the crystal. In both cases considered here, the lateral size
of the laser spot is assumed to be much greater than the laser absorption depth. As a result,
the strain generated can be assumed to be one dimensional6, i.e. the atomic displacement only
varying as a function of depth into the crystal.

We will be comparing two models of the strain produced in this system. The first model
takes into account the timescales of the processes by which the energy is transferred to the
lattice. The second is a simplified case with an analytical solution, introduced by Thomsen
et al [20]. It assumes instantaneous transfer of energy from the laser into the lattice and no
diffusion.

When a short laser pulse is incident on the crystal, the following energy transfer processes
occur (see figure 3):

(1) The laser excites electrons from the valence band to the conduction band of the
semiconductor, creating an electron–hole plasma.

(2) The electrons and holes quickly relax to the band edges, transferring their energy to the
lattice. This energy transfer is assumed to be instantaneous on the timescale considered
(�1 ps).

6 This is for times less than lateral extent of the spot divided by the speed of sound. This corresponds to hundreds of
nanoseconds for the experimental conditions modelled.
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Figure 3. Band structure of germanium. The transfer of energy to the lattice involves: (1) laser
excitation, (2) fast relaxation to band edges, (3) Auger recombination.

(3) The electrons and holes then recombine (by Auger recombination—an e–e–h and e–h–h
process), transferring the rest of the energy to the lattice [21]. This takes significantly
longer (typically 1 ns to 1 μs), allowing the carriers to diffuse appreciably into the crystal
before recombining.

The electron–hole plasma and the thermal phonons in the lattice both diffuse into the
crystal bulk, with separate diffusion constants. They both cause a change in the lattice spacing,
through the deformation potential and thermal expansion, respectively.

The laser energy is deposited in a certain area of the crystal with a 1/e absorption depth ζ

and an absorbed fluence Q. This gives initial conditions of the electron–hole plasma and the
lattice temperature as

n(z, t = 0) = Q

Epζ
e−z/ζ , (17)

T (z, t = 0) = Ep − Eg

Cl
n(z, t = 0), (18)

where n is the electron–hole plasma density, Ep is the energy of the laser photons, Eg is the
indirect band gap and Cl is the lattice heat capacity per unit volume. The electron–hole plasma
obeys a diffusion equation with a sink term for Auger recombination

∂n

∂ t
= Dp

∂2n

∂z2
− An3, (19)

where Dp is the plasma diffusion constant and A is the Auger recombination rate. The energy
from the Auger recombination is then transferred to the lattice, which obeys a diffusion equation
with a corresponding source term

∂T

∂ t
= Dt

∂2T

∂z2
+ An3 Eg

Cl
, (20)

where Dt is the thermal diffusion constant.
The equilibrium strain is then

εe(z, t) = αtT (z, t) + αpn(z, t), (21)

where αt is the thermal expansivity (=�β , � is a factor to take into account the 1D nature
of the strain, β is the linear expansion coefficient) and αp is an electronic contribution to the
strain associated with the deformation potential (=∂(log a)/∂n, a is the equilibrium lattice
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Figure 4. Strain profile evolution—comparison of numerical and Thomsen models. This figure
shows a time sequence of strain snapshots taken at ∼40 ps intervals (v = 4915 m s−1) for an
absorbed fluence of Q = 4 mJ cm−2. The physical parameters used are the literature values given
in section 6. The strain in the numerical model comprises a diffusing surface component and an
asymmetric travelling wave. The asymmetry is caused by the e–h diffusion, the higher peak strain
by the deformation potential, and the surface decay by a combination of thermal and e–h diffusion.
The strain in the Thomsen model is made up of an exponential surface component and an anti-
symmetric travelling wave. The travelling portions of the strain move into the crystal at the speed
of sound.

constant). Any change in the equilibrium strain produces forward and backward propagating
waves, which can be calculated by integrating equation (21) as follows:

ε+(z, t) = −1

2

∫ t

0

∂

∂ t

[
εe(z − vt ′, t − t ′)

]
dt ′, (22a)

ε−(z, t) = −1

2

∫ t

0

∂

∂ t

[
εe(z + vt ′, t − t ′)

]
dt ′, (22b)

where v is speed of longitudinal sound in the crystal. The free-surface boundary condition of
the stress, σ33(z = 0, t) ≡ 0, is ensured by defining

εe(−z, t) ≡ −εe(z, t), z > 0.

The total strain is then the sum of the equilibrium and the forward and backward going strain
waves.

ε(z, t) = εe(z, t) + ε+(z, t) + ε−(z, t). (23)

The Thomsen strain model [20] in its most simple form assumes instantaneous transfer of
energy into the lattice and no diffusion. In the timescale of interest only a fraction (Ep−Eg)/Ep

of the absorbed laser energy is transferred to the lattice (the rest remaining in the electron–hole
plasma). This gives a total strain of

εTh(z, t) = Q�β(Ep − Eg)

ζCl Ep

{
e−z/ζ − 1

2

[
e−(z+vt)/ζ + e−|z−vt|/ζ sgn(z − vt)

]}
. (24)

Note that this is the sum of a non-evolving exponential surface strain, a forward going wave
F(z − vt) and a backward going wave G(z + vt).

The numerical model produces an identical strain to the above analytical formula, if there
is no deformation potential or Auger recombination (αp = 0 and A = 0). A comparison of the
strains produced by the numerical and Thomsen strain models is shown in figure 4.



9238 B Lings et al

Figure 5. Simulated time-resolved rocking curves. The 0 and h beam rocking curves plotted as a
function of time for the numerical strain model with an absorbed pump fluence of Q = 17 mJ cm−2.

(This figure is in colour only in the electronic version)

4. Simulation

The diffraction simulation works as follows: Over a number of time-steps, the strain profile
(analytical or numerical) is calculated. For the numerical method, the diffusion equations (19)
and (20) are solved using a Crank–Nicholson scheme, and the integrals in equation (22) are
calculated by finite differencing then summing. The x-rays are then propagated through the
crystal over the ηr range of interest. This is done using the propagation matrices (section 2.1).
After the final layer, the amplitudes for the 0 and h beams are multiplied by their complex
conjugates, giving the rocking curves (figure 5). The resulting time-resolved rocking curves
are then integrated over ηr and normalized such that the value for an unstrained crystal is unity,
for comparison with experimental results.

It is also possible to output the beam intensities through the bulk of the crystal: either
as the 0 and h beams, showing Pendellösung oscillations [14], or as the α and β branches,
showing the transfer of energy between the two as the strain moves through the crystal (see
figure 9).

5. Experiment

The experimental data were taken at the 7-ID Undulator Beamline at the Advanced Photon
Source. The x-ray beam energy was 10 keV with a 1.4 × 10−4 fractional energy spread (larger
than the rocking curve width of the crystal) and negligible beam divergence. The sample
was a 280 μm thick (001) germanium single crystal, oriented to diffract from the 202̄ planes
(figure 6). The x-ray beam was masked by tantalum slits giving a beam size on the crystal of
400 μm × 400 μm. The strain pulse was produced by exciting the output face of the crystal
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Figure 6. Experimental setup. The h (deflected-defracted) beam is collected by an avalanche
photodiode (APD) giving a time resolution of the synchrotron bunch length, the 0 (forward-
diffracted) beam is resolved by a streak camera giving picosecond resolution.

with sub-100 fs, 800 nm laser pulses. The diffraction simulation was set up to match these
experimental conditions.

The time sequence of x-ray measurements was built up using a pump–probe scheme. The
relative timing of the x-ray and laser pulses was achieved by a variable electronic delay, set
with a precision of 19 ps. Thus, each time-step shown in the results is the delay between the
laser and x-ray pulses reaching the crystal. Each x-ray pulse, of 100 ps duration, illuminates
the crystal with an effectively static strain profile.

6. Results and discussion

Data taken experimentally [12] are shown in figure 7(a). Oscillations are seen in the h beam
amplitude, with the time evolution of these varying with pump fluence. The phase of the
oscillations is calculated by fitting curves of the form

I (t) =
∑

i

ai e
− t

bi sin(ωi t − φi ), (25)

where t is the time after laser excitation, starting at t = 1 ns (to ignore the initial rise). The
size of the initial rise or fall is measured by taking the normalized intensity at t = 200 ps. The
phase φ and the initial rise or fall (|Dh(t = 200 ps)|2 / |Dh(t = 0 ps)|2) of the measured and
simulated reflectivity is shown in figure 8. The curves for measured reflectivity assume that
75% of the laser energy is absorbed by the crystal.

Simulations were run with the Thomsen strain model, using literature values for physical
parameters (ζ = 200 nm, Eg = 0.67 eV, �β = 1 × 10−5 K−1, Cl = 1.7 J K−1 cm−3). The
results are shown in figures 7 and 8(b). These do not match well with either the phase of the
oscillations, the initial rise or fall, or the overall form of the h beam intensity. If the laser
absorption depth ζ is increased to 1 μm (figures 7 and 8(c)), the overall form of the higher
fluence curves shows a better match. However, neither the phase of the oscillations nor the
initial rise or fall show the expected behaviour.

Using the numerical model, but only adding the effects of thermal diffusion (no
deformation potential or Auger recombination), as shown in figures 7 and 8(d), a better match
for the phase of oscillations is achieved. This now agrees with the experimentally measured
phase to approximately 10%. The initial behaviour, however, remains badly matched.

Using the more detailed numerical model, with literature values for all physical parameters
(ζ = 200 nm, αt = 1 × 10−5 K−1, αp = 1.3 × 10−24 cm3, A = 1.1 × 10−31 cm6 s−1,
Dt = 0.35 cm2 s−1, Dp = 65 cm2 s−1), the curves in figures 7 and 8(e) were calculated. These
match the fluence dependence of the experiment in the overall form of the curves and the initial
rise. However, the phase of the oscillations only decreases at about two-thirds the rate of the
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(a) (d) (f)

(g)(e)(b)

(c)

Figure 7. Time-resolved integrated reflectivity. Plots are for a diffracted beam (|Dh |2).
(a) Experimental results. (b) Thomsen model with ζ = 200 nm. (c) Thomsen model with
ζ = 1 μm. (d) Numerical model, only diffusion included, Dt = 0.35 cm2 s−1, Dp = 0,
A = 0, αt = 10−5 K−1, αp = 0. (e) Numerical model, Dt = 0.35 cm2 s−1, Dp = 65 cm2 s−1,
A = 1.1 × 10−31 cm6 s−1, αt = 10−5 K−1, αp = 1.3 × 10−24 cm3, ζ = 200 nm, Eg = 0.67 eV,
Cl = 1.7 J K−1 cm−3 and v = 4915 m s−1. (f) Numerical model with no deformation potential,
as (e) but with αp = 0. (g) and (h) Numerical model with increased Auger recombination, as (e)
but with A = 5.5 × 10−31 cm6 s−1 and 11 × 10−31 cm6 s−1 respectively. Note that the modelling
assumes that 75% of the incident laser energy is absorbed.

experimentally measured phase. At the highest fluences the oscillations in Dh are of such small
magnitude that it was impossible to fit the curves numerically.

If the deformation potential is taken out of the numerical model (by setting αp = 0), the
correct fluence dependence of the phase is obtained (to approximately 10%), but the behaviour
at early times (i.e. the initial rise or fall) is no longer well matched (figures 7 and 8(f)).

These last two observations would imply that there is a direct electronic contribution to
the strain (through the deformation potential) at earlier times, which is greatly reduced at later
times. One possible mechanism for this is that the Auger recombination rate is larger than
expected. Simulations were run with the recombination rate increased five-fold and ten-fold
(A = 5.5 × 10−31 cm6 s−1 and 11 × 10−31 cm6 s−1, respectively). The resulting curves
(figures 7, 8(g) and (h), respectively) show good agreement with the experimental phase, and a
reasonable agreement with early time behaviour.
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Figure 8. Effects of changing the deformation potential and the plasma diffusion constant on (i) the
phase of the oscillations and (ii) the initial rise or fall of |Dh |2. The phase is fitted to curves of
the form shown in equation (25), with the data starting at t = 1 ns to ignore the initial rise. Fitted
to: (a) Experimental data (assuming 75% absorption). (b) Thomsen strain model, ζ = 200 nm.
(c) Thomsen model, ζ = 1 μm. (d) Numerical strain model, with only thermal diffusion included,
αt = 1 × 10−5 K−1, αp = 0, A = 0. (e) Numerical strain model, αt = 1 × 10−5 K−1,
αp = 1.3 × 10−24 cm3, A = 1.1 × 10−31 cm6 s−1. (f) Numerical model with no deformation
potential, as (e) but with αp = 0. (g) and (h) Numerical model with increased Auger recombination,
as (e) but with A = 5.5 × 10−31 cm6 s−1 and 11 × 10−31 cm6 s−1, respectively.

We were unable to find an excellent match with any combination of parameters, but this
particular set gave the best of those tried. The exact mechanism for a larger than expected Auger
recombination rate is unknown. One possible explanation is that the higher temperature of the
lattice at early times activates other possible recombination pathways (leading to a temperature
dependence to the recombination rate). It is thought that the main reason for the recombination
rate in germanium being so low is that it requires phonon activation [22]. So, at the higher
temperatures existing at early times, this could cause faster than expected recombination. More
detailed modelling of the strain, taking this possible non-linearity into account, could lead to
better reproduction of the experimental data.

In an earlier paper [12], the authors posited that the basic physics behind the oscillations
visible in the η-integrated rocking curves (figure 7) was due to energy being transferred from the
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Figure 9. The η-integrated interior solutions |Dα |2 (dot–dashed line) and
∣
∣Dβ

∣
∣2

(dashed line) as a
function of depth into the crystal at 1.25 ns after laser excitation, for an absorbed pump fluence of
Q = 17 mJ cm−2. Also shown is the strain distribution (solid line). The strain front is moving from
right to left. X-ray beams exit crystal on right.

α branch to the strongly absorbed β branch at a disturbance in the lattice. Using the diffraction
simulation it is possible to look at how the strain transfers this energy between the solutions.
Figure 9 shows that energy is transferred from the α branch to the β branch when the strain
gradient is negative, and is then quickly transferred back at the positive strain discontinuity.
This energy transfer effect is reversed for the opposite asymmetry (2̄02).

It might initially be expected that analysis of these experimental results would need a
2D diffraction model. This is because, as shown in figure 10, for this experiment only a
small fraction of the exit surface is influenced by the entire incoming x-ray beam—the area of
influence being the inverted Borrmann triangle from the exit point [15]. The 2D Takagi–Taupin
equations normally reduce to a case dependent only on the depth into the crystal for a 1D
strain, as in this case [23]. However, this also has the implicit assumption that the lateral extent
of the x-ray beam is large enough for its size to be unimportant. Two-dimensional simulations
were run, using the ‘half-step derivative’ numerical solution [24]. Sample results are shown
in figure 11. For comparison with the 1D results, the intensity distribution was summed over
the exit surface of the crystal, and then over the rocking curve. The time-resolved integrated
reflectivities obtained only differed by 0.25% (RMS) from the 1D diffraction model. The reason
for this is that close to the rocking curve peak, the D0,h beams are not ‘eigensolutions’ inside
the crystal—the Dα,β solutions are, due to the strong coupling between the beams. We would
therefore only expect differences to become apparent in the rocking curve wings, where the
coupling is less strong. In the experimental conditions, where the data obtained are the η-
integrated rocking curve, the great majority of the signal comes from the rocking curve peak,
completely swamping any small changes in the wings.

7. Conclusion

We have presented a method for the calculation of time-resolved rocking curves for x-ray
diffraction in Laue (transmission) geometry. Such diffraction studies are an important technique
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Figure 10. Two-dimensional region (drawn to scale). The incoming D0 beam has a width of
400 μm, the crystal is 280 μm thick. In the ‘2D region’ shown, the exit surface of the crystal is not
influenced by the whole incoming beam.
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Figure 11. Two-dimensional simulation results (drawn to scale). |Dh |2 within the crystal for
(a) ηr = −1, (b) ηr = 0, (c) ηr = +1.

for the study of coherent strain in crystals beyond the extinction depth. Even without the benefit
of rocking curve resolution of the diffracted x-ray beams, it is possible to obtain valuable
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information about the form of the strain profile in the crystal, and to observe the effects of
the mechanisms of the ultrafast energy transfer processes at work. As there is no method
to analytically compute the strain in a crystal from a time-resolved rocking curve, numerical
simulations are key to the understanding of experimental results obtained.
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[7] Siders C W, Cavalleri A, Sokolowski-Tinten K, Tóth Cs, Guo T, Kammler M, Horn von Hoegen M, Wilson K R,

von der Linde D and Barty C P 1999 Science 286 1340
[8] Cavalleri A et al 2000 Phys. Rev. Lett. 85 586
[9] Sokolowski-Tinten K, Blome C, Dietrich C, Tarasevitch A, Horn von Hoegen M, von der Linde D, Cavalleri A,

Squier J and Kammler M 2001 Phys. Rev. Lett. 87 225701
[10] Lindenberg A M et al 2000 Phys. Rev. Lett. 84 111
[11] Reis D A et al 2001 Phys. Rev. Lett. 86 3072
[12] DeCamp M F et al 2003 Phys. Rev. Lett. 91 165502
[13] DeCamp M F et al 2001 Nature 413 825
[14] Batterman B W and Cole H 1964 Rev. Mod. Phys. 36 681
[15] Authier A 2001 Dynamical Theory of X-Ray Diffraction (Oxford: Oxford University Press) ISBN 0-19-855960-7
[16] Zachariasen W H 1945 Theory of X-Ray Diffraction in Crystals (New York: Dover) ISBN 0-486-68363-X
[17] Speriosu V S 1981 J. Appl. Phys. 52 6094
[18] Speriosu V S and Vreeland T Jr 1984 J. Appl. Phys. 56 1591
[19] Wie C R, Tombrello T A and Vreeland T 1986 J. Appl. Phys. 59 3743 (see erratum [25])
[20] Thomsen C, Grahn H T, Maris H J and Tauc J 1986 Phys. Rev. B 34 4129
[21] Huldt L 1971 Phys. Status Solidi a 8 173
[22] Huldt L 1974 Phys. Status Solidi a 22 221
[23] Takagi S 1962 Acta Crystallogr. 15 1311
[24] Authier A, Malgrange C and Tournarie M 1968 Acta Crystallogr. A 24 126
[25] Wie C R, Tombrello T A and Vreeland T 1991 J. Appl. Phys. 70 2481

http://dx.doi.org/10.1103/PhysRevB.61.15837
http://dx.doi.org/10.1103/PhysRevLett.32.1120
http://dx.doi.org/10.1103/PhysRevLett.35.1022
http://dx.doi.org/10.1103/PhysRevB.52.10709
http://dx.doi.org/10.1038/18631
http://dx.doi.org/10.1103/PhysRevB.63.193306
http://dx.doi.org/10.1126/science.286.5443.1340
http://dx.doi.org/10.1103/PhysRevLett.85.586
http://dx.doi.org/10.1103/PhysRevLett.87.225701
http://dx.doi.org/10.1103/PhysRevLett.84.111
http://dx.doi.org/10.1103/PhysRevLett.86.3072
http://dx.doi.org/10.1103/PhysRevLett.91.165502
http://dx.doi.org/10.1038/35101560
http://dx.doi.org/10.1103/RevModPhys.36.681
http://dx.doi.org/10.1063/1.328549
http://dx.doi.org/10.1063/1.334169
http://dx.doi.org/10.1063/1.336759
http://dx.doi.org/10.1103/PhysRevB.34.4129
http://dx.doi.org/10.1107/S0365110X62003473
http://dx.doi.org/10.1107/S0567739468000161
http://dx.doi.org/10.1063/1.350380

	1. Introduction
	2. Theory
	2.1. Dynamical diffraction theory
	2.2. Incorporating strain

	3. Strain models
	4. Simulation
	5. Experiment
	6. Results and discussion
	7. Conclusion
	Acknowledgments
	References

