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Abstract. A unified theory of the coagulation of aerosols is presented based upon 
the solution of a generalised diffusion equation which describes classical diffusion 
due to Brownian and turbulent motion as well as the effect of  an overall relative 
velocity arising, for example, from gravitational settling and inertial turbulent 
motion. Certain statistical assumptions regarding the turbulent motion enable exact 
solutions of the diffusion equation to be obtained for the  four mechanisms 
mentioned above. As a result, we can assess the accuracy of the usual procedure 
of adding the coagulation kernels. It is also possible to include the effects of 
inter-particle fluid forces which result in a collision efficiency less than unity. In 
contrast to previous work on this subject, the collision efficiency affects all 
processes and not just gravitational settling. Significant deviations from the 
classically computed coagulation kernels are noted. 

1, Introduction 

The distribution in size of an  aerosol is determined by 
a  number of physical phenomena.  For  example,  the 
manner in which the  aerosol  particles diffuse to  bound- 
aries  and  settle  out  due  to  gravitational  or  electrical 
forces  governs the removal  rate.  In  addition,  the relative 
motion of individual  particles  leads  to  a  'fusion'  process 
which is termed  coagulation. Such a  mechanism  can 
arise  from  many  simultaneously acting  processes.  Thus, 
Brownian  motion,  gravitational  sedimentation,  tur- 
bulence  and  several  other  processes which can  be 
induced by applied  forces all contribute  to  the  coagu- 
lation  rate  (Friedlander  1977). In order  to  obtain  the 
net  effect of these  phenomena, it is necessary to solve 
the  integro-differential  balance  equation  for  the  particle 
volume  distribution  function n(u,  t ) .  Such  an equation 
can  be  written  (Lushnikov 1974, Friedlander  1977): 

X n(u ,  t ) n ( ~  - U ,  t )  - n ( ~ ,  t )  du  K ( u ,  U )  c 
x n(u,  t )  + S(U, t )  (1) 

where R ( u )  is the  removal  rate  per unit  time due  to 
diffusion,  gravitational  settling  and  indirectly  to 
coagulation. K(u,  U )  is the  coagulation  kernel  and S ( u ,  t )  
is an  independent  source  term.  Equation (1) assumes  a 
well mixed  background gas  but  can be modified to 
describe  a  more  detailed  spatial  dependence of the 

aerosol  distribution if necessary.  For  present  purposes, 
equation (1) is sufficient since  the  object of this  work is 
to describe  the way in which the  coagulation  kernel can 
be  calculated  in  more  detail  than  has  been  customary 
in the  past. In particular, we wish to direct attention 
to  Brownian  motion,  gravitational  sedimentation  and 
turbulent mixing. 

In general,  these  phemonena  have  been  studied 
separately  and  coagulation  kernels  obtained  for each 
mechanism.  The  resultant  coagulation  kernel is then 
assumed  to  be  the  sum of each  mechanism.  There is no 
a priori reason  for  this  assumption  and  some work  has 
been  done  to verify it.  For  example. Saffman  and Turner 
(1956) have  examined  the  simultaneous  action of tur- 
bulent  and  gravitational  coagulation  and  found  that 
a  root  mean  square  average  (Papoulis 1965) of the 
individual  kernels is more  appropriate  than  an  arith- 
metic  sum.  There is a  number  of  assumptions  inherent 
in the  work of Saffman  and  Turner;  namely,  a collision 
efficiency of unity,  thereby  restricting  the results to 
nearly  equal sized droplets,  the  assumption of a 
Gaussian  distribution of relative  velocities  for the  par- 
ticles and neglect of the  directional effect of gravi- 
tational  coagulation.  It is the  assumption of a Gaussian 
distribution,  for  example,  that  leads  to  the  root  mean 
square  average.  Improvements  to this  work which 
account  for  the collision efficiency of non-equal  droplets 
(Pertmer  and  Loyalka 1980) and  the limitation of the 
Gaussian  assumption  need  to  be  introduced. An anal- 
ogous  problem exists  when  Brownian  and  gravitational 
coagulation  occur  simultaneously.  Simple  calculations 
show  that  Brownian  coagulation is the  dominant 
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mechanism  for  particles less than  about 1 micrometre in 
diameter  and,  thereafter,  because of increasing  particle 
mass,  gravitational  coagulation  takes  over. The 
accepted  approximation is to simply add  the  Brownian 
and  gravitational  kernels in the  hope  that when one is 
small the  other is large.  Recent  calculations (Simons et 
a1 1986),  in  which  the  combined  problem  has  been 
solved  exactly,  show  conclusively  that significant errors 
can  arise in the region  where  the  ratio of inertial  to 
diffusion  effects is around  6.  There is, therefore,  a 
need  for  a  consistent  approach  to  the calculation of 
coagulation  kernels which are  at  the  core of any assess- 
ment of aerosol  removal. 

In the  present  work we shall describe, by means 
of a  generalised  diffusion  equation,  a self-consistent 
method  for calculating  coagulation  kernels  from all 
mechanisms  cited  above.  In  some  cases, analytical 
results  can  be  obtained  and relatively  simple  expressions 
deduced  for K ( u ,  U ) .  In  more complex  situations, 
numerical  solutions will be  required.  At each stage, 
however, it is possible to  estimate  the  error involved 
and  understand  the  nature of the  approximation  made. 
The resulting  coagulation  kernels  are  then  available  for 
insertion  into  environmental  and  atmospheric  problems 
and this is of considerable significance in the  improve- 
ment of nuclear  safety  computer  codes which are 
designed to predict  the  dispersal  and  deposition of radio- 
active  aerosols  (Silberberg  1979). 

A final point  to  note is that little or  no  development 
work is being  carried  out in the  area of coagulation 
kernels. Such  work as is known to  the  author  concerns 
the  calculation of collision efficiencies for  gravitational 
coagulation in isolation.  That  work is directed  towards 
calculating  particle trajectories arising  from the  per- 
turbing fluid forces  between  interacting  spheres  (Pru- 
ppacher  and  Klett 1978,  Hocking  1959). The collision 
efficiencies so obtained  are  employed as correction  fac- 
tors  to  the  gravitational  coagulation  kernel, which in 
turn is included  either in the  additive  or  the  root  mean 
square  assumptions.  Our  proposals use these cal- 
culations  but in the  more  consistent  framework of a 
generalised  diffusion  equation. 

2. Methodology 

2.1. The diffusion equation 

Particle sizes of interest in aerosol  problems  range  from 
0.001 to  about 100 micrometres.  Thus  they  span  a region 
in which the microscopic  details of the fluid medium  are 
significant, i.e. size of order of a  mean  free  path  up  to 
the region where  continuum mechanics  can be  employed 
with great  accuracy.  In  principle,  therefore, any defini- 
tive  study of such  colliding  particles  should use the  linear 
Boltzmann  transport  equation  for  the fluid effects with 
the  presence of the  particle  introduced by a  suitable 
boundary  condition.  For  the calculation of drag  forces 
on single particles  (generally  spherical)  this  technique 
has  been  developed  to  a high degree of precision by 

Cercignani  and  others  (Cercignani 1975) with the com- 
plete  range of Knudsen  numbers  (mean  free  path/dia- 
meter)  being  covered.  Extension  to  other  shapes is not 
simple  but  could in principle be  done numerically.  When 
two  bodies are  considered,  however,  the  problem of 
solving the  Boltzmann  equation  becomes exceedingly 
laborious  and  as  far  as  the  author is aware  has  never 
been  attacked;  although it is not  beyond  the  realm of 
possibility that  a  Monte  Carlo  or  finite-element  tech- 
nique  could  be  used. 

Even if the Boltzmann  equation  were  employed, 
however, it is not  clear  that  the necessary physical 
situation  could  be  modelled  adequately.  For  example, it 
would be  necessary  to  consider two  coupled  Boltzmann 
equations:  one  for  the fluid and  one  for  the  particles. 
Small  particles,  less  than  a  mean  free  path in size,  could 
be  regarded  as  a special  species of gas molecule  and 
treated  accordingly.  But  larger  particles would sig- 
nificantly modify the gas distribution  function in their 
neighbourhood  and  this would  introduce many 
difficulties. It would be  necessary,  for  example,  to 
include  the  bodies  as  boundary  conditions:  a difficult 
problem.  Moreover it would still be necessary  to  incor- 
porate  Brownian diffusion and  gravitational  forces and, 
in addition,  any  turbulent  forces  prevailing. Such  dif- 
ficulties suggest that it is more  profitable  to  abandon  a 
detailed  description of particle  motion  and gas atom 
motion which rely upon microscopic velocity distri- 
butions  and  look  at  a  macroscopic  description in which 
the microscopic properties  appear in the  form of dif- 
fusion  coefficients,  viscosity, etc. 

This  lower  level of description is best  carried  out in 
terms of a  generalised  diffusion  equation as described by 
Chandrasekhar  (1943).  We  seek,  therefore,  an  equation 
which will describe the particles simply by their  con- 
centration in the  fluid,  e.g.  C(r, t ) ,  where  C(r, t )  d r  is 
the  number of aerosol  particles in the volume element 
d r  at r at  time t .  Such  a  diffusion equation may be 
written 

where J is the  current of particles of one  type  onto  a 
test  particle. The expression  for  the  current can  be 
written 

J(r, t )  = - D ( r ,  t)VC(r, t )  + V(r, t)C(r, t )  (3) 

where D is the  mutual diffusion coefficient describing 
the effect of essentially  stochastic  forces  acting on  the 
particles  and V is a  drift velocity arising,  for  example, 
from  gravitational  or fluid effects. 

Since we shall be  concerned with spherical  particles 
(mainly  because  a  consistent  formalism  for  non-spheri- 
cal particles  does  not  exist), we shall  consider  the dif- 
fusion of particles of radius 'b' onto  a test  particle 
of radius '0'. We will also  assume  that  a  steady-state 
situatioq  prevails  and  hence  the  diffusion  equation 
becomes 

V . D(r)VC(r) - V (V(r)C(r)) = 0. ( 3 )  
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In  spherical  polar  coordinates, with the origin at  the 
centre of the  ‘a’  particle, we have 

l a  dC D(r) d 
d r l   r 2 s i n 8 d 8  

r2D(r) - + ___- 

D(r) d2C 
X s in8-  +-- ( ::l r 2   s i n 2 8 a q 2  

l a  l a  
( r 2  V,C) - - - 

r2  dr r sin 8 d 8  
”_ 

1 8  
x (sin 8 V,C) - -- 

rsin 8 dg j  
(V&) = 0 

where  D(r) is assumed  to  depend  only  on  the radial 
coordinate in view of the microscopic  isotropy of the 
fluid. V,, V,, Vp: and C are  general  functions of the 
independent  variables  (r, 8, q). 

If the velocity V satisfies  V V = 0  as in the case of 
an  incompressible  fluid,  the  equation simplifies con- 
siderably,  but  this is not  necessarily the  case  for solid 
particles. 

The  boundary  conditions  that  have  to  be  imposed 
on  the diffusion equation  are  as follows: 

lim C(r, 8, q )  = C, (6) 
r+ x 

and 

C(a + b, 8 ,  q) = 0. (7) 

The  latter  condition implies that  the  spheres  are  impen- 
etrable  and  that  they  coalesce  on  touching.  The  quantity 
of interest  as  far  as  aerosol  coagulation is concerned is 
the  number of particles  captured  per unit  time  namely: 

N =  - J - d S  i 

i 

(8) 

where  the  integral is to  be  taken  over  the  sphere  r = 
a + b.  Since  on  this  sphere C = 0, we find 

N =  D(a + b) V C . d S  (9) 

which in polar  coordinates  become 

N = (a + b)’D(a + b)  d q  

x 1: d8sin  
a r  r = a + b  

thus  the  total  number of coagulations of ‘a’ and ‘b’-type 
particles is nN where n is the  number density of ‘a’-type 
particles  and  the  coagulation  kernel is  by definition 

(a + b)2 
c, K(a,  b) = ___ D(a + b)  1,1’ dq, 

x 1; d8s in  
d r  r = a + b  

The  problem  reduces  therefore  to  the  solution of the 
generalised  diffusion  equation ( 5 ) .  In  formulating  the 

problem in this  way, we have  exchanged  one  set of 
problems  for  another in that it is now necessary to 
calculate D(r)  and  V(r). 

2.2. The diffusion coefficient 

In classical diffusion  theory,  the diffusion  coefficient 
refers  to  an  isolated  particle in an  infinite  fluid.  When 
diffusion of one  particle  to  another is involved,  the 
assumption is made, on the basis of a  Gaussian  distri- 
bution  in  position,  that the  mutual diffusion  coefficient 
is the  sum of the two  individual  values.  This  assumption 
neglects  the  interaction of the two  particles with each 
other via the fluid and  hence  the  distortion in the fluid 
velocity. When  these effects are included,  the  mutual 
diffusion  coefficient  becomes  a  function of particle 
separation.  For  particles which are well separated,  the 
classical result is valid but  when  they  approach closely 
the effective  diffusion  coefficient  decreases  markedly 
(Spielman  1970,  Batchelor  1976). Such effects  have 
recently  been  included in the calculation of coagulation 
in the  case of pure  Brownian  interaction  (Shahub  and 
Williams  1988). 

There is a  further  dependence of D on position 
arising  from turbulent  diffusion.  From  the  eddy viscosity 
concept  and  the  theory of isotropic  turbulence, it is 
known  that,  to  a  good  approximation,  a  turbulent dif- 
fusion  coefficient  can be  employed which,  for  eddies 
that  are  smaller  than  the  turbulent microscale, is pro- 
portional  to  the  square of the  distance  between  the 
particle  centres. Such  concepts  have  been  employed 
with some success in the calculation of turbulent  depo- 
sition (Crump  and Seinfeld  1981,  Levich 1962). Thus 
the  functional  dependence of D on position is available. 

2.3. The drift velocity 

An overall  relative  drift  velocity  between  particles  can 
arise  from  a  variety of causes.  For  example,  unequal 
particles  fall  at  different  speeds  under  the  action of 
gravity.  They  also  move with  different  relative  velocities 
under  the  action of turbulence when  particles are  not 
fully entrained in the  eddies:  thus  the particle’s random 
inertia  leads  to  a  form of turbulent  coagulation which 
depends  on mass  difference.  Such  an  effect is  in addition 
to  the  turbulent diffusion  effect mentioned  above. 
Expressions  for  the  turbulent velocity  arising  from  this 
phenomenon  can be obtained in terms of the intensity 
of turbulence  (Batchelor 1951). Another mechanism 
leading  to  a  drift velocity  arises from  an electric field 
acting on a  charged  aerosol  particle.  This  effect  intro- 
duces  a  force  equal  to qE where q is the  charge  on  the 
particle  and E is the  applied  electric field.  Induced 
charge  may  also  be  important in this case.  However, 
even with no applied  field,  a  charged  particle  generates 
an  external field and this will influence other particles 
in its  neighbourhood.  The  radial velocity so generated 
will be  related to the  frictional  drag  on  the particles  and 
their  charges. 

A final point  that  should  be  noted in the calculation 
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of drift  velocity is the  effect of the collision efficiency. 
Due  to  the  mutual  interaction of the particles  (in the 
same way as  occurs  in  mutual diffusion) there is a 
distortion of the velocity field which affects the  tra- 
jectories of the  particles  relative  to  one  another.  Thus 
two  particles  which  would  collide on purely  geometric 
arguments, will often  not collide  because fluid forces 
cause  them  to  be  deflected.  The calculation of such 
effects  has been  studied  for  many  years  (Pertmer  and 
Loyalka  1980,  Hocking 1959) and it is relatively  straight- 
forward  to  incorporate  these modifications to  the flow 
into  the  formalism  described  above. 

2.4. Kinetic theory effects 

When  the size of particles  becomes  comparable  to  a 
mean  free  path of the gas atoms in the  surrounding 
fluid,  many of the  continuum  theory  methods  fail.  To 
develop  a  detailed microscopic approach  based on the 
Boltzmann  equation is not  practicable  nor is it necessary 
for  most  practical  aerosol  problems. A variety of 
methods exist  for incorporating such  kinetic  theory 
effects into  continuum  theory  formalisms.  For  example, 
the  Stokes-Cunningham  correction is a  semi-empirical 
factor by which diffusion  coefficients  can be multiplied 
and which extends  their validity well into  the  Knudsen 
regime.  Another  method, which is particularly  suited 
to  the  proposed  approach, is to use the Fuch's jump 
technique  (Hidy  and  Brock 1970).  In  this approach, it 
is assumed  that  a fictitious  spherical  shell  exists around 
the  particle of interest.  The thickness of the  shell, A ,  is 
about  a  mean  free  path  and within it incident  particles 
are  assumed  to  move in  a free  streaming  manner  unhin- 
dered by any  frictional  medium.  The  conventional dif- 
fusion  equation is solved up  to  the  point  r = a + b + A 
and is linked to  the condition  inside  the shell  and up  to 
the  actual  sphere  surface by a  current  balance.  Good 
results  have  been  obtained with  this  technique  for  simple 
problems  and  there  are  strong  reasons  for  expecting it 
to  be valid for  the  more  general  problem discussed 
above.  Reasonably  accurate  methods  have  been  devel- 
oped  to solve the Brownian  coagulation  problem  over 
the  complete  range of Knudsen  numbers.  These use 
the  Fokker-Planck diffusion equation  and differ in the 
method  described  here only in that  the velocity of the 
particle  explicitly appears  as  an  independent  variable. 
By means of such  techniques it is possible to  obtain  a 
Brownian  kernel  that  covers  the  hydrodynamic  and 
Knudsen  regimes in a single formula.  Nevertheless, 
even  here, it is necessary to  make  some additivity 
assumptions  (Sitarski  and  Seinfeld  1977). 

3. Turbulent shear coagulation 

An important  mechanism in  aerosol  coagulation  occurs 
when the  particles  are  entrained in turbulent  eddies  and 
are  thrown  around in the fluid in a  random  manner 
analogous  to  Brownian  motion  but according to  the 
nature of the  the  turbulence.  It is known  (Levich  1962), 

for particles  which are small compared with the  tur- 
bulent  microscale A. -- (v3/&)'i4, where v is the 
kinematic viscosity and E the  turbulent  energy dis- 
sipation  rate  per  unit mass of gas, that  the  eddy diffusion 
coefficient  can be  deduced on the basis of isotropic 
turbulence  and  written  as 

D T  = key2 (12) 

where k, = po(~/v)1 '2  with Po = 0.15. The symbol  r in 
equation (12) is the  distance  between  the particle 
centres.  For  air  at STP, v = 1.85 X m* S - *  and we 
can obtain  an  estimate of E as  follows. From  dimensional 
arguments 

U 3  

AT 
E = -  

where U is the  root  mean  square  turbulent velocity 
and AT is a  length  scale  associated with the scale of 
production of energy  containing  eddies. If we assume  a 
closed container of height 10 m  and U = 0.5 m s-l, then 
E = 0.0125 m* sC3. Thus  the microscale of turbulence 
A,, -- 840 pm. Since the  particles  under  consideration 
are no greater  than  around  50pm  and generally much 
smaller, we are clearly in the  range of validity of 
equation  (12). 

Now if the  particles  are sufficiently small, they will 
also  be  undergoing classical Brownian  diffusion and so 
the  net diffusion  coefficient will be  the  sum of the two 
effects,  namely 

D(r) = Dg + DT(r). (13) 

We note  that whilst the  Brownian diffusion  coefficient, 
Dg,  depends on the sizes of the two  particles,  namely 

Dg = D, + Db (14) 

the  turbulent diffusion  coefficient is independent of a 
and b.  

Ignoring  any  other  coagulation  mechanisms we can 
now obtain  the  coagulation  kernel using the formalism 
of 8 2.1.  Because  D(r)  depends  only  on  the  radial  coor- 
dinate,  the diffusion equation  (equation (5)) reduces  to 

I d  d C  
y- ( r*D(r )   r -   d r  -1 dr  = 0. 

Using the  boundary  conditions, this is readily  integrated 
to give 

from  which 

In  principle,  the  upper limit on  the  integral  should be 
Ao, and  a further diffusion equation solved in the region 
r > A, using  a  different  form of DT(t).  However, it is 
readily  shown  that  such  corrections  are of order 
( a  + b)3/Ai and  hence negligible. 
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Inserting  equation (13) into  equation (17) we find 

K ( a ,  b, = 4 n D B  (a + b)g(X) (18) 

where 

x = (a + b)(k,/DB)l/* (19) 

and 

g(x) = 1/(1 - 4 2  + x tan" x) 
We readily  note  that,  for small x, i.e.  when  the 
Brownian  motion  dominates  the  turbulent  motion,  the 
correction  factor g + 1. Thus we regain the classical 
Brownian  coagulation  kernel.  On  the  other  hand,  for 
X+= 

and  hence 

K(a,  b )  = 12nk, 

= 5.65(a + b)  

(a + b)3  

3 (;l 
This is to  be  compared with  a  result obtained by Saffman 
and  Turner (1956) namely 

fjn2 112 

K(a,  b )  = (-) (a  + b)3 
15 

112 

= 2.29(a + b)3 (f) . 

Two  comments  can  be  made  about  this  result. Firstly, 
it  differs  from  equation (1) of Saffman  and  Turner  who 
do  not  have n2 in the radical  but n. Following  their 
arguments it would  seem  that  there is a  numerical slip 
present in their  work.  The  second  point is that  our result 
differs  from  that of Saffman  and  Turner by a  factor of 
2.47. In view of the qualitative  nature of the  parameter 
Po in our  work  and  the  approximate statistical arguments 
in the  work of Saffman  and  Turner,  the  agreement may 
be  regarded  as  good.  Certainly  the  functional  depen- 
dence is reproduced  and so we see  that two rather 
different  approaches  lead  to similar  results.  Moreover, 
by means of the diffusion equation, it has  been possible 
to  obtain  a single  expression  for  the  coagulation  kernel 
which spans  Brownian  and  turbulent diffusion in terms 
of the  parameter x = (a + b)(k,/DB)"2. The physical 
meaning of x can  be  inferred  from 

where D; is the  turbulent diffusion  coefficient of touch- 
ing spheres.  Thus x2 is the  ratio of the local turbulent 
diffusion  coefficient to  the  Brownian diffusion 
coefficient. To  obtain  an  estimate of the  error involved 
in the  addition  approximation  normally used in solving 
equation ( l ) ,  we use the  ratio 

where KT(a,  b )  is the  value  for  pure  turbulent diffusion 
given by equation (20). In  terms of the  parameter x, we 
have 

Table 1 shows the  results  for  a  range of x* values. 
Clearly, the addition  approximation  underestimates  the 
combined effect of Brownian  and  turbulent  coagulation 
with the maximum  error of 29% occurring  at x' = 0.2. 

Table 1. The error in the additivity assumption of Brownian 
and turbulent diffusion coagulation kernels. 

X' YBT X* YBT X' YBT X' YBT 

0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 

1.048 0.01 
1,067 0.02 
1.081 0.03 
1.092 0.04 
1.102 0.05 
1.111 0.06 
1.119 0.07 
1.126 0.08 
1.132 0.09 

1.138 
1.183 
1.21  1 
1.231 
1.246 
1.257 
1.266 
1.273 
1  ,278 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.282 
1.287 
1.271 
1.251 
1.233 
1.21 6 
1.201 
1.187 
1.175 

4. inclusion of the relative velocity 

1 
2 
3 
4 
5 
6 
7 
8 
9 - 

1.165 
1.102 
1.074 
1.058 
1.048 
1.040 
1.035 
1.031 
1.028 

Thus  far, we have  considered  processes which involve 
pure  diffusion.  However,  two  important mechanisms 
exist in aerosol  behaviour  that involve  a  macroscopic 
relative  velocity between  the colliding particles.  Thus 
gravitational  forces  lead  to  a  relative  velocity of 

v = v, - v, (25) 

which for gravity  acting in the  downward z-axis 
direction,  denoted by the unit  vector k ,  can  be  written 

where we have  assumed  Stokes law for  the  frictional 
drag.  In  the  equation, pp is the  particle density and g 
the  acceleration  due  to  gravity.  It is assumed  that  the 
gas density is very  much less than  the  particle  density. 
The second  mechanism  leading  to  a  relative velocity 
arises from  turbulence  and is due  to  the  inertia of 
particles.  This  mechanism was first discussed quanti- 
tatively by East  and  Marshall (1954) and  later by 
Saffman  and  Turner (1956); it recognises the fact  that 
particles of different sizes will have  different  relative 
velocities  in the  turbulent  eddies  and  hence collisions 
will be  possible.  Saffman  and  Turner (1956) show that 
the local  particle  velocity qn can  be  related  to  the local 
acceleration of the gas du/dt,  in the following way 

d u  
Q0 = t n  
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where whence  equation (36)  becomes 

with pp the  particle  density  and 'a' its  radius.  Thus 
the  mean  square of the relative  velocity  between  two 
particles 'a' and 'b' will be 

Using  statistical  arguments  from  the  theory of homo- 
geneous  turbulence,  Batchelor (1951) has  shown that 

Thus  the  relative velocity which promotes collisions  can 
be  taken  as 

& 3 1'4 

V, = 1 . 9 7 1 ~ ~  - ~ b (  - p .  (31) 

This is isotropically  distributed and so will have  no 
preferred  direction.  Saffman  and  Turner also  dealt with 
gravitational  effects in a  similar  statistical  way.  They 
regarded  the  acceleration  due  to gravity  as  an  effective 
acceleration  in the gas so that 
" 

&3/?  

+ g 2  = 3.9 + g'. (32) 

This  approximation  neglects  the  uni-directional effect 
of the gravitational  force  but  ensures  that,  on  average, 
the  same  number of encounters  between  particles  arise. 
It is nevertheless  an  unfounded  approximation  and we 
shall examine it in more  detail  below.  For  the  moment, 
we accept  this  approximation  for  gravity  and  write  the 
net  relative  velocity, V, due  to  turbulent  inertial  motion 
and gravity  as 

E3:2  1 ;2 

V = vT + V, = lrc - t b l  3.9 12 +g')  . (33) 

Finally,  before  using  this  result in the diffusion equation, 
we note  that  no  account  has  been  taken of the collision 
efficiency as  discussed  in B 2.3. Such corrections, which 
we discuss  below will lead  to  a  relative velocity which 
depends on the  separation  distance of the  particles.  In 
order  to  proceed, it is necessary to  return  to  equation 
(4), which we rewrite  as 

i w  

v . D(r)VC(r) - v - VC - CV * v = 0. (34) 

Now the  relative velocity V is independent of position 
and is assumed  to  be  randomly  distributed in direction, 
hence 

v . v = o .  (35)  

v . D(r)DC(r)  - v * VC(r) = 0. (36) 

Thus  the  equation  for  the  concentration  becomes 

Since D(r) is a  function of inter-particle  distance  r.  only, 
we can take  coordinates such that 

ac v . v c =  -v- 
ar  

The  change in sign of V occurs  because, on  average, 
the  particle is moving towards  the  origin.  There is a 
further modification required  here which arises  from 
the  random  nature of V. Saffman  and  Turner's  assump- 
tion of randomness  means  that we can  regard  the  prob- 
lem  as  being  analogous  to  the  kinetic  theory of gases 
where the  number of particles  crossing  unit  area  per 
unit  time in an isotropic  distribution is CV/4, where V 
is the  average velocity. The  contribution  to  the  current 
from  drift,  therefore,  as  defined by equation  (3)  should 
be CV/4. Equation (37)  differs in other  respects  from 
what  might be  expected.  For  example, in the case of 
electrical  attraction  between  two particles  where the 
force  acts  along  the line of centres,  the relative velocity 
V = e,V,(r) and  the  equation  for  the  concentration  is, 
from  equation ( 5 ) ,  written  as 

The  character of the solution of this  equation differs 
from  that of equation (37)  because  V  V # 0. 

If gravitational  forces  are  treated  properly,  instead 
of in the  approximate  style of Saffman and  Turner, it 
would  be necessary to write 

V . D(r)VC(r) + VGk.  VC(r) =-0 (39) 

which in  spherical  polar  coordinates (r ,  8 ,  9) leads  to 

V, sin 0 aC(r, e )  
r ae 

-~ = 0. 

For  D(r)  equal  to  a  constant, we have  solved  this 
equation in  a  previous  publication  (Simons er a f  1986) 
and will discuss our  results  below. 

Returning  to  equation  (37), we observe  that it may 
be solved  completely  and  that  the  coagulation  kernel 
may be  written 

x exp(-i j - 
U -  b 

Using D(w) = DB + k,w2 as before  for  Brownian  and 
turtulent diffusion. we find 

K ( a .  b )  = 
n ( a  + b)?V 

G(X3 P )  
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where 

G(x ,  p)  = 1 - 2  exp  -tan x K - i 
(43) 

with p = (a + b)V/DB.  Thus p is a  measure of the 
importance of inertial  effects  to  Brownian diffusion 
effects  and x* is a  measure of the  importance of tur- 
bulent diffusion  effects to  Brownian diffusion  effects. 

Equation  (42)  combines in one  expression  the effects 
of Brownian  diffusion,  turbulent  diffusion,  turbulent 
inertial  and  gravitational  forces. The conventional 
method  for  dealing with these  processes is to use a  sum 
of the individual  effects  although  Saffmann  and  Turner 
propose  a  root  mean  square  sum. 

For p = m ,  i.e.  no  Brownian  diffusion,  equation (42) 
reduces  to 

nV3 1 
32k, (1 - E + 1E2 - e-g) K T G ( ~ ,  b )  = - (44) 

where 

5 = V/4(a + b)k ,  = p/4x*. 

For x = 0, i.e.  no  turbulent  diffusion,  equation (42) 
reduces  to 

where E 2 ( x )  is an  exponential  integral  function.  For 
x + 0 and p + 0, equation  (42)  reduces  to  the classical 
result  for  Brownian diffusion 

KB(U, b )  = 4 n D ~ ( a  + b). (46) 

Similarly,  for p- a and x- 0, we regain the classical 
result 

KGI(a, b )  = ?G(a + b)*V. (47) 

For  gravitational  forces  only this  yields the well known 
formula 

which is the exact  result  and to  some  extent must  be 
fortuitous  due  to  the statistical methods  employed.  For 
inertial  turbulent  coagulation,  equation (47) together 
with equation (33)  leads to 

E3:4 

K I T ( U ,  b )  = 6.2(a + b)+, - t h  1 "p (49) 

which is to  be  compared with  Saffman  and  Turner's 
result which has  the  constant  5.7  rather  than  6.2. 

Finally. we can obtain  the  result  for  pure  turbulent 
diffusion from  equation (44) by allowing E-+ 0, when 
we regain  equation  (20). 

As a measure of the  deviation of the sum  kernel 

approximation  from  the  result using the  diffusion 
equation we compute 

where 

where 6 = p/4x2. 

alone, 
For  turbulent diffusion and  gravitational  settling 

t 3  

and  for  the  Brownian diffusion and  gravitational settling 
alone 

K B G ( ~ ,  b)  - e -p i? 

YBG(P) = K g ( a ,  b )  + K,(a, b )  - (1 + /3/4)E2(P/4)' 
(54) 

The  form  suggested by Saffmann  and  Turner's work 
was a  root  mean  square  average, namely 

KR,s(a, b)  = (Kf + K&)"2 (55) 

whence 

E 3  1 
Y R ~ ~ s ( E )  = 2(9 + E2)112 - E + - e-:) (56) 

which is to  be  compared with equation  (53). 

4.1. Numerical illustrations 

In  order  to gain some insight  into the accuracy of the 
above  procedure, it is useful to  evaluate yBG(/3) first and 
compare  the  results with the  exact values  (Simons et a1 
1986). Table  2  shows  the  results.  We  see  that,  overall, 
the  agreement is very good.  For < 2, equation  (54) 
overestimates  the  true  value by 5.3% at  worst;  for p > 3 
the  error  changes sign increasing to  a maximum of 
7.7% at p = 30 and  thereafter  reducing.  The simple  and 
accurate  nature of equation (54). compared with the 
slowly converging  infinite  sum which represents  the 
exact value,  makes its use highly desirable: we shall 
also later discuss a  method  for including  kinetic  theory 
corrections  when  the  Knudsen  number is large. 

To  compare  the  combined effects of turbulent  dif- 
fusion,  turbulent  inertial  and  gravitational  effects, we 
show table 3 which illustrates  equations (53) and (56) 
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Table 2. A comparison of the Brownian 
and gravitational kernel obtained by the 
approximate method of equation (45) 
with the exact results of Simons et a/ 
(1986). 

P Yexact Yapprox A 'Xot 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 
1.5 
2 
3 
4 
5 
6 
7 
8 
9 
10 
20 
50 
100 

1.0236 
1.0447 
1.0637 
1.0808 
1.0963 
1.1110 
1 . l  230 
1.1347 
1 .l 453 
1 .l 551 
1 .l 933 
1.21  89 
1.2487 
1.2628 
1.2687 
1.2702 
1.2691 
1.2666 
1.2631 
1.2591 
1.21  82 
1 .l 507 
1 .l 072 

1.0609 
1.0943 
1.1190 
1 .l 384 
1 .l 543 
1 .l 675 
1 .l 787 
1 .l 882 
1 .l 964 
1.2034 
1.2267 
1.2379 
1.2433 
1.2387 
1.2304 
1.2209 
1.21  13 
1.201 9 
1 .l 930 
1 .l 846 
1 .l 270 
1.0649 
1.0358 

-3.6 
-4.7 
-5.2 
-5.3 
-5.3 
-5.1 
-5.0 
-4.7 
-4.5 
-4.2 
-2.9 
-1.6 
0.5 
1.9 
3.1 
3.9 
4.6 
5.1 
5.5 
5.9 
7.5 
7.5 
6.4 

Yapprox 

Yexact 

Table 3. The error in the 
additivity and root mean square 
approximations for turbulent 
diffusion and gravitational 
coagulation kernels. 

5 YTG 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
20 
50 
70 
100 

0.992 
0.985 
0.978 
0.972 
0.967 
0.962 
0.957 
0.953 
0.950 
0.946 
0.925 
0.91 8 
0.91 8 
0.920 
0.923 
0.927 
0.931 
0.935 
0.938 
0.961 
0.982 
0.987 
0.990 

YRMS 

1.025 
1.048 
1.071 
1.092 
1.113 
1 .l32 
1.150 
1 .l67 
1 .l82 
1.197 
1.283 
1 ,299 
1.285 
1.262 
1.239 
1.21 7 
1 .l99 
1 .l82 
1 .l68 
1.093 
1.039 
1.028 
1.020 

numerically.  We  note  that  the  sum  kernel  overestimates 
the  coagulation by up  to 8% at  about c = 4. On  the 
other  hand,  the  Saffman  and  Turner  root  mean  square 
approximation  underestimates  the  coagulation by up  to 
30% at = 3. 

The  complete  kernel, including all coagulation 
mechanisms, is represented by equation (52). We illus- 
trate  this  result in table 4,  using the  non-dimensional 
parameters p and 13 rather  than p and x. It is clear  that 
nowhere  in the p-g plane is the  error in the  sum  kernel 
greater  than 29% and  that  the  sum  kernel  everywhere 
underestimates  the  true  kernel. 

5. Extension of the method 

There  are  two  important  aspect of the  problem  that 
have  been  omitted in the  above discussion.  This was 
deliberate since the  purpose of this paper is to  illustrate 
the  method using  simple  examples.  Nevertheless, we 
can comment  on  the deficiencies. In this  respect, we 
have  neglected  kinetic  theory  effects  and particle-fluid 
interactions.  These  problems  have  been generally dis- 
cussed  in 0 0 2.3 and 2.4. As far  as  the modifications to 
equation (5) are  concerned, we can  include  to  a  good 
first approximation  the effect of kinetic  theory by mod- 
ifying the  boundary  conditions given by equation (7). 
This is written  instead as 

C(r)  = An VC(r)  (57) 

where A. is a  'jump'  distance which depends weakly on 
the  radii of the two  particles  but is generally of the  order 
of a  mean  free  path.  An  expression  for A can  be  obtained 
via the  Fuch's  technique discussed above.  It is not 
difficult to modify the solutions  obtained  above  to  obey 
condition (57). In  addition  to this  modified  boundary 
condition, it is also  necessary to recognise that  the 
mobility, B ,  of the  particles,  i.e.  the velocity per unit 
force, is a  function of the  Knudsen  number. Since both 
the diffusion  coefficient and  the viscous drag  force 
depend  on  the  mobility, namely 

D = KTB ( 5 8 )  

F,,,, = V / B  (59) 

it is necessary to  obtain B from  a  separate  calculation. 
Cercignani et a1 (1968) have  performed such a  cal- 
culation  for  a  sphere  and  obtained  the  drag  force  over 
the  complete  range of Knudsen  numbers.  Indeed,  they 
also show that  the  original Milliken result,  i.e. 

is in excellent  agreement with the  exact  theory.  Here 1" 
is the  mean  free  path.  Thus  there  seems  no  insuperable 
difficulty in  dealing  adequately with the  coagulation of 
very fine particles. 

A  more difficult problem  concerns  the collision 
efficiency, for  this  requires  knowledge of the  inter- 
particle fluid forces which can  also  influence the mobility 
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Table 4. The error y ( E ,  p) in the additivity approximation for Brownian diffusion, turbulent diffusion, 
turbulent inertial and gravitational coagulation kernels, 

E 0.1 0.2 0.5 1 2 5 10 20 
P 

0.001 1.075 1.054 1.035 1.025 1.018 1.012 1.009 1.006 
0.002 1.103 1.075 1 ,049 1.035 1.025 1.01 7 1.01 2 1.009 
0.005 1.152 1.114 1.076 1 ,055 1.040 1.027 1.020 1.016 
0.01 1.199 
0.02 1.246 
0.05 1.286 
0.1 1.276 
0.2 1 ,226 
0.5 1.135 
1 1.078 
2  1.039 
3 

1 
1 
1 
1 
1 
1 
1 
1.070 1.129 1.177 1.21 3 1 

1 ,025  1.045 1.090 1 .l33  1.173 1 
1 
1 
1 

.l  53 1.104 1.077 1.057 1.039 

. l  99 1.141 1 .l06 1.080 1.055 
,259 1.201 1.157 1.121 1 .OB7 
,284 1.246 1.203 1.162 1.121 
,271 1.275 1.246 1.208 1.162 
,197 1.259 1.270 1.254 1.21 9 
.l 27 1.202 1.242 1.255 1.244 

4 1.01 7 1.032 1.066 1.102 1.141 
5 1.012 1.023 1.049 1 .OB0 1.116 
6 1.009 1.01 7 1.038 1.063 1.096 
7  1.007 1.01 3 1.029 1.050 1.080  1 
8 1 ,005 1.01 0 1.022 1.040 1.066 1 

,235 
,210 
.l  84 
. l  62 
.l 42 
. l  26 
.l 11 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

,029 1.023 
,043 1.034 
,069 1.058 
. l  00 1.084 
,137 1.120 
.l  95 1.178 
,231 1.21 9 
,239 1.239 
,225 1.233 
,206 1.221 
.l  88 1.207 
. l  72 1.193 
.l 57 1.180 
. l  43 1.168 

9  1.003 1.007 1.01 7 1.031 1.055 1.098 1.132 1.157 
10 1 ,002 1.005 1.012 1.024 1.045 1.087 1.121 1.147 
20 1.001 1.003 1.007 1.018 1.030 1.023 1.055 1.084 

B.  The effect of such  forces  leads  to  the  Brownian 
diffusion  coefficient and  the  relative velocity in equation 
(4) becoming  complicated  functions of position.  The 
calculation of D ( r )  for  Brownian  coagulation has been 
carried  out by Spielman (1970) and by Shahub  and 
Williams (1988)  and, given the specific details of the 
inter-particle  forces  due  to London-van der  Waals  inter- 
action,  reliable values for  this  term  are  available.  On 
the  other  hand,  the relative  velocity under  gravitational 
forces  involves  solutions of the  equations of motion  for 
two  particles  coupled by the parallel  and  perpendicular 
forces  between  two  spheres.  This  can  be  done,  but it is 
a  very  complex  calculation  which it is not  appropriate 
to discuss here. 

However, it is possible to use  a  simple  expression  for 
the relative  velocity of two  particles given by Batchelor 
(1976) .  There it is shown  that  the  radial velocities U,, 
and U,, of spheres of radii a and b ,  whose  centres  are 
a  distance r apart,  are given by 

and 

where p = b / a  and  the A, , (p ,  r )  are  known  from  pre- 
vious  work on  spheres moving  along their line of centres 
(Stimson  and  Jeffrey 1926, Cooley  and  O'Neill 1969). 
Using  Saffman  and  Turner's  approach we set F,, = 
m g  and Fhr = mbg for  gravitational  effects  and to the 

appropriate  values  for  turbulent  inertial collisions. Thus 
we can  write  for  the  relative velocity 

Of course this  expression  ignores  the  inertial  effect 
arising  from  acceleration terms  and is limited in that 
respect.  The effective  diffusion coefficient has also been 
obtained by Batchelor  and can  be  written 

Now whilst detailed  expressions  are  available  for  the A, 
they  are  extremely  complicated  and it  is useful for 
illustrative purposes  to  use  the  simpler, asymptotic 
form, namely 

15p3 ( a  + b)" 
A,, = 1 - 

4(1  + p)' r' (65)  

3 a +  b (1 + p 2 )  ( a + h ) 3  
4 r 4 ( 1   + p ) ?  r3 . (66 )  

Ab, = -- - 

Abb and Aab are  obtained  from ( 6 5 )  and (66)  by inter- 
changing a and b. From  these  expressions we find 

where 
3x + x 3   ( 6 8 )  
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and V ,  is given by 

v, =-la 2 - b*)  
977 

but we can  also  replace it by the V of equation (33) to 
include  turbulent  inertia. Similarly 

where 

As  an  estimate of the accuracy of these  expressions, we 
show  in table 5 the values of g ( l / x )  versus x and also 
versus h ,  the  gap  distance  between  the  sphere  surfaces 
divided by a, for  the  case a = b. It is clear  that  the 
approximation is very  good for h > 0.25. Using equation 
(41) and  the  values of diffusion  coefficient and  relative 
velocity given by equations (67) and (68), we find 
(assuming V V = 0) that  the  coagulation  kernel K(a ,  b )  
takes  the  form 

A collision efficiency can  be defined as the  ratio of the 
coagulation  kernel with fluid effects to  that  without. 
Thus 

Table 5. Exact and approximate values 
of g(l / x ) .  h is the gapwidth divided by 
the particle radius. 

1 l x  h Exact Approx. 

1 
1.005 
1.025 
1.05 
1.125 
1.250 
1.375 
1.5 
1.75 
2 
2.5 
3.5 
X 

0 
0.005 
0.025 
0.05 
0.1 25 
0.25 
0.375 
0.5 
0.75 
1 
1.5 
2.5 
X 

0 
0.01 87 
0.0787 
0.1 349 
0.2478 
0.3607 
0.4352 
0.4905 
0.5702 
0.6263 
0.7021 
0.7871 
1 

0.1  406 
0.1471 
0.1 720 
0.2009 
0.2748 
0.3680 
0.4371 
0.4907 
0.5698 
0.6260 
0.7020 
0.7871 
l 

For pp3 + 1, i.e. negligible  Brownian motion, this 
expression  reduces to 

which varies  from  zero  to 8 as p varies from  zero  to 
unity.  This  compares  favourably with other simple 
approximations such  as that of Pruppacher  and Klett 
(1978) who  obtain 

"2 

by less than  rigorous  means.  Note,  however,  that 
equation (74) is not strictly  correct for p + 0 because 
of the  restriction pp3 % 1 .  We shall comment on this 
again  below. 

One  important  observation  regarding  the  form of 
& ( p )  is that it depends  only  on p = b/a whereas it is 
known  from  more  accurate calculations and physical 
reasoning  that it  should also depend  on  the  absolute 
value of the  particle  size.  Our  results  do  not show  this 
effect  because we have  neglected  the  inertial  terms in 
obtaining  the  relative velocity. An improved  calculation 
of this  velocity  would remove this  defect.  Table 6 shows 
values of & ( P ,  p )  for a  range  of /3 and p .  It is clear  that 
even  for  quite  large values of /3 (i.e.  inertia  dominates 
diffusion)  the diffusive effect  increases  the collision 
efficiency above  that  for  pure  gravitational  coagulation 
for small p .  

As a  measure of the  error involved in using the  sum 
kernel  for  Brownian  and  gravitational  coagulation, we 
compute 

where Z ( p , p )  is equal  to  the  integral in equation (73).  
Table 7 shows  the  results  and  indicates  that  the  sum 

kernel,  even with the gravitational  term  corrected by a 
collision efficiency,  can be significantly in error.  For 
p S 20, there  are  errors of more  than 100% depending 
on  the  value  of p .  Moreover, we see  that,  even  for large 
values of p, the  error  becomes very  large  for  small 
values of p .  This is related  to  the  condition pp3 %- 1 
derived  earlier  and physically it means  that,  even  for 
large /3 there is significant Brownian  diffusion of the 
smaller  particles  which is not  accounted  for by the sum 
kernel  and which therefore  leads  that  approximation  to 
underestimate  the  coagulation  rate.  We also calculate 
the collision efficiency with a  constant  value of the 
relative  velocity but  a  position-dependent diffusion 
coefficient. This  removes  the V . V = 0 approximation 
and  enables us to examine  the influence of the variable 
diffusion  coefficient throughout  the whole  range of /3- 
values.  Moreover,  the case /3 = 0 corresponds  to purely 
Brownian  motion  and so is of considerable  interest. 
Table 8 shows  values of the collision efficiency for  a 
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Table 6. The collision efficiency &(P, p) for combined Brownian diffusion and gravitational settling with 
spatially variable relative velocity and diffusion coefficient. 

2 5 10  20  50  100  200  300 X 

P 

0.01 
0.02 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.820 
0.803 
0.756 
0.688 
0.586 
0.51 9 
0.476 
0.449 
0.434 
0.426 
0.423 
0.423 
0.426 

0.732 
0.71 7 
0.674 
0.61 3 
0.524 
0.467 
0.432 
0.41 2 
0.401 
0.397 
0.398 
0.401 
0.407 

0.581 
0.569 
0.535 
0.488 
0.422 
0.383 
0.361 
0.353 
0.352 
0.356 
0.363 
0.372 
0.382 

0.454 
0.446 
0.420 
0.385 
0.338 
0.31 4 
0.305 
0.307 
0.31 4 
0.325 
0.339 
0.353 
0.368 

0.337 
0.330 
0.31 1 
0.288 
0.260 
0.251 
0.254 
0.266 
0.282 
0.301 
0.322 
0.342 
0.362 

0.21 1 
0.207 
0.197 
0.1  85 
0.1  77 
0.185 
0.202 
0.226 
0.253 
0.282 
0.31 0 
0.337 
0.363 

0.144 
0.141 
0.135 
0.130 
0.133 
0.150 
0.1  76 
0.208 
0.241 
0.275 
0.307 
0.338 
0.367 

0.0972 
0.0957 
0.0926 
0.091 7 
0.103 
0.127 
0.160 
0.1 97 
0.235 
0.272 
0.307 
0.340 
0.372 

~~ ~ ~ ~~ 

0.0773 
0.0762 
0.0743 
0.0753 
0.0900 
0.1  18 
0.1  54 
0.193 
0.233 
0.271 
0.307 
0.340 
0.372 

1 .g5 X 10-4 
7.62 X 10-4 
4.43 X 10-3 

~~~ ~~ ~~ 

0.0158 
0.0509 
0.0942 
0.1 40 
0.185 
0.229 
0.269 
0.307 
0.342 
0.375 

Table 7. The ratio of exact Brownian and gravitational kernel to the sum kernel. 

P 1  2 5 10  20 50 100  200  300 
P 

0.01 
0.02 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

1.233 
1.208 
1 .l36 
1.031 
0.870 
0.763 
0.692 
0.646 
0.61 8 
0.600 
0.591 
0.586 
0.586 

1.359 
1.331 
1.249 
1 .l29 
0.949 
0.828 
0.750 
0.700 
0.668 
0.650 
0.641 
0.636 
0.636 

1.608 
1.574 
1.473 
1.325 
1.098 
0.949 
0.851 
0.794 
0.758 
0.737 
0.726 
0.721 
0.720 

1.886 
1.846 
1.722 
1.536 
1.243 
1.054 
0.937 
0.870 
0.829 
0.805 
0.795 
0.789 
0.788 

2.277 
2.223 
2.057 
1.805 
1.401 
1.154 
1.01 0 
0.934 
0.890 
0.867 
0.858 
0.853 
0.851 

3.026 
2.948 
2.684 
2.221 
1.555 
1.221 
1.056 
0.980 
0.943 
0.929 
0.921 
0.91 7 
0.91 8 

3.859 
3.726 
3.273 
2.51 1 
1 S76 
1.204 
1.054 
0.995 
0.967 
0.958 
0.952 
0.952 
0.953 

5.002 
4.790 
3.940 
2.664 
1.509 
1.156 
1.040 
0.998 
0.983 
0.977 
0.975 
0.975 
0.973 

5.864 
5.549 
4.294 
2.655 
1.437 
1.126 
1.031 
0.998 
0.989 
0.984 
0.983 
0.981 
0.983 

Table 8. The collision efficiency for constant relative velocity and spatially variable diffusion 
coefficient. 

0 1 2 5 10  20 50 100 
P 

0.01 
0.02 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.980 
0.961 
0.908 
0.831 
0.71 2 
0.630 
0.574 
0.538 
0.51 4 
0.499 
0.490 
0.486 
0.484 

0.980 
0.961 
0.907 
0.830 
0.71 4 
0.635 
0.583 
0.549 
0.527 
0.51 4 
0.506 
0.502 
0.501 

0.981 
0.962 
0.91 1 
0.838 
0.729 
0.655 
0.607 
0.576 
0.556 
0.544 
0.537 
0.534 
0.533 

0.983 
0.967 
0.923 
0.860 
0.768 
0.707 
0.668 
0.644 
0.629 
0.61 9 
0.614 
0.61 2 
0.61 1 

0.986 
0.973 
0.937 
0.886 
0.81 2 
0.766 
0.737 
0.720 
0.709 
0.703 
0.699 
0.697 
0.697 

0.990 
0.980 
0.953 
0.91 6 
0.864 
0.833 
0.81 5 
0.804 
0.797 
0.794 
0.792 
0.791 
0.790 

0.994 
0.988 
0.973 
0.953 
0.926 
0.910 
0.902 
0.897 
0.894 
0.892 
0.891 
0.891 
0.891 

0.996 
0.993 
0.984 
0.972 
0.957 
0.949 
0.945 
0.942 
0.941 
0.940 
0.940 
0.939 
0.939 
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range of p- and  p-values.  We  note  that,  for p = 0, the 
collision efficiency is close to unity  for  small  values of p 
but  as p tends  to unity the collision efficiency tends  to 
0.484. This  indicates  that  Brownian diffusion is much 
less effective in promoting  coagulation  than  the classical 
theory  would  suggest.  For p > 0. the  results show by 
comparison  with  table 6 that  a  variable diffusion  coef- 
ficient without  the  corresponding  variable  relative  vel- 
ocity (and vice versa)  can  lead to significant errors in 
the collision efficiency.  This is due  to  the fact  that the 
ranges of influence of D ( r )  and V(r)  are similar and 
hence  they  tend  to  interfere.  either  enhancing  or 
diminising their individual  effects. 

6. Summary and conclusions 

The  mechanisms which promote  aerosol  coagulation; 
namely,  Brownian  diffusion.  gravitational  sedimen- 
tation  and  turbulence, act on the particles  simul- 
taneously  and  cannot,  therefore,  be  treated 
independently.  In this paper, we have  considered  these 
mechanisms  and  devised  a formalism which enables  a 
unified coagulation  kernel  to  be  derived.  This avoids 
the ad hoc procedure  normally  employed of taking  the 
arithmetic  sum of the  coagulation  kernels  derived in 
isolation. 

The  method  employs  a diffusion equation with due 
allowance  for  mass flow by a  directed  velocity. In this 
way, we can  account  for diffusive processes due  to 
Brownian  motion  and  turbulent diffusion as well as 
effects which depend  upon  the  inertia of the  particle, 
namely  gravitational  settling  and  turbulence.  Turbulent 
inertia is regarded as a statistical  effect with the flux of 
particles  calculated in a  manner which is analogous  to 
calculation of molecular  flux.  Less  satisfactory is our 
treatment of gravitational  sedimentation,  because in 
order  to  obtain  an  analytic  solution of the  diffusion 
equation we have  had  to  treat  that in a statistical manner 
following the  work of Saffman and  Turner.  However, 
comparison of the result with an exact  solution  for  a 
special  case  indicates that  the  error is small. 

We have  further  indicated how the effects of inter- 
particle fluid forces  influence  the  results  and how they 

may be  included in the  formalism. Such  forces  make 
the diffusions  coefficient and  the relative velocity func- 
tions of inter-particle  distance  but  the  formalism is gen- 
eral  enough  to  encompass  this  fact.  Preliminary results 
with simple  models of the  inter-particle fluid forces 
indicate  that significant differences  exist  between  these 
results  and  those of the classical methods. In particular. 
there is a  strong  interaction  between Brownian  motion 
and  gravitational  settling in the  transition region and, 
as  expected,  the collision efficiency is significantly less 
than  unity. 
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