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Abstract. A class of irreversible refrigeration cycles is investigated to determine
the maximum coefficient of performance in the heat pump mode and the
refrigerator mode. For the purpose of generality and simplicity of the results,
finite-time heat transfer in the condenser and evaporator is expressed in terms of
arithmetic mean temperature differences. The generic source of internal
irreversibility is measured by a single irreversibility factor which transforms the
Clausius inequality into an equality to simplify the cycle model. These optimum
cycle performances are obtained as closed form analytical expressions in which the
irreversibility factor has been shown to be simply related to the ratio of the actual
and endoreversible cycle coefficients of performance.

1. Introduction

Unlike the finite-time maximum power cycle, which is

a problem with two degrees of freedom, the optimum
endoreversible refrigeration cycle can be optimized with
respect to only one free variable [1]. If this variable
is chosen to be the refrigerant temperature ratio for
instance, one of these temperatures or the ratio of heat
transfer conductances has then to be specified. In the few
published articles about endoreversible refrigeration cycles,
the additional constraint required to bound the optimum
solution has consisted of one of the following.

(i) Specify the heat rejection load [2] in order to
maximize the coefficient of performangg of the heat bl a, la" lgr >
pump.

(i) Specify the refrigeration load [3] in order to  Figure 1. The irreversible refrigeration cycle T—s diagram.
maximize the coefficient of performance (COP) of the
refrigerator.

(iii) Specify the refrigerant operating temperature range
as a parameter [4] in order to maximize the refrigeration
power, the refrigeration load and the heat rejection load.

realistic performance predictions of refrigerators or heat
pumps.

Internally irreversible refrigeration cycles are also

These endoreversible refrigeration cycle problems have problems with one degree of freedom since the particular
been solved using the Newtonian heat transfer model and,form of the Clausius inequality constraint has no effect
respectively, a constant temperature approach in the heabn the problem dimension. Considering an internally
exchangers, the method of the effectiveness number ofirreversible refrigeration cycle with a specified refrigerant
transfer units (NTU) and an arithmetic mean temperature operating temperature range and a generic source of entropy
difference.  Whether simple or more complex, these production, this author has shown [5] recently that the
endoreversible cycle models do not incorporate the essentialcoefficient of performance is no longer a monotonically
physics of internally irreversible cycles in order to produce increasing function of the refrigeration temperature, as
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is the case for endoreversible cycles. However, this a manner which will be discussed in further detail when the

irreversible problem formulation could only lead to main results are presented.

optimum numerical solutions whose analytical results In this problem definition, arithmetic mean temperature

would be more general and hence more useful. differences are used as an upper bound approximation
It thus appears that a more realistic and yet still to logarithmic mean temperature differences (LMTD) to

simple irreversible refrigeration model cycle is needed simplify algebra and yet obtain more realistic results than

to predict the coefficient of performance of heat pumps would be obtained with the constant temperature approach.

and refrigerators better in more general terms. Improved Assuming the same minimum temperature approdch

predictions of performance parameters and equipment sizein the condenser and evaporator, these arithmetic mean

are necessary for reliable estimates of investment andtemperature differences are expressed by the following

operating costs in preliminary cycle evaluations. The definitions:

objective of this paper is to investigate the maximum COP

of internally irreversible heat pumps and refrigerators using Ape = (The = T2)/2=x/2 (1)

an irreversibility factor in the Clausius inequality in order to

obtain analytical expressions for the optimum performance Ane = (Te = Tee) /2= y/2 @)
parameters. with

T.=To—3$ ()
2. Formulation of the problem T, =Ty+56. @)
This problem formulation is based on the cycle-s Assuming heat conductances and «,, respectively,
diagram of figure 1 in which the heat source supplies the for the condenser and the evaporator, the heat loads are
refrigeration heat load,; at a temperature varying froffy expressed by
to T, in a counterflow evaporator and the heat sink receives Qi = aext./2 5)
the heat rejection load.;, while its temperature increases Oui = )2 ©)
from T5 to T» in a counterflow condenser. o = Gedle/

This refrigeration cycle is composed of the following The sum of the heat transfer time durations in the

processes. condenser and evaporator is equal to the cycle time

. . . . durationT, according to the following constraint:
(i) From d to c: a polytropic irreversible compression

for which the net entropy production is equalste-s;; the tott,=T. @)
time duration of this process is assumed to be negligibly '
small, Using the variablez to define the relative heat transfer

(i) From ¢ to b: an isothermal heat transfer for which  duration in the condenser and-1z as the relative heat
the entropy decreases from to s, as a result of heat transfer duration in the evaporator, this constraint becomes
transfer from the condensing fluid into the heat sink, during

a timet.. z+4(1-2=1 (8)

(iii) From b to a: a polytropic irreversible expansion
for which the net entropy production is equalsto- s,; the When the Clausius inequality between the entropy input
time duration of this process is assumed to be negligibly 0 the evaporator and the entropy output from the condenser
small. is written with an irreversibility factok, as was used in the

(iv) Froma to d: an isothermal heat transfer for which ~ Optimization of internally irreversible heat engines [6, 7], it
the entropy increases from, to s, as a result of heat takes the simple form
transfer into the evaporating fluid, during a time — 0. Oui

In actual refrigeration cycles, condensation of the The +KTC‘,

refrigerant occurs after some de-superheating, whereas

evaporation is followed by some superheating prior to The irreversibility factorx is greater than unity for an
compression; these real heat transfer processes are therefoigternally irreversible cycle and equal to unity for the
neither constant temperature, nor constant pressure onesgndoreversible cycle; the larger this factor, the more
The isotherms considered here are averaged values, adireversible the refrigeration cycle. This constraint shows
would be obtained by taking the ratios of heat load to that, for the same heat rati@.;/Q.;, the temperature

— 0. 9)

entropy change for each heat transfer process. ratio T,/ T.. is smaller for the internally irreversible cycle.
When this irreversible cycle is compared with the
endoreversible cycle represented by processes—c—b— 3. The maximum COP of an irreversible heat

a', it is seen that the heat loag,;, rejected to the heat pump

sink, is proportional to the rectangular aréac—"-b"

and the same for both cycles. However, the refrigeration In this problem we seek the minimum power required
load Q.;, which is received from the heat source, is to drive a heat pump for which the heat rejection load
always less for the irreversible cycle. Consequently, is specified asP,; minimizing the required power for a
the endoreversible refrigeration cycle always overpredicts given heat rejection load of a heat pump is equivalent to
coefficients of performance of actual refrigeration cycles in maximizing its coefficient of performance.
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Using the first law and the previously defined variables,

L
NN . ) 6.5 6.5
the optimization problem is now written as o Bota A )
MinP; = P, —a.y(1—2z)/2 (10) —a— Beta B ]
. - L . 5.5
subject to the specified heat rejection load 55 1
(MCXZ/(ZP;,) =1 (11) @ 3 a
. . i w457 45 o
and the irreversibility constraint 2 K3
< o
k(e /a)[(x + 1)/ (Te = MI(y/x)A—2)/z=1. (12) P s
2357 , 1358
Solving for the product ,.xz) from equation (11) L ——e— Beta C |
and replacing into equations (10) and (12) reduces the 1
constraints to only one, the variables beingndz. Hence 25 N *—Heta D 1 o5
the problem has one degree of freedom. Tr 17
Seeking the unrestricted extremum of the Lagrangian of
the problem and eliminating the Lagrange multiplier from . y
the two necessary conditions obtained with respecetaad 1.5 1.5

iv he following n r ndition for imality:
z gives the following necessary condition for optimality ] 12 14 16 5.8 2

T./y = (1= 2k[(e/ac) + (/P Te2% /2% (13) Figure 2. The heat pump coefficient of performance 8

versus the irreversibility factor «.
Eliminating 7, /y from equations (12) and (13) yields the

heat transfer time fractions as The maxima of the coefficient of performance of the heat

L t% _ HLR (14) pump are given by l
g _ (1_ PioeeT.R® >_ 1)
1_,_l_ R (15) P 2P, [R(R+ D + 1]+ T.)
r 1+R The optimum coefficient of performance of the heat pump is
whereR is defined by the ratio seen to decrease with the specified heat rejection Rad
that is, the smaller the heat pump requirement, the more
R = [ae/ (k)] 2. (16) efficient it would be. It also decreases with the temperature

. . o ) ratio T,/ T., which is more evident; but then, smaller heat
It is seen that,. as the !rre\{ersmlhty fgctor increases, hmps are expected to be less cost effective than larger
the heat transfer time fraction increases in the condenseryqeag.
and decreases in the evaporator; this result is consistent The optimum arithmetic mean temperature differences

with the condenser heat rejection load increasing relatively i the condenser and evaporator are obtained by replacing
more than the frigeration load. It can be verified more for ¢ andy, respectively, in equations (1) and (2):

easily from the Hessian of the unconstrained form of the

objective function that this solution indeed corresponds to Ape = (The = T) /2= P,(1+ R) /. (22)
a minimum power requirement. Hence, the time fraction T. _T. P, T.R(R + 1)

. B . A — e ce — e ) 23
and the parameters to be obtained from it are optimum. me > 2P IR+ 1) + 1]+ T, (23)

Solving for x from equation (11) and then for from

equation (13) leads to The optimum ratio of these mean temperature differences

is obtained as

x = 2P,(1+ R)/e, a7 Ave _2PIRRAD 1 tal o
Ane Ro, T,
y= 2HTRATR) (18)  The correspondi densi fri [
2P [(R+1) + 1]+ T, ponding condensing refrigerant temperature is
The maxima of the refrigeration load are given by The = Tc[1+ 2P, (R + 1)]. (25)
0.i Py, T, R? The evaporating refrigerant temperature is
T — 9= 2P [R(R+1) + 1] + o T, (19) 2P, R(R + 1)
Tee =T (1 T 2P[R(R+ 1) +1] + aCTC> (26)

The minima of the power input to the heat pump are given
by The behaviour of the optimum coefficient of performapce
with respect to the irreversibility factox is shown in
figure 2 for two heat conductance ratios/a, and the
parameterP, /a. = 10 K.

(20)

Py, T, R?
R:Ph<1 hlele )

" 2P[R(R+1) + 1]+ a.T,
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4. The maximum COP of an irreversible
refrigeration cycle

In this problem, we seek the minimum powBr required

to drive the refrigerator for which the refrigeration load is
specified ag),; minimizing the required power for a given
refrigeration load of a refrigeration cycle is equivalent to

maximizing its COP. Using the first law and the previously
defined variables, the optimization problem is written as
MinP, = a.xz/2— Q, (27)
subject to the specified refrigeration load
a,y(1-2)/(20,) =1 (28)
and the irreversibility constraint
k(@e/a)(x + 1) /(Te = M](y/x)L—-2)/z =1 (12)

Solving for y from equation (27) and replacing into
equation (12) gives as
X = ZKQraeTE(l_Z)
B acaeTeZ(l - Z) - 2Qr[a(:z + Kae(l - Z)]

Replacing forx in the objective function, we seek the
unrestricted minimum of

(29)

P,

0 ( koo, T, B 1)
' aca, T, — 2Qr[ac/(1 —-2z)+ KO‘E/Z]

or equivalently, the unrestricted minimum of the variable
part of the denominator, or

¢ =20 [a./(A—2) + Ko /7] (31)

for which the first derivative with respect tpis zero with
z given by equation (14). The second derivativepodvith
respect tqz is always positive, because

d’¢

dz?
Solving for y from equation (28) then forx from
equation (29), gives

=40,a.[(z - 1)_3 + Z_BKae/ac] > 0. (32)

y=20,(1+ R)/Ra, (33)
20,T.(1+ R)
= . 34
YT R%,T, — 20,(1+ R)? (34)
The maximum heat rejection load is obtained as
th QracTc
T =T et - 20,(1+ R)? (35)

The minimum power input to the refrigerator is obtained as

1).

The maxima of the coefficient of performance of the
refrigerator are given by

COP:% :(
[)i

a.T.

hi=o <R2aen —20,1+R? (36)

o T,
RzaeTe - 2Qr(1 + R)2

1>_1 . @37
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Figure 3. The heat pump exhaust and refrigerant
evaporator temperatures versus the irreversibility factor «.

The optimum coefficient of performance of the refrigerator
is seen to decrease with the specified refrigeration 1@ad
that is, the smaller the refrigeration requirement, the less
efficient the refrigeration cycle, just like in the heat pump
case.

The optimum arithmetic mean temperature differences
in the condenser and evaporator are obtained by replacing
for x andy, respectively, in equations (1) and (2):

Thc - TC TCQr(l + R)
Am(: = = 38
2 a.T,RZ — 20, (1 + R)2 (38)
Te - T('e
Ape = 2 = Q,(1+ R)/Ra. (39)

The optimum ratio of these mean temperature differences
is obtained as

Ame R ETC
= - . (40)
Ame RzaeTe - 2Qr(1 + R)z
The evaporator refrigerant temperature is
20,(1+ R
T.,=T, 1_& ) (41)
T.Ra,
The condenser refrigerant temperature is
20,1+ R)
Tie=T.(1 . 42
' ( T ar k20,01 k2) P

The behaviours of the optimum coefficient of performance
of the refrigerator and the refrigeration temperatures with
respect to the irreversibility factor are shown in figures 4
and 5, respectively.

5. The relation between the efficiency and the
irreversibility factor

The irreversibility factor used here as a measure of
refrigeration cycle internal inefficiency does not have an
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Figure 6. The heat pump endoreversible efficiency versus

Figure 4. The refrigerator fficient of performan .
gure € refrigerator coefficient of performance the irreversibility factor «.

versus the irreversibility factor «.

This isentropic efficiency thus decreases with increasing

3801 1 380 value of the irreversibility factok.
W o ~ One can write similarly for the heat pump
3607 s o] 360 B k(l—r)
r _ - __5,.-‘0 o= L= = (44)
I L T e B k-
x 340 =0 T B 340 x _ _
S ~ T ’A EAPS al < o It is seen from these two equations that the heat pump
8 L= e T 7 <o The A] o efficiency is always greater than that of the refrigerator
E 320 = =T ThCB 320 because their ratio is equal to for the same cycle
& —®— Tec A = o1 The C ] & temperatureg,, and7,.. These temperatures are consistent
© s00 = Tec B — o The D+ 300‘3 with respect to thex values and the values of the
#8- i Tpe @ 1 = coefficients of performance obtained from the respective
- [t Tec D - . . . ..
o _ ] ﬂg defining equations. These ratios of the coefficients of
§ 280°T ' . =4 280 £ performance are given in figures 6 and 7, respectively for
< N 1 :g' the heat pump and the refrigerator.
8 260 . = 260 .
3 1 6. A numerical example
240 240 This example is intended to provide the discussion with
some figures of merit; the refrigerator is considered for
1 1.2 1.4 1.6 1.8 2 . ..
cooling atmospheric air to some temperatérK above the
Figure 5. The evaporation and condensation temperatures refrigerant temperature in the evaporator. The heat pump
versus the irreversibility factor «. is considered for home heating from ambient air with an
evaporator cold-end temperature approach of 5 K.
operational significance like the isentropic efficiency of ~ The following numerical values are also used in the

compressors. Comparing the endoreversible refrigerationSample calculations and the figures presented. Two ambient

their COP gives Two condenser-to-evaporator heat conductance ratios are
considered. These constitute the four cases labelled A, B, C
COB 1-r and D
= =1, 43 '
COR —k—r (“43)

(I) Heat pumpPh/(acTc) =5.

where r is the temperature ratid,../T,. and n, the To = 2782 K, a./a, = 1 and 1.5, respectively, for
compressor isentropic efficiency; it is assumed here thatcases A and B.

this ratio is a good measure of the isentropic efficiency of To = 2582 K, a./a, = 1 and 1.5, respectively, for
the compressor used to drive the actual refrigeration cycle.cases C and D.
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conductance on these temperatures is the same. Figures 6

1 A 11 and 7 show the variation in the endoreversible efficiency of
A ] the heat pump and refrigerator, respectively, with respect
0.9_}.... \ r. B 0.9 to the irreversibility factor.
08T 0.8 7. Conclusion
@ L 1 o A Carnot-like, internally irreversible refrigeration cycle is
g07 . \ e Etar C 0'75\1 modelled using the Clausius entropy inequality with an
< _ \ \ i ] G |rrev§r_3|bll|ty factor. It is optimized first for the maximum
506 \\\ f“" Etar:D 06 5 coefficient of performance of a heat pump, then for the
i ) \ \ ] ] maximum coefficient of performance of a refrigeration
r \\\\\ §\ cycle with respect to the heat transfer time distribution
0.57 % ~J 0.5 in the condenser and evaporator. The choice of the heat
i §\ conductance ratio appears to be critical in the heat pump
0.4 0.4 case in order to avoid low refrigerant temperatures in the
C 1 condenser and evaporator.
r ] The optimum parameters are obtained as analytical
0.3 0.3 expressions expressed in terms of the irreversibility
coefficient, the heat conductance ratio and the temperature
! 105 11 145 1.2 1.25 ratio. The effect of internal irreversibility is to decrease
Figure 7. The refrigerator endoreversible efficiency versus the condensation temperature and increase the evaporation
the irreversibility factor «. temperature simultaneously in the heat pump mode, which
leads to a lower coefficient of performance and lower
heating temperatures. In the refrigerator mode, the

(ii) RefrigeratorQ, /(«.T,) = 5.

To = 2782 K, a./a, = 1 and 1.5, respectively, for
cases A and B.

To = 2582 K, a./a, = 2 and 3, respectively, for
cases C and D.

coefficient of performance also decreases with respect to
the irreversibility factor but under the effect of increasing
condensation temperatures and decreasing evaporation
temperatures of the refrigerant. In both modes, the choice
of the heat conductance ratio and the ratio of power to
The results are presented in figures 2—7, bearing in mindcondenser heat conductance appears to be critical to the
that the range of practical significance for the irreversibility performances sought.
factor is 1-1.5, the lower limit corresponding to the
endoreversible heat pump. Figure 2 shows the heat pump
coefficient of performance dropping rapidly from 6.5 to 2.7 Acknowledgment
when the irreversibility factor increases from 1 to 1.4 for
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