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Abstract. A class of irreversible refrigeration cycles is investigated to determine
the maximum coefficient of performance in the heat pump mode and the
refrigerator mode. For the purpose of generality and simplicity of the results,
finite-time heat transfer in the condenser and evaporator is expressed in terms of
arithmetic mean temperature differences. The generic source of internal
irreversibility is measured by a single irreversibility factor which transforms the
Clausius inequality into an equality to simplify the cycle model. These optimum
cycle performances are obtained as closed form analytical expressions in which the
irreversibility factor has been shown to be simply related to the ratio of the actual
and endoreversible cycle coefficients of performance.

1. Introduction

Unlike the finite-time maximum power cycle, which is
a problem with two degrees of freedom, the optimum
endoreversible refrigeration cycle can be optimized with
respect to only one free variable [1]. If this variable
is chosen to be the refrigerant temperature ratio for
instance, one of these temperatures or the ratio of heat
transfer conductances has then to be specified. In the few
published articles about endoreversible refrigeration cycles,
the additional constraint required to bound the optimum
solution has consisted of one of the following.

(i) Specify the heat rejection load [2] in order to
maximize the coefficient of performanceβ of the heat
pump.

(ii) Specify the refrigeration load [3] in order to
maximize the coefficient of performance (COP) of the
refrigerator.

(iii) Specify the refrigerant operating temperature range
as a parameter [4] in order to maximize the refrigeration
power, the refrigeration load and the heat rejection load.

These endoreversible refrigeration cycle problems have
been solved using the Newtonian heat transfer model and,
respectively, a constant temperature approach in the heat
exchangers, the method of the effectiveness number of
transfer units (NTU) and an arithmetic mean temperature
difference. Whether simple or more complex, these
endoreversible cycle models do not incorporate the essential
physics of internally irreversible cycles in order to produce

Figure 1. The irreversible refrigeration cycle T –s diagram.

realistic performance predictions of refrigerators or heat
pumps.

Internally irreversible refrigeration cycles are also
problems with one degree of freedom since the particular
form of the Clausius inequality constraint has no effect
on the problem dimension. Considering an internally
irreversible refrigeration cycle with a specified refrigerant
operating temperature range and a generic source of entropy
production, this author has shown [5] recently that the
coefficient of performance is no longer a monotonically
increasing function of the refrigeration temperature, as
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is the case for endoreversible cycles. However, this
irreversible problem formulation could only lead to
optimum numerical solutions whose analytical results
would be more general and hence more useful.

It thus appears that a more realistic and yet still
simple irreversible refrigeration model cycle is needed
to predict the coefficient of performance of heat pumps
and refrigerators better in more general terms. Improved
predictions of performance parameters and equipment size
are necessary for reliable estimates of investment and
operating costs in preliminary cycle evaluations. The
objective of this paper is to investigate the maximum COP
of internally irreversible heat pumps and refrigerators using
an irreversibility factor in the Clausius inequality in order to
obtain analytical expressions for the optimum performance
parameters.

2. Formulation of the problem

This problem formulation is based on the cycleT –s

diagram of figure 1 in which the heat source supplies the
refrigeration heat loadQei at a temperature varying fromT1

to T4 in a counterflow evaporator and the heat sink receives
the heat rejection loadQci , while its temperature increases
from T3 to T2 in a counterflow condenser.

This refrigeration cycle is composed of the following
processes.

(i) From d to c: a polytropic irreversible compression
for which the net entropy production is equal tosc − sd ; the
time duration of this process is assumed to be negligibly
small,

(ii) From c to b: an isothermal heat transfer for which
the entropy decreases fromsc to sb as a result of heat
transfer from the condensing fluid into the heat sink, during
a time tc.

(iii) From b to a: a polytropic irreversible expansion
for which the net entropy production is equal tosa −sb; the
time duration of this process is assumed to be negligibly
small.

(iv) From a to d: an isothermal heat transfer for which
the entropy increases fromsa to sd as a result of heat
transfer into the evaporating fluid, during a timete.

In actual refrigeration cycles, condensation of the
refrigerant occurs after some de-superheating, whereas
evaporation is followed by some superheating prior to
compression; these real heat transfer processes are therefore
neither constant temperature, nor constant pressure ones.
The isotherms considered here are averaged values, as
would be obtained by taking the ratios of heat load to
entropy change for each heat transfer process.

When this irreversible cycle is compared with the
endoreversible cycle represented by processesa′–c′–c–b–
a′, it is seen that the heat loadQci , rejected to the heat
sink, is proportional to the rectangular areab–c–c′′–b′′

and the same for both cycles. However, the refrigeration
load Qei , which is received from the heat source, is
always less for the irreversible cycle. Consequently,
the endoreversible refrigeration cycle always overpredicts
coefficients of performance of actual refrigeration cycles in

a manner which will be discussed in further detail when the
main results are presented.

In this problem definition, arithmetic mean temperature
differences are used as an upper bound approximation
to logarithmic mean temperature differences (LMTD) to
simplify algebra and yet obtain more realistic results than
would be obtained with the constant temperature approach.
Assuming the same minimum temperature approachδ

in the condenser and evaporator, these arithmetic mean
temperature differences are expressed by the following
definitions:

Amc = (Thc − Tc)/2 = x/2 (1)

Ame = (Te − Tce)/2 = y/2 (2)

with
Tc = T0 − δ (3)

Te = T0 + δ. (4)

Assuming heat conductancesαc and αe, respectively,
for the condenser and the evaporator, the heat loads are
expressed by

Qci = αcxtc/2 (5)

Qei = αeyte/2. (6)

The sum of the heat transfer time durations in the
condenser and evaporator is equal to the cycle time
durationT , according to the following constraint:

tc + te = T . (7)

Using the variablez to define the relative heat transfer
duration in the condenser and 1− z as the relative heat
transfer duration in the evaporator, this constraint becomes

z + (1 − z) = 1. (8)

When the Clausius inequality between the entropy input
to the evaporator and the entropy output from the condenser
is written with an irreversibility factorκ, as was used in the
optimization of internally irreversible heat engines [6, 7], it
takes the simple form

−Qci

Thc

+ κ
Qei

Tce

= 0. (9)

The irreversibility factorκ is greater than unity for an
internally irreversible cycle and equal to unity for the
endoreversible cycle; the larger this factor, the more
irreversible the refrigeration cycle. This constraint shows
that, for the same heat ratioQci/Qei , the temperature
ratio Thc/Tce is smaller for the internally irreversible cycle.

3. The maximum COP of an irreversible heat
pump

In this problem we seek the minimum powerPi required
to drive a heat pump for which the heat rejection load
is specified asPh; minimizing the required power for a
given heat rejection load of a heat pump is equivalent to
maximizing its coefficient of performance.
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Using the first law and the previously defined variables,
the optimization problem is now written as

MinPi = Ph − αey(1 − z)/2 (10)

subject to the specified heat rejection load

αcxz/(2Ph) = 1 (11)

and the irreversibility constraint

κ(αe/αc)[(x + Tc)/(Te − y)](y/x)(1 − z)/z = 1. (12)

Solving for the product (αcxz) from equation (11)
and replacing into equations (10) and (12) reduces the
constraints to only one, the variables beingy andz. Hence
the problem has one degree of freedom.

Seeking the unrestricted extremum of the Lagrangian of
the problem and eliminating the Lagrange multiplier from
the two necessary conditions obtained with respect toy and
z gives the following necessary condition for optimality:

Te/y = (1 − z)κ[(αe/αc) + (αe/Ph)Tcz
2]/z2. (13)

Eliminating Te/y from equations (12) and (13) yields the
heat transfer time fractions as

z = tc

T
= 1

1 + R
(14)

1 − z = te

T
= R

1 + R
(15)

whereR is defined by the ratio

R = [αc/(αeκ)]1/2. (16)

It is seen that, as the irreversibility factor increases,
the heat transfer time fraction increases in the condenser
and decreases in the evaporator; this result is consistent
with the condenser heat rejection load increasing relatively
more than the frigeration load. It can be verified more
easily from the Hessian of the unconstrained form of the
objective function that this solution indeed corresponds to
a minimum power requirement. Hence, the time fractionz

and the parameters to be obtained from it are optimum.
Solving for x from equation (11) and then fory from

equation (13) leads to

x = 2Ph(1 + R)/αc (17)

y = 2PhTeR(1 + R)

2Ph[(R + 1) + 1] + αcTc

. (18)

The maxima of the refrigeration load are given by

Qci

T
= Qh = PhαeTeR

2

2Ph[R(R + 1) + 1] + αcTc

. (19)

The minima of the power input to the heat pump are given
by

Pi = Ph

(
1 − PhαeTeR

2

2Ph[R(R + 1) + 1] + αcTc

)
. (20)

Figure 2. The heat pump coefficient of performance β
versus the irreversibility factor κ.

The maxima of the coefficient of performance of the heat
pump are given by

β = Ph

Pi

=
(

1 − PhαeTeR
2

2Ph[R(R + 1) + 1] + αcTc

)−1

. (21)

The optimum coefficient of performance of the heat pump is
seen to decrease with the specified heat rejection loadPh;
that is, the smaller the heat pump requirement, the more
efficient it would be. It also decreases with the temperature
ratio Te/Tc, which is more evident; but then, smaller heat
pumps are expected to be less cost effective than larger
ones.

The optimum arithmetic mean temperature differences
in the condenser and evaporator are obtained by replacing
for x andy, respectively, in equations (1) and (2):

Amc = (Thc − Tc)/2 = Ph(1 + R)/αc (22)

Ame = Te − Tce

2
= PhTeR(R + 1)

2Ph[(R + 1) + 1] + αcTc

. (23)

The optimum ratio of these mean temperature differences
is obtained as

Amc

Ame

= 2Ph[R(R + 1) + 1] + αcTc

RαcTe

. (24)

The corresponding condensing refrigerant temperature is

Thc = Tc[1 + 2Ph(R + 1)]. (25)

The evaporating refrigerant temperature is

Tce = Te

(
1 − 2PhR(R + 1)

2Ph[R(R + 1) + 1] + αcTc

)
. (26)

The behaviour of the optimum coefficient of performanceβ

with respect to the irreversibility factorκ is shown in
figure 2 for two heat conductance ratiosαc/αc and the
parameterPh/αc = 10 K.
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4. The maximum COP of an irreversible
refrigeration cycle

In this problem, we seek the minimum powerPr required
to drive the refrigerator for which the refrigeration load is
specified asQr ; minimizing the required power for a given
refrigeration load of a refrigeration cycle is equivalent to
maximizing its COP. Using the first law and the previously
defined variables, the optimization problem is written as

MinPr = αcxz/2 − Qr (27)

subject to the specified refrigeration load

αey(1 − z)/(2Qr) = 1 (28)

and the irreversibility constraint

κ(αe/αc)[(x + Tc)/(Te − y)](y/x)(1 − z)/z = 1. (12)

Solving for y from equation (27) and replacing into
equation (12) givesx as

x = 2κQrαeTc(1 − z)

αcαeTez(1 − z) − 2Qr [αcz + καe(1 − z)]
. (29)

Replacing forx in the objective function, we seek the
unrestricted minimum of

Pr = Qr

(
καcαeTc

αcαeTe − 2Qr [αc/(1 − z) + καe/z]
− 1

)
(30)

or equivalently, the unrestricted minimum of the variable
part of the denominator, or

φ = 2Qr [αc/(1 − z) + καe/z] (31)

for which the first derivative with respect toz is zero with
z given by equation (14). The second derivative ofφ with
respect toz is always positive, because

d2φ

dz2
= 4Qrαe[(z − 1)−3 + z−3καe/αc] > 0. (32)

Solving for y from equation (28) then forx from
equation (29), gives

y = 2Qr(1 + R)/Rαe (33)

x = 2QrTc(1 + R)

R2αeTe − 2Qr(1 + R)2
. (34)

The maximum heat rejection load is obtained as

Qhi

T
= Qh = QrαcTc

R2αeTe − 2Qr(1 + R)2
. (35)

The minimum power input to the refrigerator is obtained as

Pi = Qr

(
αcTc

R2αeTe − 2Qr(1 + R)2
− 1

)
. (36)

The maxima of the coefficient of performance of the
refrigerator are given by

COP= Qr

Pi

=
(

αcTc

R2αeTe − 2Qr(1 + R)2
− 1

)−1

. (37)

Figure 3. The heat pump exhaust and refrigerant
evaporator temperatures versus the irreversibility factor κ.

The optimum coefficient of performance of the refrigerator
is seen to decrease with the specified refrigeration loadQr ;
that is, the smaller the refrigeration requirement, the less
efficient the refrigeration cycle, just like in the heat pump
case.

The optimum arithmetic mean temperature differences
in the condenser and evaporator are obtained by replacing
for x andy, respectively, in equations (1) and (2):

Amc = Thc − Tc

2
= TcQr(1 + R)

αeTeR2 − 2Qr(1 + R)2
(38)

Ame = Te − Tce

2
= Qr(1 + R)/Rαe. (39)

The optimum ratio of these mean temperature differences
is obtained as

Ame

Ame

= RαeTc

R2αeTe − 2Qr(1 + R)2
. (40)

The evaporator refrigerant temperature is

Tce = Te

(
1 − 2Qr(1 + R)

TeRαe

)
. (41)

The condenser refrigerant temperature is

Thc = Tc

(
1 + 2Qr(1 + R)

αeTeR2 − 2Qr(1 + R)2

)
. (42)

The behaviours of the optimum coefficient of performance
of the refrigerator and the refrigeration temperatures with
respect to the irreversibility factor are shown in figures 4
and 5, respectively.

5. The relation between the efficiency and the
irreversibility factor

The irreversibility factor used here as a measure of
refrigeration cycle internal inefficiency does not have an
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Figure 4. The refrigerator coefficient of performance
versus the irreversibility factor κ.

Figure 5. The evaporation and condensation temperatures
versus the irreversibility factor κ.

operational significance like the isentropic efficiency of
compressors. Comparing the endoreversible refrigeration
cycle and the internally irreversible cycle by the ratio of
their COP gives

COPi

COPe

= 1 − r

κ − r
= ηr (43)

where r is the temperature ratioTce/Thc and ηr the
compressor isentropic efficiency; it is assumed here that
this ratio is a good measure of the isentropic efficiency of
the compressor used to drive the actual refrigeration cycle.

Figure 6. The heat pump endoreversible efficiency versus
the irreversibility factor κ.

This isentropic efficiency thus decreases with increasing
value of the irreversibility factorκ.

One can write similarly for the heat pump

βi

βe

= κ(1 − r)

κ − r
= ηh. (44)

It is seen from these two equations that the heat pump
efficiency is always greater than that of the refrigerator
because their ratio is equal toκ for the same cycle
temperaturesTce andThc. These temperatures are consistent
with respect to theκ values and the values of the
coefficients of performance obtained from the respective
defining equations. These ratios of the coefficients of
performance are given in figures 6 and 7, respectively for
the heat pump and the refrigerator.

6. A numerical example

This example is intended to provide the discussion with
some figures of merit; the refrigerator is considered for
cooling atmospheric air to some temperature 5 K above the
refrigerant temperature in the evaporator. The heat pump
is considered for home heating from ambient air with an
evaporator cold-end temperature approach of 5 K.

The following numerical values are also used in the
sample calculations and the figures presented. Two ambient
temperature conditions are considered: 278.2 and 258.2 K.
Two condenser-to-evaporator heat conductance ratios are
considered. These constitute the four cases labelled A, B, C
and D.

(i) Heat pumpPh/(αcTc) = 5.
T0 = 278.2 K, αc/αe = 1 and 1.5, respectively, for

cases A and B.
T0 = 258.2 K, αc/αe = 1 and 1.5, respectively, for

cases C and D.
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Figure 7. The refrigerator endoreversible efficiency versus
the irreversibility factor κ.

(ii) RefrigeratorQr/(αcTc) = 5.
T0 = 278.2 K, αc/αe = 1 and 1.5, respectively, for

cases A and B.
T0 = 258.2 K, αc/αe = 2 and 3, respectively, for

cases C and D.

The results are presented in figures 2–7, bearing in mind
that the range of practical significance for the irreversibility
factor is 1–1.5, the lower limit corresponding to the
endoreversible heat pump. Figure 2 shows the heat pump
coefficient of performance dropping rapidly from 6.5 to 2.7
when the irreversibility factor increases from 1 to 1.4 for
case A. The lower value of the heat conductance ratio gives
the higher coefficient of performance.

Figure 3 shows the air temperature delivered by the
heat pump to decrease slowly with the irreversibility
factor; the higher heat conductance ratio corresponds to
the highest exhaust air temperatures. The refrigerant
evaporator temperature increases with higher values of
the irreversibility factor and smaller values of the heat
conductance ratio.

Figure 4 shows that the behaviour of the refrigera-
tor COP is similar to that of the heat pump. For the refrig-
erator, figure 5 shows that the behaviour of the refrigerant
temperatures with respect to the irreversibility factor is op-
posite to that in the heat pump, whereas the effect of heat

conductance on these temperatures is the same. Figures 6
and 7 show the variation in the endoreversible efficiency of
the heat pump and refrigerator, respectively, with respect
to the irreversibility factor.

7. Conclusion

A Carnot-like, internally irreversible refrigeration cycle is
modelled using the Clausius entropy inequality with an
irreversibility factor. It is optimized first for the maximum
coefficient of performance of a heat pump, then for the
maximum coefficient of performance of a refrigeration
cycle with respect to the heat transfer time distribution
in the condenser and evaporator. The choice of the heat
conductance ratio appears to be critical in the heat pump
case in order to avoid low refrigerant temperatures in the
condenser and evaporator.

The optimum parameters are obtained as analytical
expressions expressed in terms of the irreversibility
coefficient, the heat conductance ratio and the temperature
ratio. The effect of internal irreversibility is to decrease
the condensation temperature and increase the evaporation
temperature simultaneously in the heat pump mode, which
leads to a lower coefficient of performance and lower
heating temperatures. In the refrigerator mode, the
coefficient of performance also decreases with respect to
the irreversibility factor but under the effect of increasing
condensation temperatures and decreasing evaporation
temperatures of the refrigerant. In both modes, the choice
of the heat conductance ratio and the ratio of power to
condenser heat conductance appears to be critical to the
performances sought.
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