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Abstract-A normal mode treatment is proposed for the solution of boundary value problems in 
plasma oscillations. The plasma distribution function and electric field are expanded in terms of 
the solutions of the coupled Vlasov and Maxwell equations. These normal mode solutions are 
somewhat unusual in that they are singular functions of the velocity variable, and, in fact, the 
expansion theorem is proved by means of a direct solution of an associated singular integral equation. 
As an application of the method we obtain the impedance of a plasma-filled parallel plate condenser. 

1 .  INTRODUCTION 
A FULLY ionizedplasma can support several different kinds of oscillations. The literature 
on the subject is extensive, and the problems which arise are treated using a wide 
variety of plasma models. 

In this paper we present a method for solving boundary value problems occurring 
when the plasma is described by the Vlasov ‘collisionless’ Boltzmann equation. 
The method involves an expansion in the normal modes of the coupled system of 
the Vlasov equation and the electromagnetic field equations. (In the example of 
longitudinal oscillations treated here, only Poisson’s equation among the electro- 
magnetic field equations is required.) 

In terms of the formal manipulations involved, our treatment is completely 
straightforward, identical with the normal mode treatment of more familiar types 
of boundary value problems. However, the normal modes themselves are singular 
functions, reflecting the singular nature of the streaming operator in the transport 
equation. This was first recognized by VAN KAMPEN (1955) who constructed a set of 
fixed-wave number modes for the solution of the initial value problem. CASE (1960) 
applied the singular normal mode decomposition to boundary value problems in 
neutron transport theory, and our treatment parallels his to an extent. 

In Section 2 we construct the normal modes for fixed-frequency oscillations. 
It is seen that the eigenvalue spectrum separates into three parts: a pair of discrete 
imaginary values, a continuum including the entire real axis, and the point at infinity. 
In Section 3 we construct adjoint modes which, together with the original normal 
modes, form a biorthogonal set. In Section 4 we prove a completeness theorem for 
the normal modes by directly solving the singular integral equation implied by the 
normal mode expansion of an arbitrary function. It is shown that the solution may 
always be written in terms of the characteristic function A(v) which has the property 
that it is analytic in the complex plane cut along the set of points of the continuous 
spectrum and vanishes only at  the discrete eigenvalues. In Sections 5 and 6 we apply 
the method to the calculation of the electric field within a plasma-filled capacitor and 
observe the interesting occurrence of the phenomenon of Landau damping governing 
the resistive impedance of such a device. 
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2.  N O R M A L  MODES FOR L O N G I T U D I N A L  OSCILLATIONS 
We consider the problem of obtaining the electric field within a plasma-filled 

plate condenser upon which an  e.m.f. of frequency w is imposed. By virtue of the 
symmetry of the problem* the electric field lies in the x-direction (see Fig. 1) and 

AREA:  A 
\ 
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FIG. 1 .-Plasma capacitor geometry. 

only the x-component of the velocity plays a role. The coupled one-dimensional 
Vlasov and Poisson equations are 

a af ne dF(u) - f ( x ,  U, t )  + U - = -- E(x,  t )  - 
at ax m du 

a 
ax J:, f du* - E(x,  t )  = 4n-e 

The original Vlasov equation has been linearized about its equilibrium solution 

9 ( x ,  U, t )  = nF(u) + f ( x ,  U, t )  (3) 

where n is the electron density and I;(#) is a one-dimensional Maxwellian at  temper- 
ature Olk. 

In  order to emphasize the dependence of the solution on the characteristic plasma 
parameters, we convert to the non-dimensional length, time and velocity variables 

(4) 
X U x’ = - t’ = tu, U’ = - 

Ai3 b o  ?l 

where the Debye length A, and  plasma period are given by 

* In problems involving propagation of transverse waves, the full set of Maxwell’s equations is 
required. However, the treatment is identical in its essentials. 
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In addition, the frequency of the impressed field is measured in units of 0,: 

0’ = WIW,. (6 )  
Equations ( I )  and (2) may then be written entirely in terms of non-dimensional 
quantities 

W 

f ’ ( u ’ ,  t’) du’ 

(Maxwell-Boltzmann). (9) F’(u’) - e - l d z / 2  1 
4% 

Henceforth we drop the primes. 
where we will prescribe wherever 

necessary that w has a small positive imaginary part. This will yield the solution 
resulting from an  applied voltage which has been turned on gradually from its zero 
value at long times in the past. 

It turns out more convenient to write the coupled equations as a single matrix 
equation 

The system will have time dependence 

or, symbolically, 

where Y is the ‘I 

f3Y 
ax 

p-=HH\Y’ 

ate vector’ 

Y = (;I. 
We immediately obtain three different types of normal mode solutions, the first two 
with exponential space dependence, the third spatially independent. 

Class I : Discrete modes 
(y = yieimZIVi ) 

The eigenvalues vi are the zeros of the characteristic function A(v) 

v2 / m  
A ( V )  = 1 - - w2 - m U - V  
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A(v )  is analytic in the complex v-plane cut along the entire real axis, and tends to a 
constant value for large IvI 

For Maxwellian F(u), it is easy to show that when w > 1 there are no discrete v i ;  
when w < 1, there are two: v+ = hiv,,, with v,, real and positive. The value of the 
discrete root vo is shown in Fig. 2. 

The physical significance of these discrete modes will be discussed in Section 6 .  

I I I I 
0 0.2 0.4 0.6 I .o 

U> 

FIG. 2.-Sheath thickness vs. applied frequency (non-dimensionalized). 

Class 11: Continuum modes 

(Y? = yveiu’2’’’) (all real v) 

4nv 
iw 

E = - - .  

Here, thef, are singular functions. b(u - v) is the Dirac delta function and the 9 
indicates the principal value prescription in integrals involving the singular denomi- 
nator. A(v) is given by 

du = +[A+(v) + A-(v)] 

where A*(v)  = lim A(v & ia) are the boundary values of h ( v )  as v approaches the 

cut from above and below respectively. For future reference we note also that 
C-+O+ 

. v 2  dF(v) 
w2 dv A+(v) - A-(v) = - 2 ~ 2  - - . 
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Class 111: Charge-free mode 

(Y = yo) (spatially independent) 

5 

E o =  1. (22) 

These 'fixed-frequency' modes play the same role as the 'fixed-wavenumber' 
modes constructed by VAN KAMPEN. The necessity for presenting E and g as a two- 
component quantity in our treatment originates in the fact that in the problem of 
forced oscillations the electric field satisfies a second-order differential equation in 
the space variable, and it is necessary to specify both E and 

at x = 0. In the initial value problem the field satisfies a first-order differential equation 
in time and one needs work only with the perturbed distribution g, since the electric 
field is related to it simply by 

E = e s g d u .  ik 

3 .  THE ADJOINT EQUATION AND ORTHOGONALITY RELATIONS 

For every solution of equation (1 1) there is a solution (with the same value of v) 
to the corresponding adjoint equation 

Yt is a two-component row vector. The collection of normal modes yy and adjoint 
modes y,t form a biorthogonal set. 

Define a 'scalar product' between normal modes and adjoint modes according 
to 

(Y', Y )  = J m  - m  f t (u>f(u)  du + EtE. 

We then construct the operator H t  so that for any y, y t  

(yt, Hy') = (Y'H', Y>. 
We find 
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Again, the solutions to  the adjoint equation fall into three classes: 

Class I: Discrete modes 
va2/w2 

fit@) = - 
U - v i  

(28) 
ivi 
47rw 

Eit = - . 

As before, the eigenvalues vi are just the zeros of R(v).  

Class II: Continuum modes (all real v) 

+ A t ( U )  6(u - v) fYt(U) = - B - V 2  1 
CO2 U - v 

iv 
E”t = 4nw 

with 
X V )  

A t ( V )  = - 
d F(v)/dv * 

Class III: Charge-free mode 

Eo’ = 1. 

The orthogonality relations follow immediately 
In fact, if 

iw 
- PW” = HW,, 
V 

iw 
- ?+l,.+p = W”?+H+. 
V 

(32) 

(33) 
from the definition (25) of Ift. 

(34) 

(3 5 )  

Then, by taking the scalar product of (34) and (35) with yY,’ and y, respectively 
and applying (25) we obtain 

or 
(yJ, py,) = 0 v f v’. 

(36) 

(37) 

This is the orthogonality relation for the modes of Class I and 11. To make matters 
complete, one need only note that 

Hy, = yotH = 0 (38) 

and apply the same considerations to obtain 

(Y”+, PWO) = (WOt,  PY,) = 0. (39) 
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4.  THE COMPLETENESS THEOREM 
The orthogonality relations provide a convenient means for performing expansions 

in terms of the y,. In this section we prove that the (y,,) form a complete set: i.e. 
that such expansions can actually be performed. 

First let us note the form that this hypothetical expansion must take. We have 

Moreover, for the continuum modes 

and we find 
(Y”,’, PYJ = N v ) K y  - v’) 

v2 dF(v) 
[ l , ( v ) ]p  + [ V > T ]  V .  

N(v)  = p)] 
This may also be written in terms of A(v)  by the use of equations (19) and (20). 

Therefore, if we assume that a vector Y has the expansion 

Y = A0yo + 2 Aiyi + s_”, A(v>wy dv,  
i 

the coefficients will be determined immediately from the orthogonality relations 

To prove that the expansion is valid we need the following theorem. 
Completeness theorem. Any vector Y with 

(42) 

(43) 

(45) 

may be expanded in terms of the {y,). 
Proof of the theorem: 

We have already shown that the expansion coefficients (if they exist) are given by 
(46). Now let Y be an arbitrary vector. If Yr can be expanded in terms of the {y,,}, 
then ’k”’ defined by 

Y’ = Y - AOyo - 2 Aiyi (47) 
i 
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with the A’s given by (46), can be expanded in terms of the continuum modes alone: 

Y” = J:m A(v)yy dv. 

‘P‘ is orthogonal to the adjoint modes of Classes I and 111, but is otherwise arbitrary. 
Written componentwise this leads to the pair of integral equations for A(v) 

E ’  = $1” vA(v)  dv. 
IW -cc 

We prove the theorem by obtaining the solution A(v) explicitly. Multiplying (50) 

i d F  
4irw du 

by 
-- 

and adding to (49), we obtain: 

Now define the function d ( v )  according to 

U - - 2 ’  

If A(v) ,  the solution to (49) and (50) actually exists, then d ( v )  will be analytic in the 
complex plane cut along the real axis and vanish for large Iv1 at least as fast as 1vl-l. 
The boundary values d-’ (Y) are related by 

d + ( v )  - d - ( v )  = vA(v )  (53) 

1 uA(u)du 
d + ( Y )  + d - ( v )  = -, ,P - . 

i r l  I-, U -  v (54) 

Conversely, if d ( v )  possessing the required analyticity properties can be found, 
then A(v)  will exist and be given by (53). 

By the use of the relations (19-20) and (53-54) equation (51) simplifies to 

4irW = A+(v)d+(v)  - A-(w)d-(~). 

Now consider the function K(v) defined by 

(55) 
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K(v) is constructed so that the difference K f ( v )  = K-(v) is equal to the left-hand side 
of (55). Hence 

(5 7) 
i.e. the function A ( v ) d ( v )  - K(v), analytic in the cut plane, is also continuous across 
the cut. This means that A(v)  d ( v )  - K(v) is an entire function and since K(v) and 
d ( v )  both must vanish for large [ V I ,  it follows from Liouville’s theorem that 

A+(v )~+(v )  - K+(v) = A-(Y)~- (Y )  - K-(Y) 

A ( Y ) ~ ( Y )  - K(Y) = 0 
or 

We must examine the function d ( v )  to see if it has the properties it was assumed to 
have. We note immediately that d ( v )  is analytic in the cut plane except possibly 
at the points vi where the denominator vanishes. Thus, for (51) to possess a solution 
it is necessary and sufficient that 

But we have already insured that this condition be fulfilled by requiring that Y be 
orthogonal to the discrete adjoint modes. In fact K(vi) is easily found to be given by 

K(v2) = 0. (60) 

w2 1 
v i z  2rri 

K(YJ = --(vat, p Y ’ )  = 0. 

Finally we must show that the A(v) obtained as a solution of equation (51) actually 
satisfies (50). Since 

vA(v) dv = - lim 2rrizd(z) (62) 
J:m IZI--cm 

this last requirement becomes 

which becomes, on rearranging 

(yo+, p ? w  = 0. (64)  

But this is just the last condition that we placed on the function y.”’ at the start. 
This completes the proof of the theorem. 

5 .  SOLUTION FOR THE PLASMA CAPACITOR 

So far, everything has been quite general. We have exhibited a complete set of 
normal modes for longitudinal plasma oscillations. The solution to a given problem 
is obtained via the normal mode expansion in much the same manner as the solution 
to more familiar (i.e. non-singular) boundary value problems. One expands the state 
function of the system in terms of the normal modes and applies the boundary con- 
ditions to determine the expansion coefficients, usually with the help of orthogonality 
relations obeyed by the normal modes. Now we apply the method to a specific 
poblem. 
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We assume the plasma to be uniformly distributed between two infinite, perfectly 
reflecting walls, i.e. a plasma capacitor (see Fig. 1). This is the problem treated by 
WEISSGLAS (1962) by an alteriiative method. Before commenting on WEISSGLAS' 
treatment, let as obtain the complete solution via the normal mode expansion. 

The assumption that electrons are specularly reflected at each plate ( x  = &LL/2) 
implies the boundary condition 

f ( u ,  i L / 2 )  = f ( - u ,  zkLL/2). (65 zk 1 
This is sufficient to obtain the entire state function in terms of the electric field across 
the plates. Write: 

Y = Aoyo + A+eWZ/"Oy+ + A-e-"z/'oy- + A(v)eiwzlvyy dv. (66)  J", 
&ivo are the two zeros of the characteristic function A(v). It is understood that the 
terms with y+ and y- are to be included only when w < 1. Now we make use of the 
symmetry properties of the normal modes: 

f+(-u> =f-W 
Discrete ( E + -  - -E-  

Charge-free fo(u) = -fo(-u). (71) 

so that condition ( 6 5 $ )  becomes 

BoEo + B+E+ + B-E- + B(v)E, dv = 2E(L/2). (74) 

Hence the B's are just the coefficients in the expansion of the vector 

0 
@ = (2E(L/2)) 

and may be obtained immediately from the orthogonality relation : 
e.g. 

(75) 

and similarly for the rest. 
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Applying the same considerations to the plate at x = -L/2 and combining, we 
obtain the values for all the expansion coefficients 

E”+ 1 
A(Y)  E(L/2) - 

These results substituted into equation (66) yield the complete formal solution to the 
problem. 

6. ANALYSIS OF THE SOLUTION 
Just as in the completeness proof of Section 4 we shall rely heavily on the analyticity 

properties of the characteristic function A(v) in order to place our solution in a form 
suitable for computation. We are able to do this since all the N’s of equations 
(40-44) are simple functions of A(v) and its boundary values of A*(v). 

Consider the expression (66) for the electric field between the plates 

(vo/w)2 e-wxlvo -- 

N- cosh (: i) 

Since, from (44) 

the integrand in (80) may be broken up into two terms which may be analytically con- 
tinued into the upper and lower half-planes respectively. Thus the integral term in 
(80) is given by 

The curves C, and C2 (see Fig. 3) are each semicircles of radius R along with small 
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circles about the singularities of the integrand in the upper and lower half-planes 
respectively. These singularities lie at 

U) L 
(2n + 1 ) ~  

v = iv, and n = 0,  1, 2 , .  . (83) 

in t h e  upper half-plane and 

in the lower half-plane. It is easily seen from equation (41) that the residue contribu- 
tions from the poles at f iv ,  identically cancel the second and third terms in (SO). 

FIG. 3.-Deformed contours for the continuum integral. C, lies wholly in the upper 
half-plane; C, in the lower. 

The integrals along the large semicircles yield a contribution of [l - l/A(co)] which 
combines with the first term in (80). This together with the contributions from the 
infinite sequence of poles close to the real axis yields 

It should be mentioned that for low frequencies this representation is incon- 
venient since the series converges too slowly. Returning then to the original form (80) 
of the solution, we find that when w 2 314 the contribution from the discrete modes 
dominates. This is of the form 

- cosh [: x ]  /cosh [E g] 
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and  represents a field which falls off practically to zero in a short distance from the 
plates. The shielding length v o / o  is shown in Fig. 2 and is seen to be a slowly varying 
function of w, except as UJ -+ 1. 

The impedance 2 of the capacitor is found from Ohm’s law 

But from (85) 

LI2 
ZJ = I-,,, E(x) dx, 

8 1 2 n-2 *= E(x) d x  = E(L/2) L - 
l , 3 , 5  ... A’ ($) (87) 

and J is given by the displacement current at the plates since there is no electron 
transport across the boundary of the plasma 

J iw 
A 477 
- = - E(L/2). 

A is the area of the plates. Hence 

with 
A c -- 

O - 4n-L 

the  capacitance of condenser without the plasma, and with 
- 1  1 1  

the effective dielectric coefficient. 

series array of separate devices, each with impedance 
Another way to interpret these results is to regard the plasma capacitor as a 

n = 1, 3, 5 .  . . 1 8  1 
Z,’ = - - 

n-2 nzA+ 
\nrr 1 

For most frequencies, 2 = C 2, will be purely reactive since Im A+ < R e  A+. 
Typically, L N lo4 and we will almost always be able to approximate A+ by A( 00) 

t o  obtain the familiar result: 

However, at  the ‘resonant’ frequencies OJ, for which 

Re.+(%) = O  (94) 
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the impedance takes on a significant resistive component and the capacitor becomes 
a dissipative device. This is effectively WEISSGLAS’ explanation. 

The interesting point is that the resonant frequencies are just those frequencies 
for which, in Landau’s (1946) theory, a longitudinal wave with wavelength given by 

(95) 
2L 
n 

2, = - I ? =  1 , 3 , 5  ... 
can propagate. Furthermore, the rate of absorption at a resonance is just given by 
the damping decrement in the Landau theory. 

I t  is worthwhile to reassert that there should be no objection to the procedure of 
solving the collisionless equation by the device of assuming that o has a positive 
imaginary part which is later allowed to tend to zero. This is, in actuality, a reason- 
able representation of the time dependence of a system which builds up to its steady 
state -e-fwt over a long period of time. WEISSGLAS’ objection that there is actually 
no steady state for the collisionless equation is quite correct. In fact, if one uses 
equations (77-79) to obtain the actual distribution functionf(u), it turns out that the 
result is singular at precisely the velocities wL/nx with which an electron may make 
a round trip in an odd number of periods, In the collisionless theory of DAWSON 
(1961), the distribution function in the neighbourhood of these velocities does, in 
fact, increase in time without bound. This is simply an illustration of the fact that 
Landau damping can serve as a mechanism to transfer electric energy into particle 
motions within the framework of the collisionless theory in which no entropy increase 
can take place. Hence some truly dissipative mechanism must be present in addition. 
However, this does not invalidate the solution, but only places limits on its validity: 
namely that the collisional mechanism that randomizes the electrons that are bunched 
into beams via the Landau damping process must be strong enough to forestall the 
violation of the linearization assumption. This is not a severe restriction. More- 
over, the admissible collisional mechanism is quite arbitrary, and does not need t o  
take on the phenomenological form prescribed by WEISSGLAS. In any event, it is 
interesting that the resistive properties of the plasma capacitor should be governed 
by the non-dissipative process of Landau damping. 
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