
Semicond. Sci. Technol. 9 (1994) 878-881. Printed in the U K  

Carrier relaxation in quantum wires: 
consequences for quantum wire laser 

I performance 

lgor Vurgaftman and Jasprit Singh 
Solid State Electronics Laboratory, Department of Electrical Engineering and 
Computer Science, The University of Michigan. Ann Arbor, MI 48109-2122, USA 

Abstract. Quantum wire lasers are expected to require very low threshold 
currents owing to the nature of the 1 D  density of states which develops a sharp 
peak at the band edge and ensures superior laser characteristics. However, 
carrier relaxation processes in quasi-lD structures may be much slower than in 
bulk material owing to reduction in the momentum space. For very long relaxation 
times, these equilibrium processes are expected to limit the maximum modulation 
frequency of the quantum wire lasers. We perform a Monte Carlo simulation of 
electron relaxation in quantum wires with the inclusion of the electron-buikiike 
polar optical and acoustic phonon, electron-electron and electron-hole 
interactions as well as Thomas-Fermi screening. We find that for a carrier density 
of lq” ~ m - ~ , t h e  electron relaxation time ranges from 120 ps for the 
100 A x 100 A wire to 30 p s  for the 200 A x 200 A wire. Since the threshold current 
in a quantum wire laser increases with the wire cross section, within the limits 
of our  relaxation model, this indicates possible existence of a trade-off between 
speed and efficiency in a quantum wire laser. W e  also analyse the effects of 
carrier relaxation on’gain compression in quantum wire lasers by solving the 
Boltzmann equation using a novel Monte Carlo technique. A spectral hole forms 
in the carrier distribution at high injected currents with the resulting decrease in 
the slope of the light-current characteristic. The effect of a non-Fermi-Dirac 
distribution of electrons is found to result in a suppression of the peak gain 
as compared with the peak gain calculated using the equilibrium distribution. 

In recent years, considerable attention has been devoted 
to the applications of quasi-ID electronic structures in 
constructing very low-threshold and very high-speed 
semiconductor lasers. The improvement in threshold 
current and speed is expected to stem from the sharp 
peak in the density of states that occurs near the band 
edge in quantum wire structures [1,2]. However, it 
should be kept in mind that the reduction in the 
momentum space to one dimension leads to qualitatively 
new phenomena in the carrier relaxation process which 
may increase the equilibration time to such an extent that 
high-speed operation of quantum wire lasers can be made 
problematic [3,4]. Intersubband electron-electron 
scattering is prohibited, and thermalization of the 
electron gas, which loses its energy primarily by emitting 
monoenergetic polar optical phonons (POP), is exceedingly 
slow, leading to bottlenecks in the relaxation process [4]. 
Thermalization in the photoexcited electron gas with the 
inclusion of electron-electron and polar optical phonon 
scattering has been studied [SI, but relaxation of carriers 
injected into the active region and also undergoing 
acoustic phonon and electron-hole scattering events has 
not been investigated to the best of our knowledge. Here 
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we study quantitatively the physics of the equilibration 
process using the Monte Carlo simulation technique and 
then proceed to examine the consequences of the slow 
carrier relaxation processes for the performance of 
quantum wire lasers. We consider in particular the effect 
of electron relaxation on the nonlinear gain characteristics 
and present qualitative results for gain compression due 
to spectral hole burning. 

The relaxation processes in the valence band are 
expected to be much faster than those in the conduction 
band owing to the higher valence band density of states; 
therefore, in this paper we are concerned solely with 
electron relaxation. We simulate the relaxaiion process 
by injecting electrons in a thermal distribution at the 
potential well edge and following their progress as they 
come to thermal equilibrium with the lattice maintained 
at a constant temperature of 300 K. The conduction band 
1D states are calculated in the effective mass approxi- 
mation by numerically discretizing Schrodinger’s equation 
on a uniform mesh in the wire region and converting 
derivatives into finite differences, and solving the resulting 
matrix equation iteratively. For the 100 8, x 100 8, wire, 
two subbands lie below the potential well, the first one 
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at 0.05 eV and the second one at 0.11 eV, while there are 
six subbands below the conduction band discontinuity 
in the 200 8, x 200 8, wire. The valence band states are 
found by diagonalizing the four-band Kohn-Lnttinger 
Hamiltonian by the same finite difference approach. 

The major energy loss process is found to be emission 
of polar optical phonons. The only intersubband electron- 
electron scattering process allowed by the requirement 
of simultaneous conservation of energy and momentum 
in a quasi-1D system is an exchange of states between 
the interacting electrons. This scattering process cannot 
alter the shape ofthe distribution function. In the virtual 
absence of electron-electron scattering, it becomes 
necessary to include inelastic acoustic phonon scattering 
as well as electron-hole scattering into the Monte Carlo 
simulation in order to describe the thermalization 
processes in a quantum wire. Since we consider quantum 
wires with cross sections from 1008, x 1008, up, we 
assume that the coupling between the confined electronic 
states and localized interface phonon modes is much 
weaker than that between electrons and bulk-like 
confined phonon modes and include only the latter 
interaction in our calculations. The coupling coefficient 
for the POP scattering is obtained from the Frohlich 
Hamiltonian [SI, and that for AP (acoustic phonon) 
scattering from the deformation potential theory. The 
details of the simulation have been presented elsewhere 
[4], and the full formalism is forthcoming [7]. 

In order to estimate the effect of electron-hole 
scattering on the evolution of the electron distribution, 
we adopt the assumption oi  the equiiibrium hoie 
distribution because the full relaxation problem involving 
two types oi carriers is too complex to be solved in 
practical simulation times. Moreover, the hole-phonon 
coupling is expected to be significantly stronger than the 
electron-phonon coupling with the rate of energy loss 
for holes far greater than that for electrons. We also 
approximate the valence band structure as parabolic, 
which is equivalent to setting the off-diagonal terms of 
the Koh-Luttinger Hamiltonian to zero. This assump- 

technique while the consequences for the electron-hole 
scattering processes are believed to be secondary. 
Electrons and holes interact through the Coulombic 
attraction, and the scattering rate can be computed most 

are incorporated in the static longwave limit. 
The average energy of an ensemble of 5000 electrons 

as a function of time after injection is shown in figure 1 
for the lOOA x 1008, GaAs/Al,,,Ga,,, wire for two 
carrier concentrations. Whi!e the icitial stage in the 
electron relaxation process can be modelled as exponen- 
tial decay with a characteristic time of several picoseconds, 
the rate of energy loss is reduced drastically after 

10 ps. This phenomenon can be accounted for by the 

the effective band edge can give up energy only by 
emitting acoustic phonons, which is a statistically very 
slow process. Note that the multiple subband occupation 
increases the mean energy for the equilibrium distribution 
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fact that the carriers within the POP energy (36 meV) of 
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Figure 1. The average energy for an epembie of 5000 
eiecpions a s s  iunciion o i  i ime after injeciion ior a 
100 A x 100 A GaAs quantum wire for two carrier 
concentrations with and without electron-hole scattering. 
The horizontal line corresponds to the mean energy for 
the equilibrium Fermi-Dirac distribution, 

above the strictly 1D k,T/2 value. The results of the 
Monte Carlo simulation indicate that after lops the 
majority of electrons are involved in transitions between 
the first two subbands in the wire region. 

Also shown in figure 1 are the results of the Monte 
Carlo simulation with the inclusion of electron-hole 
scattering, which allows partial thermalization of the 
electron distribution as well as a certain rate of energy 
loss because oi the assumption oi an equilibrium hoie 
distribution. The energy relaxation of the electron 
distribution proceeds at a faster rate than in the absence 
of the electron-hole interaction. The bottleneck is still 
present, but it can be overcome sooner owing to the loss 

distribution. This indicates the importance of including 
electron-hole scattering in relaxation time calculations 
for iowdimensional systems. More comprehensive models 
may include hot-hole effects and non-parabobcity in the 

cedure can be foupd. 
Nonlinear gain effects in semiconductor lasers have 

been previously treated using the density matrix formalism 
and third-order perturbation theory [9, lo]. The drawback 
o! this approach is that the carrier re!axation eFectr are 
introduced in a phenomenological manner through the 
intraband relaxation time. We have been able to 
formulate a technique that allows one to calculate the 
exact form of the distribution function and the gain 
spectrum with the inclusion of rerom.bination and 
injection effects from a knowledge of the band structure 
and scattering rates in a semiconductor laser. The method 
is appIied to examine the phneomenon of spectral hole 
burning in quantum wire lasers. We start from the 
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Boltzmann equation in a homogeneous medium with no 
applied fields 

-- am) - f(E + hw)(l - f(E)) @,(E + hw, E )  
at 

+ f ( E  - hw)(l - f ( E ) )  KdE - hw, E )  
-f(E)C1 -f@ + h~)lK, , (~,  E + ha)  

- f ( E ) U  -f(E - ho)lW,,,(4 E - ha)  (1) 

where Kbs and Wi, represent the scattering rates for 
emission and absorption of phonons for all k-states in 
the corresponding energy intervals. The time derivative 
is set to zero in order to solve for the steady-state 
distribution function. The equation has an infinite 
number of solutions, of which the Fermi-Dirac distri- 
bution is the one to which the electron distribution is 
driven in the long run under the influence of thermalization 
processes, such as electron-hole scattering in quantum 
wires. The effect of stimulated emission at the lasing 
frequency and carrier injection at the edge of the potential 
well formed by the barrier region is now taken into 
account by introducing the source (1 - ~ ( E ) ) / T  and sink 
- ~ ( E ) / T  terms. The energy spectrum of interest is then 
subdivided into small intervals, and the Boltzmann 
equation is converted into a set of coupled nonlinear 
equations. The equations are greatly simplified if only 
POP scattering is included, because only points separated 
by multiples of the POP energy are coupled. The AP 
scattering is then treated as contributing a broadening 
of the solution of the simplified equation with the 
iinewidth proportionai to the AP scattering rate. This is 
an adequate approximation since POP scattering rates are 
greater than AP scattering rates in quantum wires by at 
least an order of magnitude. 

The direct numerical solution of the resulting system 
of iiouiiiieai. i-olrpled eqoaiioiie 
mesh on the energy spectrum is set up and excellent 
convergence is desired. Instead we solve the problem by 
a Monte Carlo technique. We start with the Fermi-Dirac 
distribution function and generate random perturbations 
accepting only those changes which decrease the time 
derivative of the distribution function in each energy 
interval. For characteristic injection times between 10 ps 
and 1 ns we find that the solution rapidly converges to 
the steady-state distribution. 

istic time of 10 ps is shown in figure 2. This recombina- 
tion time roughly corresponds to a current density 100 
times the threshold current density calculated for the 
100 8, x 100 8, wire. The effect of injection and extraction 
terms on the distribution function is seen to be twofold: 
a spectral hole is burned around the lasing wavelength 
and the electron gas effective temperature is raised. The 
magnitude of gain compression can be estimated by 
calculating the material gain from the Fermi golden rule. 
We substitute the distribution function obtained with the 
inclusion of spectral hole burning effects. The result is 
shown in figure 3. Mimicking the singularity in the joint 
density of states, the gain spectrum is sharply peaked 
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Figure 2. The distribution function in the presence of 
specirai hoie burning is shown by iine iuii curve. For 
comparison, the equilibrium Fermi-Wac distribution 
function is given by the broken curve. The characteristic 
injection and extraction time is 10 ps, approximately 
corresponding to a current density 100 times that at 
threshold., 
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spectral hole burning. The full curve represents the 
material gain spectrum obtained by using the correct 
distribution, while the broken curve represents that 
obtained using the Fermi-Dirac distribution. The 
characteristic injection and extraction time is 10 ps, 
2pproxim2tdy correspondins to a current density 100 
times that at threshold. 

around the lasing frequency, and the nonlinear gain 
effects are clearly seen to amount to the suppression of 
the peak gain. Note that, in the context of this paper, we 
refer to the spectral hole formed in the distribution 
function rather than in the gain spectrum as the 'hole 
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burning' effect. No hole in the gain spectrum is observed 
because of the assumption of single-mode lasing and the 
sharpness of the gain curve. 

To summarize, we have considered the effects of a 
finite relaxation time in quantum wires on the performance 
characteristics of quantum wire lasers. The importance of 
the electron-hole scattering processes has been brought 
out by our studies. Although electron-hole scattering 
does speed up carrier thermalizatioa the relaxation rates 
are still quite low. Besides limiting the intrinsic modulation 
bandwidth of the quantum wire laser, the increased 
relaxation time is found to aggravate the,nonlinear gain 
effects in a quantum wire laser. We have calculated 
electron relaxation times in quantum wire structures by 
a Monte Carlo simulation as well as gain compression 
resulting from the spectral hole burned in the electron 
distribution function using a novel Monte Carlo technique 
of solving the Boltzmann equation. Our method of 
accounting for the nonlinear gain effects in quantum wires 
is particularly useful because it provides a straightforward 
yet idly consistent computationai technique and can be 
generalized easily to multimode operation and various 
scattering processes. 
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