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Abstract. We use the two-step density-matrix renormalization group method
to study the effects of frustration in Heisenberg models for S = % to 4 in a two-
dimensional anisotropic lattice. We find that as for S = % studied previously,
the system is made up of nearly disconnected chains at the maximally frustrated
point, Jg/J; = 0.5, i.e., the transverse spin—spin correlations decay exponentially.
This leads to the following consequences: (i) all half-integer spins systems are
gapless, behaving like a sliding Luttinger liquid as for S = %; (ii) for integer
spins, there is an intermediate disordered phase with a spin gap, with the width
of the disordered state roughly proportional to the 1D Haldane gap.
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1. Introduction

An important theorem of Dyson, Lieb and Simon (DLS) states that the Heisenberg
Hamiltonian on bipartite lattices with S > 1 has long range order in the ground state [1, 2].
We now know from quantum Monte Carlo simulations [3] that this result extends to S = %
systems. There is current interest in how a disordered state emerges out of the Néel state.
This question is important to the physics of frustrated materials where some systems
exhibit no magnetic order down to the experimentally accessible temperatures and are
thus believed to be disordered in the ground state. A disordered phase may also be
relevant in the theory of high-temperature superconductors. This issue and the related
one of the eventual role of Berry phases was hotly debated in the late 1980s and early
1990s soon after the discovery of the high-T materials [4]-[8]. Many possible disordered
states were proposed but none of them gained consensus. For an extensive discussion on
this topic, we refer the reader to the book by Fradkin [23].

In the search for the nature of a ground state of a quantum Hamiltonian, there is
another useful theorem given by Lieb, Schultz and Mattis (LSM) [20], initially formulated
for 1D systems and later extended to 2D systems by Affleck [8], which restricts the
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possible ground states of half-integer spin systems: either the ground state is degenerate
(presumably due to a broken symmetry) or it is unique and gapless without any long range
order. For Heisenberg Hamiltonians, the latter possibility appears difficult to realize in
2D because dimer—dimer or spin—spin correlations have a power law decay in 1D. It would
thus be expected that interchain couplings will lead to long range order in one of the
two channels. If the magnetic order is frustrated, a dimerization would be expected.
Frustrated spin models often involve competitions between two magnetic orders; the
expected dimerized phase is believed to lie between these magnetic phases. A possible
alternative to this scenario allowed by the LSM theorem is the occurrence of a disordered
gapless state at the transition between the magnetic phases.

In recent publications [24, 25], we have studied the possible emergence of a disordered
state in a model of coupled Heisenberg chains. This model is a spatially anisotropic version
of the well studied J;—J; model. The model essentially retains the physics of the Ji—J,
model: it presents a phase transition between two magnetic phases. The first phase is a
Néel phase characterized by the ordering wavevector K = (m, 7). The order parameter
in this phase is maximal in the absence of the diagonal coupling J4. It decreases as
Jq is increased until it vanishes at the maximally frustrated point. Beyond this point,
another Néel state with K = (m,0) becomes the ground state. The existence of these
two phases was predicted in numerous studies [17] of the isotropic (J, = 1) version of
this model. But what has caused the continuing interest in this simple model is the
question of whether there is an intermediate phase between these two magnetic phases.
Simple physical arguments suggest the existence of such a phase because the two states
are associated with subgroups of the SU(2) symmetry group of the spin Hamiltonian and
of the Cy symmetry group of the square lattice that do not include each other. From the
Landau theory we know that a continuous transition from these two phases is forbidden.
Initial suggestions for the possible intermediate phase were the resonating valence bond
(RVB) [36] phase, flux phases [32,35], chiral spin liquid [34] and the spin—Peierls (SP)
phase [21]. The SP phase has lately emerged as the front runner. It causes the same
type of difficulty as the direct transition between two magnetic phases, since in that
case the transition is between a magnetic state that breaks the spin rotational symmetry
but not the lattice translational symmetry and a dimerized state that breaks the lattice
translational symmetry but not the spin rotational symmetry. The transition to the SP
phase has triggered an interesting proposal of an extension of the conventional Landau—
Ginzburg-Wilson (LGW) theory of second-order phase transitions [37].

It seems, however, that this theory does not apply to the J;—J; model, where we did
not find any evidence of an intermediate phase for S = % Numerical data suggests a
transition, which seems to be of second order, between the two magnetic phases at the
maximally frustrated point for both the anisotropic and isotropic models [22]. At the
transition point, the competing magnetic orders neutralize each other and the system
behaves like a collection of loosely bound chains, even if the bare interactions are not
small. Classically, the ground state is degenerate at this point. This degeneracy is lifted
by quantum fluctuations. In [22,25], we have shown that among all the possible clusters,
chains offer the best compromise between minimizing the energy and avoiding frustration,
at the same time. At the maximally frustrated point, the transverse interactions seem to
be irrelevant, i.e., up to the largest lattice size studied, transverse spin—spin correlations
decay exponentially and the longitudinal correlations revert to those of decoupled chains.

doi:10.1088,/1742-5468,/2006/02/P02002 3


http://dx.doi.org/10.1088/1742-5468/2006/02/P02002

Néel and disordered phases of coupled Heisenberg chains with S =1/2 to S =4

This disordered state is a singlet and gapless, consistent with the LSM theorem [8,20].
It is reminiscent of a sliding Luttinger liquid (SLL) found in models of coupled fermion
chains [9]-[11]. It thus appears that the intermediate region where a disordered phase has
long been thought to exist is just a critical region. That is why it has resisted various
approaches for nearly two decades. At the maximally frustrated point, the correlation
functions are 1D-like; thus the rotational spin symmetry of the system is restored. In fact
such a transition between these two magnetic phases already exists in the unfrustrated
model when the transverse exchange parameter, J,, is varied from positive values to
negative values. At the point J; = 0, there is a transition from 2D to 1D, where properties
are identical to that of the maximally frustrated point. The only difference between the
case J, = 0 and the maximally frustrated point is the presence of irrelevant transverse
terms which do not change the long distance behaviour of the correlation functions as
shown in [25]. From this result the LGW theory applies if it is assumed that the system’s
group of symmetry at the critical point contains the groups of symmetry of the two
magnetic phases.

It is important to study how this interesting physics extends to larger spin systems,
first, because many frustrated systems contain larger spins and, second, because there are
some interesting predictions from large S approaches about the emergence of a disordered
phase from a Néel phase as a function of S. Affleck [8] argued that since the LSM theorem
does not apply to integer spin systems, there might be a distinction between integer and
half-integer spin systems in 2D as well. Haldane [7] discussed the notion that in addition
to the now well established difference in behaviour between half-integer and integer spins
in one dimension [19], there might be a difference between odd and even integer spins in
two dimensions due to the effects of the Berry phase. Read and Sachdev carried out a
large N analysis of the possible disordered phase as a function of the value of the large
N equivalent of the spin. Their results were consistent with Haldane’s predictions. Three
types of disordered state were predicted. For half-integer spins, the non-magnetic phase is
a SP phase which breaks the translational symmetry along the two directions of the square
lattice. For odd integer spins, the non-magnetic state is made of weakly coupled chains,
i.e., the translational symmetry is broken along one direction only. Finally for even integer
spins, the disordered state is the valence bond solid, like the Affleck—Kennedy—Lieb—Tasaki
(AKLT) state [33], i.e., it does not break any translational symmetry.

In the large S approaches the Heisenberg model is mapped onto the non-linear sigma
model (NLo) with a Berry phase term. This mapping is only approximate [19,30] and
there can be some subtle differences from the original model [30]. Indeed, the realization
of the Haldane conjecture in 1D shows their power. But, in the absence of exact results
for small S, it is impossible to know whether their predictions of a disordered phase
extend to small S. Another potential problem is that the mapping to the o model
assumes the presence of a smooth configuration of spins. This is true in the weak
coupling regime (Néel ordered phase), but this assumption may break down in the strong
coupling regime (disordered phase). In one dimension, the o model coupling constant
is given by g = 2/(1/S(S +1)y/1—4J) [30]. Thus for S = 1, the equivalence of the
two models breaks down at Jo = 0.25, i.e., close to the transition to a dimerized state.
Such a breakdown seems to occur in the J;—J, model where, as seen above, the large N
predictions conflict for S = % with the TSDMRG in the J;—J; model. But since spin half-
integer systems are critical, it could be objected that the behaviours seen in our numerical
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studies are due to finite size effects. For large enough lattices there might be a relevant
interaction which can drive the system to a SP phase as predicted for large N. Though
this scenario appears to be unlikely, as discussed in [22], it cannot be completely rejected.
In principle, one would expect a different behaviour for integer spin systems which are
known to have a spin gap in 1D [19].

In this paper, we applied the TSDMRG to study S = %, 1, %, ..., 4 systems in the
anisotropic 2D Hamiltonian (1). Our results in the absence of frustration are in agreement
with the DLS theorem [1,2]. We find that for all S the ground state is ordered in the
absence of frustration. For all S except for S = %, the order parameter is large enough
that the extrapolated values are reliable. This result constitutes a non-trivial test of the
TSDMRG, since the TSDMRG starts from decoupled chains which are disordered. When
the frustration is turned on, the general mechanism found for the destruction of the Néel
phase is the severing of the frustrated bonds in the transverse direction, leading to a
disordered state with the transverse correlations that decay exponentially at the critical
point as previously found for S = % However, a different conclusion is to be drawn for
half-integer S and for integer S for which the LSM theorem does not apply. All half-
integer systems are similar to S = % The disordered state is confined at the critical
point; it has a SLL character. But for integer S, because of the Haldane gap Ay in the
chain, there is an intermediate phase whose width is roughly ocAg.

This paper is organized as follows. In the next section we discuss the model and the
method. In section 3, we present extensive results for S = 1 systems. This analysis is

1

similar to the one made for spin 5 systems in [22]. In section 4 the results for systems

with S = % to 4 are presented. In section 5, we present our conclusions.

2. Model and method

2.1. Model
We apply the TSDMRG [24, 25] to the spatially anisotropic Heisenberg Hamiltonian

H = Z SiiSiv1 + J1 Z SiiSii+1 + Ja Z(Si,lsi-i-l,l-i-l + Sit1,8i41) (1)
il il il

where J) is the intra-chain exchange parameter and is set to 1; .J; and Jy are respectively
the transverse and diagonal interchain exchanges. This model is the object of current
interest [12,13,18,25]. Tt is a starting point for understanding the J;—Jo model which is
recovered when J = J, = J; and Jq = J5. It retains the basic physics of the .J;—J; model
and has the advantage that in the limit J,, Jq < 1, well tested 1D results can be used to
initialize a perturbative RG analysis.

2.2. The two-step DMRG

In the TSDMRG, to study a 2D lattice of size L x (L+1) (we will refer to the 2D systems
only by their linear dimension L), we start by applying the usual 1D DMRG (m; states are
kept) or exact diagonalization (ED) to a single chain [ of length L to obtain my low lying

eigenstates and eigenvalues, ¢,,, €,,, n; = 1,2,...,mq, respectively. Then, we formally
write the tensor product of the eigenstates of the L + 1 chains,
(b[n} = ¢n1¢n2 e ¢nL+1- (2)
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dp,) is an eigenstate of the Hamiltonian with J, = 0 and Jy = 0, [n] =
(ny,n9,...,n541). The P, constitute a many-body basis of the truncated Hilbert space

of the tensor product of L 4+ 1 chains. The corresponding eigenvalue is
Ep = €n 4 €ny + -+ €nyp iy (3)

The 2D Hamiltonian (1) is then projected onto this truncated basis to yield an effective
one-dimensional Hamiltonian which is studied using the DMRG.

The TSDMRG is perturbative; but the expansion is made in the smaller term of
the Hamiltonian itself not the Green’s function or the ground state wavefunction. We
have shown that starting from a disordered state, the TSDMRG is able to reach the
ordered state without any addition of a term that explicitly breaks the symmetry such as
a magnetic field. The TSDMRG was tested against the quantum Monte Carlo method
(QMC) in [25] and against ED in [27]. The TSDMRG is variational; its performance can
be systematically improved by increasing m; and msy. Key indicators of the performance
of the TSDMRG are the truncation error p; during the first step, the width dF of the
mo states kept and the truncation error py during the second step. In principle, it is
necessary that the ratio of 0 E over the transverse coupling be large for the TSDMRG to
yield great accuracy. Typically, one must have E/J, ~ 10. If this condition is fulfilled
and the my states are accurate enough, i.e., p; is small, the TSDMRG method can reach
QMC accuracy. So far, this has been achieved only for small couplings J; < 0.1 and
lattice sizes of up to L = 16 keeping up to my = 96. The amount of calculation involved
remains modest and so far it has been done on a workstation. The accuracy decreases by
increasing J,; leading to less accurate results in the ordered state. But when both J; and
Jq are turned on, the performance of the TSDMRG becomes more complex as we will see
below.

In this work, the calculations for S = 1 were performed similarly to those for spin
S = % systems in [22]. In most cases, ED was applied during the first step. In some cases,
i.e., some runs of L = 10 and all runs of L = 12, a single DMRG iteration was used. For
instance for L = 10 and S = 1, when m; = 81 states are kept, a single DMRG iteration
is necessary to reach the desired size. For this calculation, we kept up to mo = 96 states
during the second TSDMRG step. For the maximum performance of the algorithm, it is
necessary that J, be of the order of the finite size gap of the single chain Ay. For S =1,
Ay — Ay when L — oo, where Ay = 0.4107 [16] is the Haldane gap. A second condition
to fulfil is 07, > J, where §y, is the width of the retained eigenvalues. As noticed in [22],
the TSDMRG is more accurate in the highly frustrated regime. In figure 1 we show the
truncation error, ps, when two states are targeted in the second step as a function of Jy
for S =1 and J; = 0.4. py is minimal near J4 = 0.22. At this point the system is an
assembly of nearly disconnected chains; the DMRG is thus expected to perform better.

2.3. llustration in the S = 1 case

We now wish to provide a detailed description of a typical TSDMRG calculation. For
this illustration, S = 1 and L = 12, i.e., following the convention set above, the size of
the 2D lattice is 12 x 13. We start the usual 1D DMRG iteration keeping m; = 243
states, i.e., the initial superblock size is L = 12. At this point the DMRG is equivalent
to ED. At the next iteration, the superblock size is L = 14; its total number of states
is My = (3 x 243)%. The size of the reduced superblock (the superblock minus the two
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Figure 1. Truncation error in the second TSDMRG step as function of Jg for
J. =04, S =1and L = 10; ED was performed in the first step and in the
second step; mo = 64.

single-site blocks) is L = 12. During this iteration, spins sectors with S% = 0,4+1, £2,+3
are targeted. The lowest states in each of these sectors for L = 12 have respectively the
following energies: Ey = —16.8696, F., = —16.3854, Fio = —15.5294, E3 = —14.2778.
The truncation error is 7.3 x 10~7. The reduced superblock is then diagonalized and the
mo = 64 lowest lying states are kept. The energy of the highest state among these mo
states is —14.2687 which is lower than F,, = —12.6524, the lowest states of the S7 = +4
sectors. For this reason, these sectors were not targeted. The operators S; at each site
are stored and updated.

From the energy levels above, we see that the finite size spin gap is Ap = 0.4842,
which is not very far from its value Ay = 0.4107 in the thermodynamic limit. Our choice
of J, = 0.4 ensures that the chains will effectively be coupled at this size. The matrix O
whose columns are made of the my vectors ¢,, kept is used to express all the operators in
the truncated reduced superblock basis,

Si = OTSz‘53,3/O; (4)
the intra-chain Hamiltonian is likewise updated:
h = O'(hg, 033 + hp,01.1/)0. (5)

In these equations, we have adopted the usual convention that the different blocks of the
superblock are labelled 1-2-3-4. For PBC, blocks 2 and 4 are made of a single site and
blocks 1 and 3 are the largest blocks. In equation (4), it is supposed that the spin to
update is in block 1. In equation (5), hp, represents the internal Hamiltonian of block .
The first step ends with the updating of these operators.

Each chain may now be viewed as a super ‘spin’ with additional internal degrees of
freedom due to the different sites. A chain [ is described by its ‘spin’ value S; = (Sil,i =
1,..., L) and its internal Hamiltonian h;. h; is diagonal in the basis of the ms states kept.
The effective first-order Hamiltonian which approximates the original 2D Hamiltonian is
now given by

Heff:Zhl+JJ_Zgl*gl+1+JdZSlXSl+17 (6)
! l ¢
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where

Sz * Sz+1 = Z Si,lgi,l—i-l (7)

and
Sz X Sz+1 = Z Sz‘,zgz‘+1,l+1 + Si+1,lgi,l+1- (8)

We then proceed to compute the low lying states of H.g using the conventional DMRG
again. For this simulation we keep ms states and use 3 blocks instead 4 to form the
superblock.

As expected from the study of S = % systems, the TSDMRG is more accurate in
the highly frustrated regime than in the unfrustrated case. ps is relatively large in the
unfrustrated regime because of the relatively large value of the interchain coupling. The
same simulation with J; = 0.2 leads to an improvement of factor 10. It is worth noting
that the superblock size in this step is m3. We are able to reach m, = 100 on a workstation;
this remains modest with respect to what can be achieved on today’s supercomputers.
For the multi-chain DMRG superblock sizes of about 100 times larger are accessible [14];
this means that it is possible to reach my ~ 500 on a supercomputer. This would increase
the current accuracy of the TSDMRG by two or more orders of magnitude. This shows
the great potential of the TSDMRG. These possibilities are under exploration.

Since the TSDMRG is variational, we expect it to underestimate physical quantities.
A key quantity which measures the accuracy of the TSDMRG besides p; and py is the
transverse correlation function,

Cr = (Sr/2,0/24151)2,1./2+1) - (9)

For fixed (mq, ms), the magnitude of C; is underestimated by the TSDMRG. This was seen
in the study of S = % in [25] where the TSDMRG was compared to QMC approaches. We
may expect that if m; is large enough that the states needed to compute the transverse
matrix elements are computed accurately, C; will only depend on msy. This is seen in
figure 2, where Cj is nearly independent of m;. In that case, as shown in figure 3, the
magnitude of C; will increase with my as we would expect from the variational nature of
the TSDMRG. We find that this is observed when both p; and p, are small enough, i.e.,
less than about 5 x 107%,

But deep in the magnetic regime, while the magnitude of Cj still increases with ms
for a fixed my as shown in figure 4, the m; dependence of C; (not shown) is not completely
clear. For a fixed my = 64, the magnitude of C; first decreases with increasing m; and
then increases. The maximum variation of C; from m; = 81 to 243 is less than 0.02. Given
that py ~ 1072 in this region, we are clearly at the limit of the TSDMRG for the values
of m; and my used in this simulation. This limit is the illustration of the well known slow
convergence of the DMRG for gapless systems.

3. Results for S =1

The case of spin % has been extensively studied in [22,25]. We were able to reach lattice
sizes of up to 64 x 65 and show that as seen in QMC simulations, the system is ordered
in the absence of frustration for small J,. But when J3 # 0, we have shown that in the
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0.07 T T T T T T T T
0.06 ;
0.05 ;
0.04 ;
0.03 ;
0.02 ;

0.01

Figure 2. Transverse spin—spin correlation as a function of distance and my = 81,
108, 162, 243 (bottom to top) for my = 64 at J; = 0.4, Jqg = 0.2, S = 1 and
L =12.

0.08

0.06

o 0.04

T

0.02 -

Figure 3. Transverse spin—spin correlation as a function of distance and msy = 16,
32, 64, 80, 96 (bottom to top) for my = 162 at J;, = 04, Jg3 = 0.2, S =1 and
L =12

vicinity of Jy/J1 & 0.5 the system is made of weakly coupled chains even when J, and Jy
are not small. This finding of the TSDMRG was checked using ED on small systems [27].
More careful simulations at the vicinity of the point Jq/J, = 0.5 revealed that the first-
neighbour interchain correlation, i.e. the transverse bond strength, is equal to zero at
the maximally frustrated point. The non-zero correlations, starting from the second
neighbour, decay exponentially. These results lead us to conclude that the maximally
frustrated point is a quantum critical point (QCP) between the two magnetic states
(the second magnetic state is stable when Jq > 0.5J). A possible argument against this
conclusion is that at the maximally frustrated point, the system could be unstable against
higher order terms such as a ring exchange term [13]. In the case of a two-leg ladder this
term seems to lead to a dimerized state. There are however some strong indications that
the dimerized state does not exist in this model as discussed in [22]. The mechanism for
avoiding frustration is dividing the system into chains in which the frustrated bonds are
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0.3 T T T T T T T T

0.25 -
0.2

J 015

T

0.1

0.05 -

Figure 4. Transverse spin—spin correlation as a function of distance and msy = 16,
32, 64, 80, 96 (bottom to top) for m; = 162 at J, = 0.4, Jg =0, S = 1 and
L =12.

-1.53

-1.531
-1.532
-1.533

-1.534

-1.536

Ja

Figure 5. Ground state energy per site as a function of Jy for J, =04, S =1
and L = 12.

severed. We will now study the extension of this mechanism to S = 1. We perform the
same analysis as for § = % for L =6, 8, 10 and 12. For the first three values of L, ED is
performed to obtain the ms lowest eigenvalues and the corresponding eigenstates of the
chain. For L = 12 the DMRG was used; we kept m; = 243 states, i.e., one DMRG iteration
was done from the L = 10 exact result. The truncation error was about 7 x 10~7. The
truncation error is relatively large because we used periodic boundary conditions. These
my low lying states were then used to generate the 2D lattices, i.e., 6 x 7, 8 x 9, 10 x 11
and 12 x 13 respectively.

3.1. Ground state energies

The curve of Eg(Jq) for S = 1, shown in figure 5, is similar to that of S = % Starting
from J4 = 0, E¢ increases until it reaches a maximum at J7***. It then decreases when
Jq is further increased. The position of the maximum depends slightly on L and seems to
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0.25

0.24

0.23

!
max

0.22

0.21

L | L | L | L | L | L | L | L | L | L
0'20 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1
L

Figure 6. Maxima of the ground state energy as a function of L for J, = 0.4,
S =1

-13

-14 -

r_ﬂw -15-

-16 -

17 | | | | | | | | | |

Figure 7. Ground state energy per chain as a function of the chain number for
J1 =04,5=1, L=10for Jg =0 (filled circles) and Jq = J*** (open circles).

converge to 0.5/, in the thermodynamic limit. Eq(J5") is very close to 1.53, the energy
of decoupled chains, but always remains slightly lower. Thus as for S = % the chains are
very weakly bound, even though the bare interactions (J; = 0.4 and Jq = 0.22) are not
small. J"** depends on L as shown in figure 6 and, as in the case of S = %, it extrapolates
to 0.5/, in the thermodynamic limit.

E (1) shown in figure 7, where [ is the number of chains, differs dramatically between
when Jy is far from and close to Jy***. Far from J§***, one of the two magnetic phases
is highly favoured. Starting from an isolated chain, magnetic energy can be gained by
increasing [, leading to the ordered state. The situation is different when Jy = JI"*;
neither of the magnetic states is favoured. At this point, magnetic energy cannot be
gained and Eg([) is nearly independent of [; the system remains disordered as we will see
below from the analysis of the correlation functions.
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Figure 8. First-neighbour spin—spin correlation as a function of Jy for J, = 0.4,
S=1,1L=12.
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Figure 9. Minima of the first-neighbour spin—spin correlation as a function of L

for JL =04, S=1.

3.2. First-neighbour correlation
The transverse first-neighbour spin—spin correlation taken in the middle of the lattice

Cr = (SLy2,0/24150/2,0/2+2) (10)

shown in figure 8, is also reminiscent of the S = % case. C vanishes linearly at Jq = J3.

JY is slightly different from JP**. This small difference is due to numerical error; this

conclusion is supported by the more accurate results obtained for small S = % systems

in [22] where J§ and JP** are equal. The extrapolated J§ (figure 9) as L — oo is also in
the vicinity of 0.5/, .
3.3. Long distance correlations
The transverse spin—spin correlation function,

Cr = <SL/2,L/2+1SL/2,L/2+1>> (11)
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Figure 10. Transverse spin—spin correlation as a function of the distance for
L=10,5=1,J, =04, Jg =0 (filled circles) and Jq = JJ*** (open circles).

is shown in figure 10 for an L = 10 system and J, = 0.4. When J4 = 0, C} extrapolates
to a finite value in the thermodynamic limit. This result is important because it shows
the non-perturbative nature of the TSDMRG. Starting from an isolated chain which is
disordered, the TSDMRG can reach the ordered phase. The ordered phase can be easily
reached for spin larger than S = % where quantum fluctuations are more important. The
extrapolation of C) for S = % leads to a small negative value, as shown in figure 23 below.
In this case, the order parameter is too small to be obtained from an extrapolation from
relatively small systems; it is necessary to go to larger systems such as those studied in [25]
in order to extrapolate to the correct thermodynamic limit. The extrapolated value of C;
does not however lead to the correct value of the magnetization since it is obtained from
a system with a fixed L. A better estimation is given by the finite size analysis of the
end-to-centre spin—spin correlation

Cr = (Srs2,0/2+150/2,041) (12)

shown in figure 11. Cp, for L — oo is roughly 0.06, again consistent with the existence of
the long range order.

In the vicinity of JI"*, C; decays exponentially as seen in figure 10. For [ = 5,
his value is already four orders of magnitude smaller than in the case Jq = 0. This is
consistent with the nearly disconnected chain behaviour observed for Eg at this point.

3.4. Spin gaps

The variations of the spin gap A with [ (for a fixed L), L and .Jy are also consistent with
the above findings. A(Jy) for L = 10 system is shown in figure 12. A(Jq = 0) is about
0.05 (in this regime the gap is zero in the thermodynamic limit as we will see below);
A remains relatively flat as Jy is increased until it reaches the vicinity of JP"**. Near
Jax A(Jq) first sharply increases and reaches the finite size gap of an isolated chain. As
Ja > JP* A(Jy) first sharply decreases and then becomes nearly constant at about 0.05.
A(l) (figure 13) is reminiscent of Eg((); in the unfrustrated case, the chains are effectively
coupled. A(l) rapidly decreases from about 0.53 to 0.05 as [ is varied from 1 to 11. At

Ja = JP* however, A(l) is nearly independent of [.
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Figure 11. Centre-to-end spin—spin correlation as a function of L for § = 1,
Jl:0.4and JdZO.

Figure 12. Gap as a function of Jy for L = 10, .S = 1; the dotted line represents
the single-chain gap.
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Figure 13. Gap as a function of the number of chains for L. = 10, S =1, J, = 0.4,
Jq = 0 (filled circles) and J4 = J"** (open circles).
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Figure 14. Gap as a function of L for S =1, J; = 0 and Jq = 0 (single chain,
filled circles), J; = 0.4, Jq = 0 (filled squares) and Jq = J"** (open circles).

The analysis C', shows that for J3 = 0, the system is ordered. We thus expect to have
A(L) — 0 as L — oo. This is seen in figure 14 where A(L) is shown for L = 6,8, 10 and
12 systems. The decay is faster than 1/L; the extrapolation leads to a negative value. At
Jq = JP* on the other hand, A(L) remains close to that of an isolated chain in all cases.
The two functions are finite in the thermodynamic limit. This result shows the dramatic
difference between S = % and S = 1 systems. For S = %, an equivalent plot leads to
a zero gap [22] at the maximally frustrated point. The extrapolated value for Jq = 0,
A = 0.4015 agrees well with the current best estimate of the Haldane gap Ay = 0.4107.
The difference is due to the relatively short chains, up to L = 16, that were used for the
extrapolation, not to the DMRG that yielded highly accurate results for each size studied.
Noting that the spin—spin correlations in the transverse direction have a very short range,
the difference between the extrapolated values of J3 = 0 and Jyq = J}*** appears to be
relatively large. We believe that this difference could be inferred from the fact that the

extrapolations from 2D systems were done with lattice sizes up to L = 12 only.

3.5. Spin—spin correlations on large systems

So far, in the study of S = 1 systems, we have fixed J, = 0.4. This choice was motivated by
the presence of Ay = 0.4107 in an isolated chain. We initially felt that it was necessary to
choose a large enough J, that the chains will effectively be coupled when the perturbation
is turned on and this will lead to sizable correlation in the thermodynamic limit. But this
choice limited us to relatively small lattices, L < 12. This is because when J| is large, the
condition 0F/J; > 1 is hard to fulfil for larger L. For instance for L = 16, §E//J, = 5.65
for mo = 64, this prevented us from studying L = 16 lattices. But in the course of
this work, we find that even smaller values of J, can lead to detectable values in the
unfrustrated regime C} as | — oo. For smaller J,, we can actually reach larger L. We
wish to present in this part our results for J, = 0.2 and L = 24. These results will add
strength to those for J, = 0.4 presented above.
In figure 15, we show the longitudinal correlation,

Ol = <SL/2+1,L/2+1SL/2+I,L/2+1>7 (13)
doi:10.1088/1742-5468 /2006 /02/P02002 15
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Figure 15. Longitudinal spin—spin correlation as a function of the distance for
L=24, 5S=1,J, =0, Jg =0 (filled circles), J; = 0.2, Jqg = 0 (filled squares)
and J; = 0.2, Jg = 0.102 (open squares).
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Figure 16. Transverse spin—spin correlation as a function of the distance for
L=24,5=1,J, =0.2, Jg =0 (filled squares) and Jq = 0.2, Jg = 0.102 (open
squares).

taken in the middle chain. For J, = 0.2 and J4 = 0, C; clearly extrapolates to a finite
value as expected. But for J; = 0.2 and J4 = 0.102, C; is nearly identical to the spin-spin
correlation on an isolated chain. For the transverse correlation C; shown in figure 16, we
see again the dramatic difference between the unfrustrated and highly frustrated cases.
In the first case, C; goes to a finite value when [ — oo, but for the highly frustrated case,
() decays exponentially.

Another picture of this dramatic difference is given by the magnetic structure factor
S(K = (ky, k,)) shown in figures 17 and 18. In the magnetic phase, S(K) is dominated
by a sharp peak at K = (7, 7) indicative of Néel order. In the disordered phase, S(K) is
nearly flat except for a small range along K = (m, k,) which retains the signature of short
range intra-chain correlations.
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Figure 18. Magnetic structure factor for L =24, S =1, J, = 0.2, Jq = 0.102.

3.6. Conclusion

In this section, we have presented comprehensive results on S = 1 coupled chains. These
results show some analogy with those for S = % published in [22]. Starting from the
unfrustrated system for which J4 = 0, the ground state for S = 1 is ordered, as expected
from the DLS theorem. While for S = % it was necessary to simulate lattices of up to
L = 64 [25] in order to see the extrapolation of Cj to a finite value, for S = 1 relatively
small sizes (L = 12) were enough. This is because quantum fluctuations are less important
in a S = 1 system, i.e., the order parameter is larger. This enables it to be computed
more easily. By comparison, the same extrapolation done for S = % will lead to a negative
value.

When the frustration Jy is turned on and reaches the value J"**, a point where Eg
is maximum, C; decays exponentially, A takes a value very close to that of a pure 1D
system. These results imply that at J}***, the transverse interactions are irrelevant. For
S = %, we identified this state as a spin version of an SLL. In that case, this sliding phase
will probably be confined at the critical point where the two competing magnetic states
K = (m,m) and K = (m,0) neutralize each other. However, we cannot completely rule
out a small finite extension of the sliding phase or even totally exclude the emergence of
a relevant interaction at lower energies which eventually drives the system to a dimerized

doi:10.1088/1742-5468,/2006,/02/P02002 17
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E/S(S+1)

Figure 19. Ground state energy as a function of Jq and S = 3 (filled circles),
S =1 (open circles), S = 3 (filled squares), S = 2 (open squares), S = 5 (filled
diamonds), S = 3 (open diamonds), S = I, (filled triangles).

phase [13]. Tt is obvious that, though both S = % and 1 systems are made of nearly
disconnected chains at J3***, the conclusions must be different because of the presence of
the Haldane gap Ay in the S = 1 chain. The existence of Ay restricts the possible phases
that may arise in the vicinity of J3***. The first crucial difference is that the disordered
state that exists in an S = 1 system has a gap in its excitation spectrum as seen in
figure 14; any eventual residual interaction will be wiped out by this gap which means
that the emergence of new phases at low energies is not favourable for an S = 1 system.
This disordered phase probably has a finite extension which is roughly ocAy.

4. Results for S = % to 4

In the study of various S, we will not do the same extensive calculation as was seen in
the preceding section with S = 1. We will simply fix L and analyse the behaviour of the
system as a function of Jy and [. As we will see below, quantum fluctuations are small
for S > 1; the study of relatively small systems is enough to get the correct picture in the
thermodynamic limit. We studied a lattice with L x (L + 1) =10 x 11 for S = 1 to 4.
J, was set to 0.4 so that it is larger than the finite size gap in half-integer spin systems
and larger than or close to the Haldane gaps in integer spin systems. .Jy is varied from 0
to 0.4.

4.1. Ground state energies

The ground state energy is shown in figure 19 for S = 3 to % Simulations were also done
for S = 4 but they did not converge for certain values of J3. We impute this failure to the
large degeneracy of the renormalized single-chain Hamiltonian h; for large S. At Jq = 0,
the curves approach the classical value Fq/S? = —1.4 quite rapidly. For S = %, we find
Eg/S(S =1) = —1.093. But if we use the 1/S5? normalization, we get Fq/S? = —1.405.
Hence if both finite size effects and the correct normalization are taken into account,

S = % is already in the classical limit.
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Figure 20. Ground state energy at Jq = 0 as a function of [ and S = 1 (circles),
S =1 (squares), S = 3 (diamonds), S = 2 (triangles).

Larger spin systems are found to present the same features as are displayed by spin
1/2 systems. The ground state energy, Eq, shown in figure 19 increases as Jy increases
until the maximally frustrated point where Fg of the two-dimensional system becomes
very close to that of disconnected chains. From this point it decreases when Jy is further
increased. This may be interpreted as follows: starting from the Néel state with K = (7, )
for J3 = 0, the system tends to lose energy under the action of Jq which progressively
destroys the Néel order until the maximally frustrated point is reached. Beyond this point,
Jq becomes dominant and the systems enters the Néel K = (7,0) phase. The position of
this maximum decreases slowly with increasing S. This indicates that in addition to the
effect of OBC that shifts J"® towards higher values, there are intrinsic finite size effects.
All systems evolve regularly towards the S — oo limit.

The curve of Eg appears to change structure as S increases. At low S, a well
rounded maximum is observed. We were able to fit all the points of the curve to a
quadratic function. But for large S, this became impossible. The maximum has nearly
become a cusp as for S — oo. This cusp is at the intersection of two straight lines
Eg, = —-1—-J, +2Jg and Eg, = —1 + J, — 2J4 which are the ground state energies,
respectively, below and above the transition point Jq = 0.5.J .

E¢ (1) shown in figures 20, 21 displays the features seen for S = 1. It decreases when
[ increases in the weak frustration regime. It remains nearly constant in the vicinity of
the maximally frustrated point.

4.2. First-neighbour correlation

The tendency towards severing of the chains is more clearly seen in the transverse bond
strength

Cr = <S5z,655z,7>7 (14)

shown in figure 22. In all cases, (' decreases from its value at Jq = 0 and seems to
vanish at J§ (we were able in all cases to reach values of C; which are equal to or less
than the numerical accuracy of our simulations). From this point it increases. There is a
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Figure 21. Ground state energy at Jq = 0 as a function of [ and S = 1 (circles),
S =1 (squares), S = 3 (diamonds), S = 2 (triangles).
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Figure 22. First-neighbour correlation as a function of J4 and S = % (circles),
S =1 (squares), S = 2 (diamonds), S = 2 (triangles) S = 5 (filled diamonds),

S =3 (open diamonds), S = I, (filled triangles).

small difference between the position of J9 for different values of S as found for Eg. The
curves of C] suggest that for all S, the mechanism for avoiding frustration is identical:
the systems relax to nearly disconnected chains. These curves also show the influence of
quantum fluctuations for small S. This is seen in the decay of C} as soon as Jq # 0. For
larger S, C remains nearly constant until Jgq & J3.

4.3. Long distance correlations

Since our starting point for 2D systems is disconnected chains, it is important to show, as
for the spin 1/2 case studied previously, that the TSDMRG is able to reach the ordered
phase. One possible way to look at the appearance of the ordered state is to look at the
decay of the transverse correlation function,

Cr = (55655 511) (15)
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Figure 23. Spin—spin correlation at Jg = 0 as a function of [ and S = % (filled
circles), S = 1 (open circles), S = 2 (filled squares), S = 2 (open squares), S = 2
(filled diamonds), S = 3 (open diamonds), S = Z, (filled triangles), S = 4 (open
triangles).

in the Néel phase for J3 = 0. We found that for all values of S except S = %, as shown in
figure 23, the transverse correlation function extrapolates to finite values. C; extrapolates
to a negative value for S = % In that case, quantum fluctuations are so strong that it is
necessary to go to larger values of L as was done in [25].

At the maximally frustrated point, we also observe exponential decay of C; similar
to that for S = % As seen in figure 24, this decay becomes less fast with increasing S.
Indeed in the limit S — oo, the transition is of first order. The chains are disconnected in
this classical limit and C} is exactly equal to zero. However, for any small deviation from
the transition point, the system falls into one of the ordered states. This point is virtually
impossible to find exactly numerically. However, for smaller values of S the critical region
is larger and even if we miss the exact transition point, this behaviour will nevertheless
be observed as long as we are close enough to the QCP.

4.4. Spin gaps

The curves of A(Jy) in figure 25 for different values of S typically have a peak at Jq = JP**.
This peak is very narrow, except for S = % where quantum fluctuation effects lead to a
broader peak. As expected from the behaviour of C;, this peak becomes sharper with
increasing S. A(J}**) is nearly equal to the finite size gap of an isolated chain which is
represented by a flat line in each case. We were unable to reach the 1D gap for S > %
This is probably due to the narrowness of the critical region which makes it difficult to see
the nearly disconnected chain regime. One can easily fall into one of the ordered regimes,
leading to a relative slow decay of C; which manifests itself in a smaller finite size gap.

4.5. Conclusion

In this section, we presented results for L = 10 and J, = 0.4 with S varying from % to 4.
In agreement with the DLS theorem, we found long range order for all S greater than or
equal to 1 in the unfrustrated case. As Jy is turned on, the long range order is destroyed.
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Figure 24. Transverse spin—spin correlation at Jq = 0.22 as a function of [ and
S =1 (circles), S =1 (squares), S = 3 (diamonds), S = 2 (triangles), S = 3
(filled diamonds), S = 3 (open diamonds), S = %, (filled triangles), S =4 (open
triangles).

Figure 25. Spin gap as a function of Jg and S = % (circles), S = 1 (squares),
S =2 (diamonds), S = 2 (triangles).

An interesting question is that of the nature of this disordered state as a function of S.
Before addressing this question, we will first review how frustration works in 1D [38].

For the frustrated S = % chain, there is a transition to a dimerized phase at
Joe = 0.242J1, where Jo. is the value of next nearest neighbour coupling at the critical
point. At this point a gap opens exponentially and grows with J,. At J, = 0.5J;, the
system is perfectly dimerized and shows incommensurate correlation above this point
(disordered point). At about J, = 0.52J; a two-peak structure appears in the structure
factor (the Lifshitz point). DMRG simulations for the S = 2 chain show a similar
behaviour. This suggests that it is generic to half-integer spin systems.

Integer spin chains are already gapped in the absence of the frustration term J. For
S = 1, the transition to a dimerized phase is absent, but numerical simulations show
the presence of the disordered and the Lifshitz points. In addition there is a first-order
transition at Jo = 0.75.J; from a phase with a single-string order to a phase with a double-
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string order. At this point the chain splits into two chains. These special points are also
observed in the S = 2 chain except that the order parameter for the first-order transition
is still unknown.

The results presented in the preceding sections show that the mechanism for easing
frustration works differently in 2D systems. This mechanism is the same for all values of S.
The system spontaneously severs the frustrated bond at the maximally frustrated point.
The similarity for all S of these mechanisms stems from the fact that if the transverse
coupling is large enough, all the 2D systems are ordered for half-integer as well as for odd
integer systems. Frustration is a competition between two magnetic ground phases and
we have shown that for coupled chain systems, the best way to avoid frustration is to relax
into nearly independent chains. It is clear that such a mechanism will be independent of
the value of the spin as found in our numerical study. The consequences are nevertheless
different for half-odd-integer and for integer spin systems.

For all half-odd-integer spin systems, like for the spin 1/2 studied more extensively
in [22], there is a second-order phase transition between the two magnetic states at
Ja = JI'™. At the critical point, the system is disordered. The transverse correlation
decays exponentially while, at long distances, the longitudinal one behaves like those of
independent chains. Hence at the critical point, the spin rotational symmetry of the
Hamiltonian is restored. As for spin 1/2, there might be a residual interaction which
can drive the system eventually to a SP phase. But previous numerical studies on 2D
systems [22] and on three-leg ladders point to the absence of a dimerized phase in this
region for S = % This is expected to be valid for all half-odd S. We would like to
stress that dimerization is not the driving mechanism in the formation of the disordered
state. We are indeed aware of earlier ED results [31] in which an enhancement of the SP
susceptibility was observed in the regime J, &~ J; /2. We believe in light of our results that
this is merely the consequence of the severing of the chains in one of the two directions of
the square lattice. The SP signal is expected to be larger in 1D where it has a power law
decay than in 2D when the spins are locked into Néel order in the unfrustrated regime.

For integer spins, there is an intermediate phase between the two magnetic states.
When |J; —2J4] < A, where A is the single-chain spin gap, the transverse couplings are
irrelevant. The maximally frustrated point is the equivalent of the disordered point seen in
1D. In this regime of couplings, the system is an assembly of nearly decoupled chains. In
the case of integer spins, even if there is a residual interaction at the maximally frustrated
point, this interaction is necessary irrelevant because of the presence of A. Integer spin
systems are thus radically different from half-odd-integer systems.

5. Conclusion

In this paper, we used the TSDMRG to study coupled spin chains with S varying
from % to 4. This study illustrates the power of the TSDMRG method, where using
a modest computer effort we were able to study the unfrustrated regime and find long
range magnetic order, in agreement with the DLS theorem and Monte Carlo studies. We
obtained good accuracy in the highly frustrated regime of the model. The study of this
region has so far resisted other numerical methods.

We showed that in order to avoid frustration, all spin systems tend to sever the
frustrated bonds. The severing of the transverse bonds is a large effect which is seen in
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various physical quantities. The strong frustration regime is dominated by 1D physics;
topological effects become important as predicted in [7,8,21]. However, we did not find
any qualitative difference between odd and even integer spin systems as predicted in |7, 21].
This could be due to the fact that in the highly frustrated regime the 2D systems tend to
relax into nearly independent 1D systems where topological effects are identical for odd
and even integer spins. It could also be related to the anisotropy of the model studied.
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