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Abstract-A non-linear analysis of ionization wave fronts is given including energy effects. The 
necessary external energy source is Joule heating due to an applied transverse electric field. The front 
propagates at a speed which is proportional to the product of the electron sound speed and the square 
root of the ratio of the electron collision time to the reaction time. The structure of the ionization 
wave is also obtained. 

INTRODUCTION 
AN IONIZATION wave may propagate through an initially nonionized gas in much the 
same way that a flame front propagates through a combustible gas mixture. A contin- 
uum theory €or the structure of ionization wave fronts has been given by TURCOTTE 
and ONG (1968). Their theory was based upon a balance between the production and 
recombination of electrons and ions, the convection of electrons and ions, and the 
diffusion of electrons. Energy effects were neglected and a constant electron tempera- 
ture was assumed. A lower bound for the propagation speed of the ionization wave 
was found. 

The purpose of this gaper is to extend the ax!ysis d T v x c ~ z  and S i u ’ ~  (196S) 
to include energy effects. A steady plane wave analysis is used in which all quantities 
are functions only of one spacial coordinate. The electron temperature is assumed to 
be large compared with the ion and neutral temperatures. The energy source neces- 
sary to provide the hot electrons is the Joule heating due to a constant applied trans- 
verse electric field. It is also assumed that the background neutral gas is not affected 
by the ionization front. The problem is solved in the limit of large electrical interaction 
between the electrons and ions-the ambipolar limit-since this limit is appropriate 
for most cases of interest. In this limit a sinsle propagation speed is obtained ~ind ths 
structure of the ionization wave is completely determined. 

FORMULATION O F  THE PROBLEM 
The problem is formulated using a reference frame in which the wave is at rest. 

A time independent solution is sought which connects the uniform conditions upstream 
and downstream, The speed of the gas incident on the front is then the propagation 
speed of the wave. Far upstream the gas is not ionized. We assume that the degree 
of ionization in the wave and downstream is sufficiently small so that collisions of 
charged particles with neutral particles dominate over collisions between charged 
particles in determining the transport coefficients and the neutral gas is not affected 
either by the ionization process or by the presence of the charged species. Therefore 
we neglect variations in the mass average velocity uw, the neutral gas number 
density a,, and the neutral gas temperature T. The ion temperature Ti is assumed to be 
everywhere equal to the neutral gas temperature T, and is therefore a constant, 
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The electron temperature T,(x) is assumed to be large compared with the neutral 
gas temperature; consequently the neutrals are ionized only by collisions with the 
hot electrons and the dominant ionization and recombination processes are given by 

A + e + A+ + e 4- e .  

Further details of the model have been given by TURCOTTE and ONG (1968). 
Neglecting ion diffusion the equations for conservation of electrons and ions are 
(BURGERS, 1960) 

(1) 

(3) 
dn, 
dx 

-U, - = KInnne - KRn,2ni. 

The ionization reaction is endothermic and the necessary external energy source is the 
Joule heating which arises from the current flow in an applied transverse electric field. 
The energy conservation equation for the electrons is 

...a --- 
W U G l G  .KI ~d ."r, Ere the iodzation_ and recombination rate coefficients respectively. 
These coefficients are functions only of the electron temperature T,(x). The electron 
diffusion coefficient De depends on the electron temperature and the neutral gas num- 
ber density but the latter is a constant. The numerical coefficients in (2) ,  (3) and (4) 
follow from the hard sphere collision model assumed for the electron-neutral inter- 
actions. To complete the set we also require Poisson's equation 

dE, e 
- = - (ni - ne). 
dx E o  

( 5 )  

Upstream the required boundary conditions are ne = n, = 0, downstream n, = ni = 
nee. The electric field component E, vanishes far downstream since the electrical 
conductivity is finite there and no electric current in the x-direction is allowed, so 
E, = 0 as x + -CO. Upstream the electric field may be finite since the electrical 
conductivity is zero and therefore a finite value for the electric field does not give an 
electric current. For a true semi-infinite, one-dimensional problem the finite upstream 
electric field implies an infinite potential. However for any experiment with a tube of 
finite length or for a three-dimensional problem the required potential is finite. The 
solution we obtain shows that the required upstream electric field is directly related to 
the applied transverse electric field. 

For any value of the electron temperature there is a corresponding quasi-equi- 
librium given by 

0 = KIneann - KRne: (6) 
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where the subscript q denotes the equilibrium condition at the temperature T, where 
n,,(T,) = nig(TE). We may also relate the constant transverse component of the elec- 
tric field, E,, to the downstream value of the electron temperature T,, by 

Since T and E, are assumed to be given and constant the downstream electron temper- 
ature is determined. Equztisn (7) is 2 balance between the eaergy input to ihe electrons 
due to Joule heating and the energy loss through elastic collisions with the neutral 
gas. However the corresponding increase of the neutral gas temperature is assumed 
to be negligible since the degree of ionization is small and this occurs on a time scale 
far greater than that of the reaction in the wave. Substitution of (6) and (7) into (2), 
(3) and (4) gives 

dn, 8 D n  dT, 
-1-22- + D*e Ex) -k KRn,(n,; - n,nJ (8) 

-u,-=-(D, dn, d 
dx dx dx ' 13 Te dx kTe 

dn . 
dx 

-U, -' = KRnE(ne; - ne74 

We now introduce the following dimensionless variables 

(9 )  

and for simplicity we assume that 

~h. last rela '-tlUll :-- :.. 111 (1 (2, \ r-ii---. lulluws from the Saha equation. Substitution of (ii) and jiZj 
into ( 5 ) ,  (8), (9) and (10) gives 

f AM (exp [-e(H-l - l)] - M N )  = 0 (13) 

2 + I,M (exp [- - 111 - M N )  = o (14) 
dE 

= H(N- M )  
d5 

d 40 d H  55 dM 55 d (3 MH) -+ - (- M -  +- H - + - BAHhfG) 
dE 2 d5 13 dE 26 d5 26 

-&AM (exp [- &(H-l- I)] - M N )  + 3yAMH(l.- H) = 0 (16) 
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where 
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The required boundary conditions are 

at E-++co: M = N = O ;  G = G o ;  H = H o  

at f -+ -o3 :  M = N = l ;  G = O ;  H = l  

where Go and Ho are finite unknown constants. 

the ions and electrons. It is easily shown that 
The dimensionless parameter p is a measure of the electrical interaction between 

where L, is the mean free path for electrons, Lo is the Debye length, T~ is the collision 
time for electrons, and T,,,~ is the reaction time; all quantities based on nee. The 
ratio T ~ ~ ~ ~ / T ~  is the average number of electron-neutral collisions required for an 
ionizing collision. For the range of eleCtron temperatures in which the present analysis 
is valid T ~ ~ ~ ~ / T ~  > 1. If ,6 < 1, the Debye length is large and the ion and electron 
number densities may be appreciably different. If > 1 , space charge effects dominate 
and the number densities of the ions and eiectrons are neariy equairhroughout most of 
the front. For most applications 16 is a large number. 

The dimensionless parameter A is an eigenvalue; it gives the allowed propagation 
speeds of the ionization front. The dimensionless parameter E represents the ratio of 
the ionization potential to the electron thermal energy and exp (--E) is the fraction of 
electrons in a Maxwellian distribution with sufficient energy to ionize a neutral. For 
the required low degree of ionization E must be large compared with unity. 

The dimensionless parameter y is a measure of the energy exchange between the 
eiectrons and neutrais. i t  is easily showii that 

We may also viewy as the ratio of the energy exchange between electrons and neutrals 
through elastic collisions to that through inelastic ionizing collisions; if y > 1 the 
electrons within the wave front lose energy predominantly through elastic collisions 
with the neutrals. Typical values of ,B and y are given in the section on numerical 
calculations. If y is large we expect that T,(x) is only slightly lower than Teo. 

We combine (13) and (14) and integrate once using the upstream boundary con- 
ditions to give 
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Introducing 

d H  p = -  
dE 

we transform (14)-(18) into a set of equations appropriate for a phase space analysis 
by eliminating the spatial coordinate 5. 

8 
d M  13 
d N  ?.M (exp [-&(H-l- l)] - MN) 

- H-'MP + PJMG + M - N 
-=  

dG H(M - N) -=  
dN ?,M (exp [-E(H-' - l)] - MNj 

The required boundary conditions are 

at N = 0: M = 0, G = Go, H = H, 

at N = 1: M = 1, G = 0 ,  H =  1. 

It is easily shown that the downstream singularity zit N = 1 is a saddle point and the 
upstream singularity at N = 0 is a node. 

SOLUTION FOR H,, Go, AND THE EIGENVALUE 3, 

We expand the variables in a power series about the upstream singularity as follows 

For convenience we define 

6 = exp (-&[Ho-l - 11). 
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Substituting (24) into (20)-(23) and equating the coefficients of like powers of N ,  we 
obtain 

AAC6 = -B (25) 
(26) 

(27) 

(28) 

(29) 

C2id = /!ILGOC f C - 1 

2 E K 6  = PACD + EC-I f - j j  CBH0-I - (/3RGoC + C - 1) 
8 

D1C6 = Ho(C - 1) 
3 55 
- HOC - - Ho(C - 1) f E = 36-'H0(1 - Ho) 
2 26 

600 16 8 55 B(l - C) 3B + 63+~A(1 - 2HJ 

(30) 
226 

- BC =- HOE+- AC+ - + 
3 ~ ~ ( 1  - &)A 55 

- - - A .  

Equations (25)-(30) constitute a set of six equations for the seven unknowns A ,  B, C,  
D, E, Go and H,. However, as noted earlier, p > 1 for most cases of interest. It can 
be shown (TURCOTTE and QNG, 1968) that in this ambipolar limit the following expan- 
sion is valid throughout the front 

And for large ,8 this implies from (24) that 

Szbstituti~g this resiilt into (25)-(30) yields 

169 13 13 26 ASC 

HO6 26 

M = N + O(,El). ( 3 9  

c= 1. (32) 

A6A = -3 (33) 
6 =#EGO (34) 

Equations (33)-(38) constitute a set of six equations in six unknowns. Equation (37) 
gives Ho immediately as a function of E and y which are known. Then Go may be found 
from (34). Thus the set of equations (33)-(38) is essentially reduced to the three 
homogeneous equations (33), (35) and (38) in the three unknowns A,  B and E. In 
order that a nontrivial solution exist, the determinant of the coefficients must be equal 
to zero. This yields 

( + cH0-1) 

Id2 + 36 - 3 ~ ( 1  - 2Ho) + 3 y ~  - Ho). (39) 
600 16 13 - jb62 = - 
169 13 (226 - 1) HO 
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Solutions of (39) give the eigenvalue. Since (39) is quadratic in I t ,  it yields two values 
of 1, namely AI, and A2 which depend upon e and y .  Note that H, is a function of E 

and y as expressed by (37). In Fig. 1 we show the behaviour of 3, as a function of 
y for a typical value of E. 

1 From (37) it can be seen by inspection that H, < 1 for all positive values of e and 
y .  This indicates that the electron temperature decreases upstream. This is reasonable 

io-' I IO 102 103 104 105 

vf 
FIG. 1.-Dependence of the eigenvalue A on w for E = 15 and ,8 > 1 from (39). 

since the ionization reaction is endothermic and thus absorbs heat from the electron 
gas. Furthermore with Ho < 1 we have 6 < 1, and hence from (34) we see that 

Go - O(j3"). (40) 

For the case M > 1 it can be shown by numerical calculations that Ho = 1 + O(y-l). 
This leads to 6 = 1 + S(y-l). Thus for large values of y we may estimate the eigen- 
value A as follows. Let 

PP, = 1 f y-lhl + O(y-2). ( 4 9  

Substituting this into (37) gives 

and it follows that 

H, = 1 - y - l ( ;  - + O(y-2). 

We now substitute (42) into (39) and obtain the following expressions for 1 

(43) 

1 A - - -/- O(y-1) 
l - 2  

- - y + O(1). 
169 

- 200 
3, 
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It was noted previously that large values of y imply a near constant T, throughout 
the wave. Hence in the limit as y --+ 00 it is appropriate to replace the electron energy 
equation with the condition H = 1. If we solve for il by the same method used above 
we find a single eigenvalue, 1 = 9, as can also be seen from (43). We conclude that 
the A, branch of the solution of (39) is the proper one since it is the one that gives a 
finite propagation speed in the limit y ---f CO. The 1, branch is evidently extraneous. 

From the definition of L in (17) with I. of order unity we see that 

where a, is the electron sound speed. A simple argument can also be used to give this 
result.* Since D, w C Z , ~ T ,  a balance between convection and diffusion in the electron 
conservation equation, (2), gives 

a,27, 
U, w - 

L (45) 

with L a length characteristic of the thickness of the wave. A balance between convec- 
tion and production in (2) gives 

And eliminating the characteristic length L from (45) and (46) gives (44). A balance 
between convection, electron diffusion, and production gives the appropriate propa- 
gation speed. 

WAVE S T R U C T U R E  
In the limit y > 1 the wave structure can be obtained in analytic form. For arbi- 

trary values of y numerical methods must be used. If > y > 1 we find from (31), 
(40) and (42) that 

1 - H = O(w-l), M - N = O(F-'), G = O(F-'). 

Let us further assume that we may write = cy" where n is some appropriate integer 
larger or equal to unity and c is a constant. For large y we assume the following 
expansion in reciprocai powers of y ,  

N = N  0 I y -1N 1, M=No+y- lM,  
(47) 

G = y-"G,, H = 1 + y-'H1. 

If (47) is substituted into (14) we find that to first order 

No = [l + a exp (21u5)]-1'2. (48) 
The constant of integration, a, merely determines the location of the wave. This is the 
same form of solution found by TURCOTTE and ONG (1968). If (47) is substituted 
into (18) we have to first order 

(49) dN0 
d5 
- + cANOG, = 0. 

* The authors are pleased to acknowledge the referee's suggestion of this argument. 
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FG 
N 

-I 0 -5  0 5 I O  

E 
FIG. 2.-Wave structure for E = 15 and @ > y > 1 as given by (52). 

Combined with (48) this yields 
G, = - a ez'.t((l + ae2;IE)-1 

c 

If (47) is substituted into (16) we have to first order 

(i + F )  9 - 31N0H, = 0. 
dE 

Using (48) we then obtain 

If we let 5 --f + CO in (52) we find 

Go = /3-' + O(,~-'Y-') 

which agrees with (40) and (41). 
Poisson's equation (15), is not required unless we wish to solve for the detailed 

structure to O(y-"), i.e. to O(P-l). Since (52) indicates that dG/d< > 0 everywhere, 
it follows from (15)  that N > M everywhere. Figure 2 gives a typical solution for N ,  
G and H a s  functions of 5. 
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NUMERICAL CALCULATIONS 
A number of restrictive assumptions have been made in the analysis given in this 

paper. One of the most restrictive is the requirement that neutral-charged particle 
collisions dominate over collisions between charged particles. However the basic 
mechanism and the method should be applicable for all degrees of ionization. There- 
fore we will evaluate the parameters used in the analysis outside the range of validity 
of the theory. 

m3/sec. 
The ionization potential is 13.6 eV, the electron-neutral cross section is 2.3 x 10-19 
m2, and we assume n, = 1021 atoms/m3 with a corresponding electron number 
density ne0 = 10l8 electrons/m3. The resulting values for the dimensionless parameters 
are: E = 15.9, ,t3 = 2.5 x 1013 and y = 1.25 x lo5. Clearly both /3 and y are very 
large compared with one and the assumptions made above are valid. The two values 
for the eigenvalue 1, are AI = 0.5 and A, = 1.05 x lo5. These correspond to propaga- 
tion speeds of 36 m/sec and 0.25 mjsec respectively. 

If we consider atomic hydrogen with T, = 105"K and n, = 1021 atoms/m3 the 
equilibrium electron number density is ne, = lo2" electrons/m3 and the lightly ionized 
assumption is clearly not valid. However the nondimensional parameters can be 
evaluated and we find that E = 1.6, ,t3 M lo9 and y M 0.4. The two values of the eigen- 
value ii are I., = 1-9 and 1, = 18.6 and the corresponding values for the propagation 
speed are 4 x lo4 m/sec m d  lo4 mjsec. At this higher electron temperature the char- 
acteristic time for ionization is much shorter and the ionization front can propagate 
at much higher speeds. 

m2 
and the ionization potential is 15.8 eV. With n, = 1021 atoms/m3 the equilibrium 
electron number density is n,, = l0l8 electrons/m3. The values of the dimkionless 
parameters are E = 18.4, ,t3 M l0l5 and y = 54. The values of the eigenvalue 1. are 
A1 = 1-10 and A, = 369 and the corresponding wave speeds are 185 mjsec and 10.1 
m/sec. 

For atomic hydrogen with T,, = 104"K we find that K,, = 5.7 x 

For argon with T,, = lo4 OK the electron-neutral cross section is 4 x 

APPLICATIONS 
A considerable literature exists on the propagation of potential waves in discharge 

tubes. If a high voltage is suddenly applied to a discharge tube in the pressure range 
O*OOl-IO torr a discharge is observed to propagate down the tube at speeds up to 
107-10a mjsec (BEAMS, 1930; SNODDY et al., 1936, 1937; MITCHELL and SNODDY, 
1947). The propagation speed was a strong function of the applied voltage and the 
pressure level. 

Although no detailed theory has been developed for these waves a qualitative 
mechanism based on photoionization and a succeeding electron avalanche has been 
proposed (LOEB, 1965). Under some conditions the theory given in this paper, 
appropriately modified for geometry and experimental conditions, might be appli- 
cable to this problem. 

Closely related phenomena are the precursors observed in electric shock tubes. 
Several investigators (FOWLER and HOOD, 1962; LUBIN and RESLER, 1967) have 
observed precursor waves travelling at speeds near IO6 cmjsec ahead of the shock 
wave. Present theories for these precursor ionization fronts fall mainly into two classes, 
theories based on electron diffusion and theories based on adsorption of radiation. 
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Theories for the upstream diffusion of electrons have been given by PIPKIN (1961, 
1963), WETZEL (1962, 1964) and APPLETON (1966). Theories for photo-ionization as 
the source of the precursor have been given by WETZEL (1963,1964) and by GERARDO 
et al. (1963). The theory presented in this paper gives an alternative mechanism for this 
phenomena. It should be noted, however, that the propagation speed obtained in this 
paper is a strong function of the electron temperature because of the exponential 
character of the ionization rate. Therefore the electron temperature must be known 
with considerable accuracy before a direct comparison of theory and experiment can 
be made. 

CONCLUSIONS 
In this paper a new wave propagation mechanism has been investigated. It is 

found that an ionization front may propagate into a nonionized gas at a well defined 
speed. Two propagation speeds have been found, see (39), as the solution of a non- 
linear eigenvalue problem. One of the solutions is rejected on the basis of a limiting 
solution. The method and results are similar to those used to determine the propaga- 
tion of laminar flames. 

Although the results obtained here are restricted to a lightly ionized gas obeying 
a particular ionization reaction, the method can easily be extended to higher degrees 
of ionization and more complicated ionization reactions. The results could also be 
extended to include the effects of applied magnetic fields and might be applicable to 
ionizing shock waves. 
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